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I will discuss a new class of stochastic games

that I call nonlinear Markov games, as they

arise as a (competitive) controlled version of

nonlinear Markov processes (an emerging field

of intensive research). This class of games

can model a variety of situation for economics

and epidemics, statistical physics, and pur-

suit - evasion processes. Further discussion of

this topic is given in my monograph ’Nonlin-

ear Markov processes and kinetic equations’,

CUP 2010.



Nonlinear Markov process: future depends on

the past not only via its present position, but

also its present distribution.

A nonlinear Markov semigroup can be consid-

ered as a nonlinear deterministic dynamic sys-

tem, though on a weird state space of mea-

sures.

Thus, as the stochastic control theory is a

natural extension of the deterministic control,

we extend it further by turning back to de-

terministic control, but of measures.

Important: introducing stochasticity in con-

trol destroys the max-plus linearity of the Bell-

man operator, the introduction of a nonlinear

(distribution dependent) control restores this

linearity.



Nonlinear Markov chains (discrete time)

A nonlinear Markov semigroup Φk, k ∈ N, is

specified by an arbitrary continuous mapping

Φ : Σn → Σn, where the simplex

Σn = {µ = (µ1, ..., µn) ∈ Rn
+ :

n∑

i=1

µi = 1}

represents the set of probability laws on the

finite state space {1, ..., .n}.

The family µk = Φkµ is the evolution of mea-

sures on {1, ..., .n}.



But it does not yet define a random process

(finite-dimensional distributions are not spec-

ified).

In order to get a process one has to choose a

stochastic representation for Φ, i.e. to write

it down in the form

Φ(µ) = {Φj(µ)}nj=1 = {
n∑

i=1

Pij(µ)µi}ni=1,

(1)

where Pij(µ) is a family of stochastic matri-

ces (
∑d

j=1 Pij(µ) = 1 for all i), depending on

µ (nonlinearity!), whose elements specify the

nonlinear transition probabilities.

For any given Φ : Σn 7→ Σn a representation

(1) exists, but is not unique. For instance,

one can choose matrices Pij(µ) = P̃ij(µ) to

be one-dimensional:

P̃ij(µ) = Φj(µ), i, j = 1, ..., n. (2)



Once a stochastic representation (1) for a
mapping Φ is chosen one can naturally de-
fine, for any initial probability law µ = µ0, a
stochastic process il, l ∈ Z+, called a nonlin-
ear Markov chain, on {1, ..., n} in the following
way. Starting with an initial position i0 dis-
tributed according to µ one then chooses the
next point i1 according to the law {Pi0j(µ)}nj=1,
the distribution of i1 becoming µ1 = Φ(µ):

µ1
j = P(i1 = j) =

n∑

i=1

Pij(µ)µi = Φj(µ).

Then one chooses i2 according to the law
{Pi1j(µ1)}nj=1, etc. The law of this process

at any given time k is µk = Φk(µ), i.e. is
given by the semigroup. However, now the
finite-dimensional distributions are defined as
well. Namely, say for a function f of two
discrete variables, one has

Ef(ik, ik+1) =
n∑

i,j=1

f(i, j)µk
i Pij(µ

k).

In other words, this process can be defined as
a time non-homogeneous Markov chain with
the transition probabilities at time t = k being
Pij(µ

k).



Clearly the finite-dimensional distributions de-

pend on the choice of the representation (1).

For instance, in case of the simplest repre-

sentation (2) one has

Ef(i0, i1) =
n∑

i,j=1

f(i, j)µiΦj(µ),

so that the discrete random variables i0 and

i1 turn out to be independent.

Once the representation (1) is chosen, one

can also define the transition probabilities P k
ij

in time t = k recursively as

P k
ij(µ) =

n∑

m=1

P k−1
im (µ)Pmj(µ

k−1).

The semigroup identity Φk+l = ΦkΦl implies

that

Φk
j (µ) =

n∑

i=1

P k
ij(µ)µi

and

P k
ij(µ) =

n∑

m=1

P l
im(µ)P k−l

mj (µl), l < k.



One can get nonlinear analogs of many re-

sults from the usual Markov chains. For ex-

ample, let us present the following simple fact

on the long time behavior.

Proposition 1. (i) For any continuous Φ :

Σn → Σn there exists a stationary distribu-

tion, i.e. a measure µ ∈ Σn such that Φ(µ) =

µ. (ii) If a representation (1) for Φ is chosen

in such a way that there exists a j0 ∈ [1, n], a

time k0 ∈ N and a positive δ such that

P
k0
ij0

(µ) ≥ δ (3)

for all i, µ, then Φm(µ) converges to a sta-

tionary measure for any initial µ.

Proof. Statement (i) is a consequence of the

Brower fixed point principle. Statement (ii)

follows from the representation (given above)

of the corresponding nonlinear Markov chain

as a time non-homogeneous Markov process.



Nonlinear Markov chains (continuous time)

A nonlinear Markov semigroup with the finite

state space {1, ..., n} is a semigroup Φt, t ≥ 0,

of continuous transformations of Σn. As in

the case of discrete time the semigroup it-

self does not specify a process. A continuous

family of nonlinear transition probabilities on

{1, ..., n} is a family P (t, µ) = {Pij(t, µ)}ni,j=1
of stochastic matrices depending continuously

on t ≥ 0 and µ ∈ Σn such that the follow-

ing nonlinear Chapman-Kolmogorov equation

holds:
n∑

i=1

µiPij(t+s, µ) =
∑

k,i

µkPki(t, µ)Pij(s,
n∑

l=1

Pl.(t, µ)µl).

(4)

This family is said to yield a stochastic repre-

sentation for the Markov semigroup Φt when-

ever

Φt
j(µ) =

∑

i

µiPij(t, µ), t ≥ 0, µ ∈ Σn. (5)

If (5) holds, the equation (4) represents just

the semigroup identity Φt+s = ΦtΦs.



Once a stochastic representation (5) for the

semigroup Φk is chosen one can define the

corresponding stochastic process started at

µ ∈ Σn as a time nonhomogeneous Markov

chain with the transition probabilities from

time s to time t being

pij(s, t, µ) = Pij(t− s,Φs(µ)).

To get the existence of a stochastic repre-

sentation (5) one can use the same idea as

for the discrete time case and define

P̃ij(t, µ) = Φt
j(µ).

However, this is not a natural choice from the

point of view of stochastic analysis. The nat-

ural choice should correspond to a reasonable

generator.

Namely, assuming the semigroup Φt is differ-

entiable in t one can define the (nonlinear)

infinitesimal generator of the semigroup Φt

as the nonlinear operator on measures given

by

A(µ) =
d

dt
Φt|t=0(µ).



The semigroup identity for Φt implies that

Φt(µ) solves the Cauchy problem

d

dt
Φt(µ) = A(Φt(µ)), Φ0(µ) = µ. (6)

As follows from the invariance of Σn under

this dynamics, the mapping A is conditionally

positive in the sense that µi = 0 for a µ ∈ Σn

implies Ai(µ) ≥ 0 and is also conservative in

the sense that A maps the measures from Σn

to the space of the signed measures

Σ0
n = {ν ∈ Rn :

n∑

i=1

νi = 0}.



We shall say that such an A has a stochastic

representation if it is written in the form

Aj(µ) =
n∑

i=1

µiQij(µ) = (µQ(µ))j, (7)

where Q(µ) = {Qij(µ)} is a family of infinites-

imally stochastic matrices (also referred to

as Q-matrices or Kolmogorov’s matrices) de-

pending on µ ∈ Σn. Thus in stochastic rep-

resentation the generator has the form of a

usual Markov chain generator, though addi-

tionally depending on the present distribu-

tion. The existence of a stochastic represen-

tation for the generator is not obvious, but is

not difficult to get.

In practice, the converse problem is of more

importance: not to construct the generator

from a given semigroup, but to construct a

semigroup (i.e. a solution to (6)) from a

given operator A, which in applications is usu-

ally given directly in its stochastic represen-

tation.



Examples: Lotka-Volterra, replicator dy-

namics, epidemics

The nonlinear Markov semigroups are present
in abundance among the popular models of
natural and social sciences.

The replicator dynamics of the evolutionary
game arising from the classical paper-rock-
scissors game has the form





dx

dt
= (y − z)x

dy

dt
= (z − x)y

dz

dt
= (x− y)z

(8)

Its generator has a clear stochastic represen-
tation with

Q(µ) =




− z 0 z

x − x 0

0 y − y


 (9)

where µ = (x, y, z).



The famous LotkaVolterra equations describ-

ing a biological systems with two species, a

predator and its prey, have the form




dx

dt
= x(α− βy)

dy

dt
= −y(γ − δx)

(10)

where α, β, γ, δ are some positive parameters.

The generator of this model is conditionally

positive, but not conservative, as the total

mass x + y is not preserved. However, due

to the existence of the integral of motion

α log y − βy + γ logx − δx, the dynamics (10)

is path-wise equivalent to the dynamics (8),

i.e. there is a continuous mapping taking the

phase portrait of system (10) to the one of

system (8).



One of the simplest deterministic models of

epidemics can be written in the form of the

system of 4 differential equations:




Ẋ(t) = −λX(t)Y (t)

L̇(t) = λX(t)Y (t)− αL(t)

Ẏ (t) = αL(t)− µY (t)

Ż(t) = µY (t)

(11)

where X(t), L(t), Y (t) and Z(t) denote respec-

tively the numbers of susceptible, latent, in-

fectious and removed individual at time t and

the positive coefficients λ, α, µ (which may ac-

tually depend on X, L, Y, Z) reflect the rates

at which susceptible individuals become in-

fected, latent individuals become infectious

and infectious individuals become removed.

Written in terms of the proportions x = X/σ,

y = Y/σ, l = L/σ, z = Z/σ, i.e. normalized

on the total mass σ = X + L + Y + Z, this

system becomes




ẋ(t) = −σλx(t)y(t)

l̇(t) = σλx(t)y(t)− αl(t)

ẏ(t) = αl(t)− µy(t)

ż(t) = µy(t)

(12)



with x(t) + y(t) + l(t) + z(t) = 1. Subject to

the often made assumption that σλ, α and

µ are constants, the r.h.s. is an infinitesimal

generator of a nonlinear Markov chain in Σ4.

This generator depends again quadratically

on its variable and has an obvious stochas-

tic representation (7) with the infinitesimal

stochastic matrix

Q(µ) =




− λy λy 0 0

0 − α α 0

0 0 − µ µ

0 0 0 0




(13)

where µ = (x, l, y, z), yielding a natural prob-

abilistic interpretation to the dynamics (12).



Discrete nonlinear Markov games and con-

trolled processes

A nonlinear Markov semigroup is after all just

a deterministic dynamic system (with some

special features). Thus, as the stochastic

control theory is a natural extension of the

deterministic control, we are going to fur-

ther extend it by turning back to determinis-

tic control, but of measures, thus exemplify-

ing the usual spiral development of science.

The next ’turn of the screw’ would lead to

stochastic measure-valued games.

We shall work in the competitive control set-

ting (game theory), in discrete time and finite

original state space {1, ..., n}. The full state

space is then chosen as a set of probability

measures Σn on {1, ..., n}.



Suppose we are given two metric spaces U ,

V of the control parameters of two players, a

continuous transition cost function g(u, v, µ),

u ∈ U , v ∈ V , µ ∈ Σn and a transition law

ν(u, v, µ) prescribing the new state ν ∈ Σn

obtained from µ once the players had chosen

their strategies u ∈ U, v ∈ V . The problem of

the corresponding one-step game (with se-

quential moves) consists in calculating the

Bellman operator

(BS)(µ) = min
u

max
v

[g(u, v, µ) + S(ν(u, v, µ))]

(14)

for a given final cost function S on Σn.

In case of no competition (only one control

parameter), this turns to

(BS)(µ) = min
u

[g(u, v, µ)+S(ν(u, v, µ))] (15)

MAX-PLUS linear!

According to the dynamic programming prin-

ciple, the dynamic multi-step game solution

is given by the iterations BkS.



Long horizon problem: behavior of the opti-

mal cost BkS(µ) as k →∞.

The function ν(u, v, µ) can be interpreted as

the controlled version of the mapping Φ spec-

ifying a nonlinear discrete time Markov semi-

group.

Assume a stochastic representation is chosen:

νj(u, v, µ) =
n∑

i=1

µiPij(u, v, µ)

with stochastic matrices Pij. If g describes

the averages over the random transitions, then

g(u, v, µ) =
n∑

i,j=1

µiPij(u, v, µ)gij

with certain real coefficients gij and

(BS)(µ) = min
u

max
v

[ n∑

i,j=1

µiPij(u, v, µ)gij

+S




n∑

i=1

µiPi.(u, v, µ)




]
. (16)



We can now identify the (not so obvious)

place of the usual stochastic control theory

in this nonlinear setting. Namely, assume Pij

above do not depend on µ. But even then the

set of the linear functions S(µ) =
∑n

i=1 siµ
i

on measures (identified with the set of vec-

tors S = (s1, ..., sn)) is not invariant under B.

Hence we are not automatically reduced to

the usual stochastic control setting, but to

a game with incomplete information, where

the states are probability laws on {1, ..., n},
i.e. when choosing a move the players do

not know the position precisely, but only its

distribution. Only if we allow only Dirac mea-

sures µ as a state space (i.e. no uncertainty

on the state), the Bellman operator would

be reduced to the usual one of the stochastic

game theory:

(B̄S)i = min
u

max
v

n∑

j=1

Pij(u, v)(gij +Sj). (17)



As an example of a nonlinear result we shall

get here an analog of the result on the ex-

istence of the average income for long last-

ing games (algebraically: max-plus eigenvec-

tor and eigenvalue).

Proposition 2. If the mapping ν is a contrac-

tion uniformly in u, v, i.e. if

‖ν(u, v, µ1)− ν(u, v, µ2)‖ ≤ δ‖µ1 − µ2‖ (18)

with a δ ∈ (0,1), where ‖ν‖ =
∑n

i=1 |νi|, and

if g is Lipschitz continuous, i.e.

‖g(u, v, µ1)− g(u, v, µ2)‖ ≤ C‖µ1 − µ2‖ (19)

with a constant C > 0, then there exists

a unique λ ∈ R and a Lipschitz continuous

function S on Σn such that

B(S) = λ + S, (20)

and for all g ∈ C(Σn) we have

‖Bmg −mλ‖ ≤ ‖S‖+ ‖S − g‖, (21)

lim
m→∞

Bmg

m
= λ. (22)



Proof. By homogeneity B(h+S) = h+B(S)

one can project B to the operator B̃ on the

quotient space C̃(Σn) of C(Σn) with respect

to constant functions.

In the image C̃Lip(Σn) of the set of Lipschitz

continuous functions CLip(Σn) the Lipschitz

constant

L(f) = sup
µ1 6=µ2

|f(µ1)− f(µ2)|
‖µ1 − µ2‖

is well defined (does not depend on the choice

of the representative of an equivalence class).

Moreover, from (18) and (19) it follows that

L(BS) ≤ 2C + δL(S),

implying that the set

ΩR = {f ∈ C̃Lip(Σn) : L(f) ≤ R}
is invariant under B̃ whenever R > C/(1 −
δ). As by the Arzela-Ascoli theorem, ΩR is

convex and compact, one can conclude by

the Shauder fixed point principle, that B̃ has

a fixed point in ΩR. Consequently there exists

a λ ∈ R and a Lipschitz continuous function

S̃ such that (20) holds.



B is non-expansive in the usual sup-norm, i.e.

‖B(S1)−B(S2)‖ = sup
µ∈Σn

|(BS1)(µ)−(BS2)(µ)|

≤ sup
µ∈Σn

|S1(µ)− S2(µ)| = ‖S1 − S2‖.

Consequently, for any g ∈ C(Σn)

‖Bmg −BmS‖ = ‖Bm(g)−mλ− S‖ ≤ ‖g − S‖,
implying the first formula in (21). The sec-

ond one is its straightforward corollary. This

second formula also implies the uniqueness of

λ (as well as its interpretation as the average

income).

One can extend the other results for stochas-

tic multi-step games to this nonlinear setting,

say, the turnpike theorems (from Kolokoltsov

1992).

Nonlinear max-plus spectral theory?!
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