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I will discuss a new class of stochastic games

that I call nonlinear Markov games, as they

arise as a (competitive) controlled version of

nonlinear Markov processes (an emerging field

of intensive research). This class of games

can model a variety of situation for economics

and epidemics, statistical physics, and pur-

suit - evasion processes. Further discussion of

this topic is given in my monograph ’Nonlin-

ear Markov processes and kinetic equations’,

CUP 2010.



Nonlinear Markov process: future depends on

the past not only via its present position, but

also its present distribution.

A nonlinear Markov semigroup can be consid-

ered as a nonlinear deterministic dynamic sys-

tem, though on a weird state space of mea-

sures.

Thus, as the stochastic control theory is a

natural extension of the deterministic control,

we extend it further by turning back to de-

terministic control, but of measures.



Nonlinear Markov chains (discrete time)

A nonlinear Markov semigroup Φk, k ∈ N, is

specified by an arbitrary continuous mapping

Φ : Σn → Σn, where the simplex

Σn = {µ = (µ1, ..., µn) ∈ Rn
+ :

n∑

i=1

µi = 1}

represents the set of probability laws on the

finite state space {1, ..., .n}.

In order to get a process one has to choose a

stochastic representation for Φ, i.e. to write

it down in the form

Φ(µ) = {Φj(µ)}nj=1 = {
n∑

i=1

Pij(µ)µi}ni=1,

(1)

where Pij(µ) is a family of stochastic matri-

ces (
∑d

j=1 Pij(µ) = 1 for all i), depending on

µ (nonlinearity!), whose elements specify the

nonlinear transition probabilities.



One can get nonlinear analogs of many re-

sults from the usual Markov chains. For ex-

ample, let us present the following simple fact

on the long time behavior.

Proposition 1. (i) For any continuous Φ :

Σn → Σn there exists a stationary distribu-

tion, i.e. a measure µ ∈ Σn such that Φ(µ) =

µ. (ii) If a representation (1) for Φ is chosen

in such a way that there exists a j0 ∈ [1, n], a

time k0 ∈ N and a positive δ such that

P
k0
ij0

(µ) ≥ δ (2)

for all i, µ, then Φm(µ) converges to a sta-

tionary measure for any initial µ.

Proof. Statement (i) is a consequence of the

Brower fixed point principle. Statement (ii)

follows from the representation (given above)

of the corresponding nonlinear Markov chain

as a time non-homogeneous Markov process.



Nonlinear Markov chains (continuous time)

A nonlinear Markov semigroup with the finite

state space {1, ..., n} is a semigroup Φt, t ≥ 0,

of continuous transformations of Σn. As in

the case of discrete time the semigroup it-

self does not specify a process. A continuous

family of nonlinear transition probabilities on

{1, ..., n} is a family P (t, µ) = {Pij(t, µ)}ni,j=1
of stochastic matrices depending continuously

on t ≥ 0 and µ ∈ Σn such that the follow-

ing nonlinear Chapman-Kolmogorov equation

holds:
n∑

i=1

µiPij(t+s, µ) =
∑

k,i

µkPki(t, µ)Pij(s,
n∑

l=1

Pl.(t, µ)µl).

(3)

This family is said to yield a stochastic repre-

sentation for the Markov semigroup Φt when-

ever

Φt
j(µ) =

∑

i

µiPij(t, µ), t ≥ 0, µ ∈ Σn. (4)

If (4) holds, the equation (3) represents just

the semigroup identity Φt+s = ΦtΦs.



Once a stochastic representation (4) for the

semigroup Φk is chosen one can define the

corresponding stochastic process started at

µ ∈ Σn as a time nonhomogeneous Markov

chain with the transition probabilities from

time s to time t being

pij(s, t, µ) = Pij(t− s,Φs(µ)).

To get the existence of a stochastic repre-

sentation (4) one can use the same idea as

for the discrete time case and define

P̃ij(t, µ) = Φt
j(µ).

However, this is not a natural choice from the

point of view of stochastic analysis. The nat-

ural choice should correspond to a reasonable

generator.

Namely, assuming the semigroup Φt is differ-

entiable in t one can define the (nonlinear)

infinitesimal generator of the semigroup Φt

as the nonlinear operator on measures given

by

A(µ) =
d

dt
Φt|t=0(µ).



The semigroup identity for Φt implies that

Φt(µ) solves the Cauchy problem

d

dt
Φt(µ) = A(Φt(µ)), Φ0(µ) = µ. (5)

As follows from the invariance of Σn under

this dynamics, the mapping A is conditionally

positive in the sense that µi = 0 for a µ ∈ Σn

implies Ai(µ) ≥ 0 and is also conservative in

the sense that A maps the measures from Σn

to the space of the signed measures

Σ0
n = {ν ∈ Rn :

n∑

i=1

νi = 0}.



We shall say that such an A has a stochastic

representation if it is written in the form

Aj(µ) =
n∑

i=1

µiQij(µ) = (µQ(µ))j, (6)

where Q(µ) = {Qij(µ)} is a family of infinites-

imally stochastic matrices (also referred to

as Q-matrices or Kolmogorov’s matrices) de-

pending on µ ∈ Σn. Thus in stochastic rep-

resentation the generator has the form of a

usual Markov chain generator, though addi-

tionally depending on the present distribu-

tion. The existence of a stochastic represen-

tation for the generator is not obvious, but is

not difficult to get.

In practice, the converse problem is of more

importance: not to construct the generator

from a given semigroup, but to construct a

semigroup (i.e. a solution to (5)) from a

given operator A, which in applications is usu-

ally given directly in its stochastic represen-

tation.



Examples: Lotka-Volterra, replicator dy-

namics, epidemics

The nonlinear Markov semigroups are present
in abundance among the popular models of
natural and social sciences.

The replicator dynamics of the evolutionary
game arising from the classical paper-rock-
scissors game has the form





dx

dt
= (y − z)x

dy

dt
= (z − x)y

dz

dt
= (x− y)z

(7)

Its generator has a clear stochastic represen-
tation with

Q(µ) =




− z 0 z

x − x 0

0 y − y


 (8)

where µ = (x, y, z).



The famous LotkaVolterra equations describ-

ing a biological systems with two species, a

predator and its prey, have the form




dx

dt
= x(α− βy)

dy

dt
= −y(γ − δx)

(9)

where α, β, γ, δ are some positive parameters.

The generator of this model is conditionally

positive, but not conservative, as the total

mass x + y is not preserved. However, due

to the existence of the integral of motion

α log y − βy + γ logx − δx, the dynamics (9)

is path-wise equivalent to the dynamics (7),

i.e. there is a continuous mapping taking the

phase portrait of system (9) to the one of

system (7).



One of the simplest deterministic models of

epidemics can be written in the form of the

system of 4 differential equations:




Ẋ(t) = −λX(t)Y (t)

L̇(t) = λX(t)Y (t)− αL(t)

Ẏ (t) = αL(t)− µY (t)

Ż(t) = µY (t)

(10)

where X(t), L(t), Y (t) and Z(t) denote respec-

tively the numbers of susceptible, latent, in-

fectious and removed individual at time t and

the positive coefficients λ, α, µ (which may ac-

tually depend on X, L, Y, Z) reflect the rates

at which susceptible individuals become in-

fected, latent individuals become infectious

and infectious individuals become removed.

Written in terms of the proportions x = X/σ,

y = Y/σ, l = L/σ, z = Z/σ, i.e. normalized

on the total mass σ = X + L + Y + Z, this

system becomes




ẋ(t) = −σλx(t)y(t)

l̇(t) = σλx(t)y(t)− αl(t)

ẏ(t) = αl(t)− µy(t)

ż(t) = µy(t)

(11)



with x(t) + y(t) + l(t) + z(t) = 1. Subject to

the often made assumption that σλ, α and

µ are constants, the r.h.s. is an infinitesimal

generator of a nonlinear Markov chain in Σ4.

This generator depends again quadratically

on its variable and has an obvious stochas-

tic representation (6) with the infinitesimal

stochastic matrix

Q(µ) =




− λy λy 0 0

0 − α α 0

0 0 − µ µ

0 0 0 0




(12)

where µ = (x, l, y, z), yielding a natural prob-

abilistic interpretation to the dynamics (11).



Discrete nonlinear Markov games and con-

trolled processes

A nonlinear Markov semigroup is after all just

a deterministic dynamic system (with some

special features). Thus, as the stochastic

control theory is a natural extension of the

deterministic control, we are going to fur-

ther extend it by turning back to determinis-

tic control, but of measures, thus exemplify-

ing the usual spiral development of science.

The next ’turn of the screw’ would lead to

stochastic measure-valued games.

We shall work in the competitive control set-

ting (game theory), in discrete time and finite

original state space {1, ..., n}. The full state

space is then chosen as a set of probability

measures Σn on {1, ..., n}.



Suppose we are given two metric spaces U ,

V of the control parameters of two players, a

continuous transition cost function g(u, v, µ),

u ∈ U , v ∈ V , µ ∈ Σn and a transition law

ν(u, v, µ) prescribing the new state ν ∈ Σn

obtained from µ once the players had chosen

their strategies u ∈ U, v ∈ V . The problem of

the corresponding one-step game (with se-

quential moves) consists in calculating the

Bellman operator

(BS)(µ) = min
u

max
v

[g(u, v, µ) + S(ν(u, v, µ))]

(13)

for a given final cost function S on Σn.

In case of no competition (only one control

parameter), this turns to

(BS)(µ) = min
u

[g(u, v, µ)+S(ν(u, v, µ))] (14)

MAX-PLUS linear!

According to the dynamic programming prin-

ciple, the dynamic multi-step game solution

is given by the iterations BkS.



Long horizon problem: behavior of the opti-

mal cost BkS(µ) as k →∞.

The function ν(u, v, µ) can be interpreted as

the controlled version of the mapping Φ spec-

ifying a nonlinear discrete time Markov semi-

group.

Assume a stochastic representation is chosen:

νj(u, v, µ) =
n∑

i=1

µiPij(u, v, µ)

with stochastic matrices Pij. If g describes

the averages over the random transitions, then

g(u, v, µ) =
n∑

i,j=1

µiPij(u, v, µ)gij

with certain real coefficients gij and

(BS)(µ) = min
u

max
v

[ n∑

i,j=1

µiPij(u, v, µ)gij

+S




n∑

i=1

µiPi.(u, v, µ)




]
. (15)



We can now identify the (not so obvious)

place of the usual stochastic control theory

in this nonlinear setting. Namely, assume Pij

above do not depend on µ. But even then the

set of the linear functions S(µ) =
∑n

i=1 siµ
i

on measures (identified with the set of vec-

tors S = (s1, ..., sn)) is not invariant under B.

Hence we are not automatically reduced to

the usual stochastic control setting, but to

a game with incomplete information, where

the states are probability laws on {1, ..., n},
i.e. when choosing a move the players do

not know the position precisely, but only its

distribution. Only if we allow only Dirac mea-

sures µ as a state space (i.e. no uncertainty

on the state), the Bellman operator would

be reduced to the usual one of the stochastic

game theory:

(B̄S)i = min
u

max
v

n∑

j=1

Pij(u, v)(gij +Sj). (16)



Example of a nonlinear result: analog of the

result on the existence of the average income

for long lasting games.

Proposition 2. If the mapping ν is a contrac-

tion uniformly in u, v, i.e. if

‖ν(u, v, µ1)− ν(u, v, µ2)‖ ≤ δ‖µ1 − µ2‖ (17)

with a δ ∈ (0,1), where ‖ν‖ =
∑n

i=1 |νi|, and

if g is Lipschitz continuous, i.e.

‖g(u, v, µ1)− g(u, v, µ2)‖ ≤ C‖µ1 − µ2‖ (18)

with a constant C > 0, then there exists

a unique λ ∈ R and a Lipschitz continuous

function S on Σn such that

B(S) = λ + S, (19)

and for all g ∈ C(Σn) we have

lim
m→∞

Bmg

m
= λ. (20)

One can extend the other results for stochas-

tic multi-step games to this nonlinear setting,

say, the turnpike theorems (from Kolokoltsov

1992).



Continuous state spaces. SDEs driven by

nonlinear Lévy noise

Weak equations of the form

d

dt
(f, µt) = (Lµtf, µt), µt ∈ P(Rd), µ0 = µ,

(21)

(that should hold, say, for all f ∈ C2
c (Rd)),

where

Lµf(x) =
1

2
(G(x, µ)∇,∇)f(x)+(b(x, µ),∇f(x))

+
∫

(f(x+y)−f(x)−(∇f(x), y)1B1
(y))ν(x, µ, dy),

(22)

play indispensable role in the theory of inter-

acting particles (mean field approximation)

and exhaust all positivity preserving evolu-

tions on measures subject to certain mild reg-

ularity assumptions. I call them general ki-

netic equations as they include Vlasov, Boltz-

mann, Smoluchovski, Landau-Fokker-Planck

equations, McKean diffusions and many other

models. The strong form is of course

µ̇ = L?
µµ.



A resolving semigroup Ut : µ 7→ µt of the

Cauchy problem for this equation specifies a

so called generalized or nonlinear Markov pro-

cess X(t), whose distribution µt at time t can

be determined by the formula Ut−sµs from its

distribution µs at any previous moment s.

In the case of diffusions (when ν vanishes)

the theory of the corresponding semigroups

is well developed, as well as pure jump case.

We exploit the idea of nonlinear integrators

combined with a certain coupling of Lévy pro-

cesses in order to push forward the proba-

bilistic construction in a way that allows the

natural Lipschitz continuous dependence of

the coefficients G, b, ν on x, µ. Thus obtained

extension of the standard SDEs with Lévy

noise represents a probabilistic counterpart of

the celebrated extension of the Monge mass

transformation problem to the generalized Kan-

torovich one.



Wasserstein-Kantorovich metrics Wp, p ≥ 1,

on the set of probability measures P(Rd) on

Rd are defined as

Wp(ν1, ν2) =
(
inf
ν

∫
|y1 − y2|pν(dy1dy2)

)1/p
,

(23)

where inf is taken over the class of probability

measures ν on R2d that couple ν1 and ν2, i.e.

that satisfy
∫ ∫

(φ1(y1)+φ2(y2))ν(dy1dy2) = (φ1, ν1)+(φ2, ν2)

(24)

for all bounded measurable φ1, φ2.

The Wasserstein distances between the dis-

tributions in the Skorohod space D([0, T ],Rd):

Wp,T (X1, X2) = inf

(
E sup

t≤T
|X1(t)−X2(t)|p

)1/p

,

(25)

where inf is taken over all couplings of the

distributions of the random paths X1, X2.

To compare the Lévy measures, we extend

these distances to unbounded measures with

a finite moment.



For simplicity, we present the arguments for

Lµ having the form

Lµf(x) =
1

2
(G(x, µ)∇,∇)f(x)+(b(x, µ),∇f(x))

+
∫

(f(x + z)− f(x)− (∇f(x), z))ν(x, µ; dz)

(26)

with ν(x, µ; .) ∈ M2(R
d). Let Yτ(z, µ) be a

family of Lévy processes depending measur-

ably on the points z and probability measures

µ in Rd and specified by their generators

L[z, µ]f(x) =
1

2
(G(z, µ)∇,∇)f(x)+(b(z, µ),∇f(x))

+
∫

(f(x + y)− f(x)− (∇f(x), y))ν(z, µ; dy)

(27)

where ν(z, µ) ∈M2(R
d).



Our approach to solving (21) is via the so-

lution to the following nonlinear distribution

dependent stochastic equation with nonlinear

Lévy type integrators:

X(t) = X+
∫ t

0
dYs(X(s),L(X(s))), L(X) = µ,

(28)

with a given initial distribution µ and a ran-

dom variable X independent of Yτ(z, µ).

We shall define the solution through the Euler

type approximation scheme, i.e. by means of

the approximations Xτ
µ:

Xτ
µ(t) = Xτ

µ(lτ) + Y l
t−lτ(X

τ
µ(lτ),L(Xτ

µ(lτ))),

(29)

L(Xτ
µ(0)) = µ, where lτ < t ≤ (l + 1)τ , l =

0,1,2, ..., and Y l
τ(x, µ) is a collection (depend-

ing on l) of independent families of the Lévy

processes Yτ(x, µ) introduced above. Clearly

these approximation processes are cadlag.



Theorem 1. Let an operator Lµ have form

(26). Moreover assume that

‖
√

G(x, µ)−
√

G(z, η)‖+ |b(x, µ)− b(z, η)|

+W2(ν(x, µ; .), ν(z, η; .)) ≤ κ(|x−z|+W2(µ, η)),

(30)

holds true with a constant κ and

sup
x,µ

(√
G(x, µ) + |b(x, µ)|+

∫
|y|2ν(x, µ, dy)

)
< ∞.

(31)

Then for any µ ∈ P(Rd)∩M2(R
d) the approx-

imations X
τk
µ , τk = 2−k, converge to a process

Xµ(t) in W2
2,t0

and the resolving operators

Ut : µ 7→ µt of the Cauchy problem (21) form

a nonlinear Markov semigroup, i.e. they are

continuous mappings from P(Rd) ∩M2(R
d)

(equipped with the metric W2) to itself such

that U0 is the identity mapping and Ut+s =

UtUs for all s, t ≥ 0. If L[z, µ] do not de-

pend explicitly on µ the operators Ttf(x) =

Ef(Xx(t)) form a conservative Feller semi-

group preserving the space of Lipschitz con-

tinuous functions.



For example, assumption on ν is satisfied if

one can decompose the Lévy measures ν(x; .)

in the countable sums ν(x; .) =
∑∞

n=1 νn(x; .)

of probability measures so that

W2(νi(x; .), νi(z; .)) ≤ ai|x− z|
and the series

∑
a2

i converges. It is well known

that the optimal coupling of probability mea-

sures (Kantorovich problem) can not always

be realized via a mass transportation (a so-

lution to the Monge problem), thus leading

to the examples when the construction of

the process via standard stochastic calculus

would not work.

Another important particular situation is that

of a common star shape of the measures ν(x; .),

i.e. if they can be represented as

ν(x; dy) = ν(x, s, dr)ω(ds), r = |y|, s = y/r,

(32)

with a certain measure ω on Sd−1 and a fam-

ily of measures ν(x, s, dr) on R+. This allows

to reduce the general coupling problem to

a much more easily handled one-dimensional

one.



Controlled Markov processes and games

Suppose first that L does not depend on µ

explicitly, but there is additional controllable

drift f(x, α, β) and an integral payoff given by

g(x, α, β). This leads to the HJB equation

∂S

∂t
+ H(x,

∂S

∂x
) + LS = 0 (33)

with

H(x, p) = max
α

min
β

(
f(x, α, β)

∂S

∂x
+ g(x, α, β)

)
.

Theorem 2. Suppose H(x, p) is Lipshitz in

p uniformly in x with a Lipshitz constant κ,

and the process generated by L has a heat

kernel (Green’s function) G(t, x, ξ), which is

of class C1 with respect to all variables for

t > 0. Moreover

sup
x

∫ t

0

∫ ∣∣∣∣
∂

∂x
G(s, x, ξ)

∣∣∣∣ dsdξ < ∞

for t > 0. Then for any S0 ∈ C1(Rd) there ex-

ists a unique classical solution for the Cauchy

problem for equation (33) yielding also the

solution to the corresponding optimal control

problem.



Proof (sketch). It is based of course on the
fixed point argument for the mapping

Φt(S) =
∫

G(t, x, ξ)S0(ξ)dξ

+
∫ t

0

∫
G(t− s, x, ξ)H(ξ,

∂Ss

∂x
)dsdξ,

which is applicable, because for S1, S2 with
S1
0 = S2

0
∥∥∥∥∥
∂Φt(S1)

∂x
− ∂Φt(S2)

∂x

∥∥∥∥∥

≤ κ
∫ t

0

∂G

∂x
(t− s, x, ξ)dξds sup

s≤t

∥∥∥∥∥
∂S1

∂x
− ∂S2

∂x

∥∥∥∥∥
implying the contraction property of Φ for
small enough t.

Example: controlled stable-like processes with
the generator ∆α(x) or more generally∫

Sd−1
|(∇, s)|α(x)µ(ds).

Example of an application: extension of Nash
Certainty Equivalence (NCE) principle of P.
Caines et al (obtained for interacting diffu-
sions) to stable-like processes.



Controlled nonlinear Markov processes and

games

Returning to L depending on µ consider a

single control variable u. Assume that µ only

is observable, so that the control is based

on µ. This leads to the following infinite-

dimensional HJB equation

∂S

∂t
+ max

u

(
Lµ,u

δS

δµ
+ gu, µ

)
= 0. (34)

If the Cauchy problem for the correspond-

ing kinetic equation µ̇ = L?
µ,uµ is well posed

(see book [3]) uniformly for controls u from

a compact set, with a solution denoted by

µt(µ, u) this can be resolved via discrete ap-

proximations

Sk(t− s) = BkS(t), k = (t− s)/τ,

BS(µ) = max
u

[S(µτ(µ, u) + (gu, µ)].



Convergence proof (yielding a Lipshitz con-

tinuous function for a Lipshitz continuous ini-

tial one) is the same as in book [1], Section

3.2, yielding a resolving operator Rs(S) for

the inverse Cauchy problem (34) as a linear

operator in the max-plus algebra, i.e. satis-

fying the condition

Rs(a1⊗S1⊕a2⊗S2) = a1⊗Rs(S1)⊕a2⊗Rs(S2)

with ⊕ = max, ⊗ = +. This linearity allows

for effective numeric schemes.

Extensions to a competitive control case (games)

is settled via the approach with generalized

dynamic systems as presented in Section 11.4

of book [2].
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