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General Objective

The objective is to analyze a new class of stochastic games
that I call nonlinear Markov games, as they arise as a
(competitive) controlled version of nonlinear Markov processes
(an emerging field of intensive research).
This class of games can model a variety of situation for
economics and epidemics, statistical physics, and pursuit -
evasion processes. The official introduction to the theme is
now covered in my monograph ’Nonlinear Markov processes
and kinetic equations’, CUP 2010.
Two basic examples to have in mind:
(1) Pursuit - evasion ; false targets
(2) Finances - hidden internal parameters of firms in
competition



Connection with usual Markov processes

Nonlinear Markov process: future depends on the past not
only via its present position, but also its present distribution.
A nonlinear Markov semigroup can be considered as a
nonlinear deterministic dynamic system, though on a weird
state space of measures.
Thus, as the stochastic control theory is a natural extension of
the deterministic control, we extend it further by turning back
to deterministic control, but of measures.



Nonlinear Markov chains (discrete time)

A nonlinear Markov semigroup Φk , k ∈ N, is specified by an
arbitrary continuous mapping Φ : Σn → Σn, where the simplex

Σn = {µ = (µ1, ..., µn) ∈ Rn
+ :

n∑
i=1

µi = 1}.

Stochastic representation for Φ:

Φ(µ) = {Φj(µ)}n
j=1 = {

n∑
i=1

Pij(µ)µi}n
i=1, (1)

where Pij(µ) is a family of stochastic matrices

(
∑d

j=1 Pij(µ) = 1 for all i), depending on µ (nonlinearity!),
whose elements specify the nonlinear transition probabilities.



Convergence to a stationary regime

Proposition
(i) For any continuous Φ : Σn → Σn there exists a stationary
distribution, i.e. a measure µ ∈ Σn such that Φ(µ) = µ. (ii) If
a representation (1) for Φ is chosen in such a way that there
exists a j0 ∈ [1, n], a time k0 ∈ N and a positive δ such that

Pk0
ij0

(µ) ≥ δ (2)

for all i , µ, then Φm(µ) converges to a stationary measure for
any initial µ.

Proof.
Statement (i) is a consequence of the Brower fixed point
principle. Statement (ii) follows from the representation (given
above) of the corresponding nonlinear Markov chain as a time
non-homogeneous Markov process.



Nonlinear Markov semigroup (continuous time)

A nonlinear Markov semigroup with the finite state space
{1, ..., n} is a semigroup Φt , t ≥ 0, of continuous
transformations of Σn. As in the case of discrete time the
semigroup itself does not specify a process.
Stochastic representation for Φt :

Φt
j (µ) =

∑
i

µiPij(t, µ), t ≥ 0, µ ∈ Σn, (3)

where P(t, µ) = {Pij(t, µ)}n
i ,j=1 is a family of stochastic

matrices depending continuously on t ≥ 0 and µ ∈ Σn

(nonlinear transition probabilities).



Nonlinear Markov chain (continuous time)

Once a stochastic representation (3) for the semigroup Φt is
chosen one can define the corresponding stochastic process
started at µ ∈ Σn as a time nonhomogeneous Markov chain
with the transition probabilities from time s to time t being

pij(s, t, µ) = Pij(t − s, Φs(µ)).

Thus, to each trajectory of a nonlinear semigroup there
corresponds a tangent Markov process.
Stochastic representation for the semigroup depends on the
stochastic representation for the generator.



Generator of a nonlinear Markov semigroup
Namely, assuming the semigroup Φt is differentiable in t one
can define the (nonlinear) infinitesimal generator of the
semigroup Φt as the nonlinear operator on measures given by

A(µ) =
d

dt
Φt |t=0(µ).

The semigroup identity for Φt (nonlinear
Chapman-Kolmogorov equation) implies that Φt(µ) solves the
Cauchy problem

d

dt
Φt(µ) = A(Φt(µ)), Φ0(µ) = µ. (4)

The mapping A is conditionally positive in the sense that
µi = 0 for a µ ∈ Σn implies Ai(µ) ≥ 0 and is also conservative
in the sense that A maps the measures from Σn to the space
of the signed measures Σ0

n = {ν ∈ Rn :
∑n

i=1 νi = 0}.



Generator: stochastic representation

We shall say that such an A has a stochastic representation if
it is written in the form

Aj(µ) =
n∑

i=1

µiQij(µ) = (µQ(µ))j , (5)

where Q(µ) = {Qij(µ)} is a family of infinitesimally stochastic
matrices (also referred to as Q-matrices or Kolmogorov’s
matrices) depending on µ ∈ Σn. Thus in stochastic
representation the generator has the form of a usual Markov
chain generator, though additionally depending on the present
distribution. The existence of a stochastic representation for
the generator is not obvious, but is not difficult to get.



Exeample: replicator dynamics (RD)
The RD of the evolutionary game arising from the classical
paper-rock-scissors game has the form





dx

dt
= (y − z)x

dy

dt
= (z − x)y

dz

dt
= (x − y)z

(6)

Its generator has a clear stochastic representation with

Q(µ) =



− z 0 z

x − x 0

0 y − y


 (7)

where µ = (x , y , z).



Example: simplest epidemics (1)

Let X (t), L(t), Y (t) and Z (t) denote respectively the numbers
of susceptible, latent, infectious and removed individual at
time t and the positive coefficients λ, α, µ (which may actually
depend on X , L, Y , Z ) reflect the rates at which susceptible
individuals become infected, latent individuals become
infectious and infectious individuals become removed.
Basic model, written in terms of the proportions x = X/σ,
y = Y /σ, l = L/σ, z = Z/σ, where σ = X + L + Y + Z :





ẋ(t) = −σλx(t)y(t)

l̇(t) = σλx(t)y(t)− αl(t)

ẏ(t) = αl(t)− µy(t)

ż(t) = µy(t)

(8)

with x(t) + y(t) + l(t) + z(t) = 1.



Example: simplest epidemics (2)

Subject to the often made assumption that σλ, α and µ are
constants, the r.h.s. is an infinitesimal generator of a nonlinear
Markov chain in Σ4. This generator depends again
quadratically on its variable and has an obvious stochastic
representation (5) with the infinitesimal stochastic matrix

Q(µ) =




− λy λy 0 0

0 − α α 0

0 0 − µ µ

0 0 0 0


 (9)

where µ = (x , l , y , z), yielding a natural probabilistic
interpretation to the dynamics (8).



Discrete nonlinear Markov games and controlled

processes

U , V are metric spaces of the control parameters,
g(u, v , µ), u ∈ U , v ∈ V , µ ∈ Σn is a continuous transition
cost function,
ν(u, v , µ) is a transition law ν(u, v , µ).
One-step game (with sequential moves) is specified by the
Bellman (or Shapley) operator

(BS)(µ) = min
u

max
v

[g(u, v , µ) + S(ν(u, v , µ))] (10)

for a given final cost function S on Σn.
The multi-step game solution is given by the iterations BkS .
Long horizon problem: behavior of the optimal cost BkS(µ) as
k →∞.



Discrete nonlinear Markov games: long horizon (1)
Assume a stochastic representation for transitions is chosen:

νj(u, v , µ) =
n∑

i=1

µiPij(u, v , µ),

and

g(u, v , µ) =
n∑

i ,j=1

µiPij(u, v , µ)gij

with certain real coefficients gij (averages over the random
transitions), then

(BS)(µ) = min
u

max
v

[ n∑
i ,j=1

µiPij(u, v , µ)gij

+ S

(
n∑

i=1

µiPi .(u, v , µ)

)
]
. (11)



Discrete nonlinear Markov games: long horizon (2)

Proposition
If the mapping ν is a contraction uniformly in u, v, i.e. if

‖ν(u, v , µ1)− ν(u, v , µ2)‖ ≤ δ‖µ1 − µ2‖, δ < 1, (12)

and g is Lipschitz:

‖g(u, v , µ1)− g(u, v , µ2)‖ ≤ C‖µ1 − µ2‖, (13)

then there exists a unique λ ∈ R and a Lipschitz continuous
function S on Σn such that B(S) = λ + S and

lim
m→∞

Bmg

m
= λ, g ∈ C (Σn). (14)

Other results: turnpike theorems.



Discrete nonlinear Markov games: connection with

usual Markov games
We can now identify the (not so obvious) place of the usual
stochastic control theory in this nonlinear setting. Namely,
assume Pij above do not depend on µ. But even then the set
of the linear functions S(µ) =

∑n
i=1 siµ

i on measures
(identified with the set of vectors S = (s1, ..., sn)) is not
invariant under B . Hence we are not automatically reduced to
the usual stochastic control setting, but to a game with
incomplete information, where the states are probability laws
on {1, ..., n}, i.e. when choosing a move the players do not
know the position precisely, but only its distribution. Only if
we allow only Dirac measures µ as a state space (i.e. no
uncertainty on the state), the Bellman operator would be
reduced to the usual one of the stochastic game theory:

(B̄S)i = min
u

max
v

n∑
j=1

Pij(u, v)(gij + Sj). (15)



Continuous state spaces (general nonlinear Markov

semigroups)
General kinetic equation in the weak form:

d

dt
(f , µt) = (Lµt f , µt), µt ∈ P(Rd), µ0 = µ, (16)

(that should hold, say, for all f ∈ C 2
c (Rd)), where

Lµf (x) =
1

2
(G (x , µ)∇,∇)f (x) + (b(x , µ),∇f (x))

+

∫
(f (x + y)− f (x)− (∇f (x), y)1B1(y))ν(x , µ, dy). (17)

They play indispensable role in the theory of interacting
particles (mean field approximation) and exhaust all positivity
preserving evolutions on measures subject to certain mild
regularity assumptions. They include Vlasov, Boltzmann,
Smoluchovski, Landau-Fokker-Planck equations, McKean
diffusions and many other models.



Nonlinear Markov process: definition, approach via

SDE

A resolving semigroup Ut : µ 7→ µt of the Cauchy problem for
this equation specifies a so called generalized or nonlinear
Markov process X (t), whose distribution µt at time t can be
determined by the formula Ut−sµs from its distribution µs at
any previous moment s.
We exploit the idea of nonlinear integrators combined with a
certain coupling of Lévy processes in order to push forward the
probabilistic construction in a way that allows the natural
Lipschitz continuous dependence of the coefficients G , b, ν on
x , µ. Thus obtained extension of the standard SDEs with Lévy
noise represents a probabilistic counterpart of the celebrated
extension of the Monge mass transformation problem to the
generalized Kantorovich one.



Wasserstein-Kantorovich metrics

Wp(ν1, ν2) =

(
inf
ν

∫
|y1 − y2|pν(dy1dy2)

)1/p

, (18)

where inf is taken over the class of probability measures ν on
R2d that couple ν1 and ν2.
The Wasserstein distances between the distributions in the
Skorohod space D([0, T ],Rd):

Wp,T (X1, X2) = inf

(
E sup

t≤T
|X1(t)− X2(t)|p

)1/p

, (19)

where inf is over the couplings of the random paths X1, X2.
To compare Lévy measures, we extend these distances to
unbounded measures with a finite pth moment.



Basic well-posedness: setting

Lµf (x) =
1

2
(G (x , µ)∇,∇)f (x) + (b(x , µ),∇f (x))

+

∫
(f (x + z)− f (x)− (∇f (x), z))ν(x , µ; dz) (20)

with ν(x , µ; .) ∈M2(Rd) (has a finite second moment). Let
Yτ (z , µ) be a family of Lévy processes depending measurably
on the points z and probability measures µ in Rd and specified
by their generators

L[z , µ]f (x) =
1

2
(G (z , µ)∇,∇)f (x) + (b(z , µ),∇f (x))

+

∫
(f (x + y)− f (x)− (∇f (x), y))ν(z , µ; dy) (21)

where ν(z , µ) ∈M2(Rd).



Position dependent SDE with a nonlinear noise

Our approach to solving (16) is via the solution to the
following nonlinear distribution dependent stochastic equation
with nonlinear Lévy type integrators:

X (t) = X +

∫ t

0

dYs(X (s),L(X (s))), L(X ) = µ, (22)

with a given initial distribution µ and a random variable X
independent of Yτ (z , µ).
Euler-Ito approximation:

X τ
µ (t) = X τ

µ (lτ) + Y l
t−lτ (X

τ
µ (lτ),L(X τ

µ (lτ))), (23)

L(X τ
µ (0)) = µ, where lτ < t ≤ (l + 1)τ , l = 0, 1, 2, ..., and

Y l
τ (x , µ) is a collection (depending on l) of independent

families of the Lévy processes Yτ (x , µ) introduced above.



Basic well-posedness: formulation

Theorem
Assume

‖
√

G (x , µ)−
√

G (z , η)‖+ |b(x , µ)− b(z , η)|

+ W2(ν(x , µ; .), ν(z , η; .)) ≤ κ(|x − z |+ W2(µ, η)), (24)

sup
x ,µ

(√
G (x , µ) + |b(x , µ)|+

∫
|y |2ν(x , µ, dy)

)
< ∞. (25)

Then for any µ ∈ P(Rd) ∩M2(Rd) the approximations X τk
µ ,

τk = 2−k , converge to a process Xµ(t) in W 2
2,t0

and the
resolving operators Ut : µ 7→ µt of the Cauchy problem (16)
form a nonlinear Markov semigroup. If L[z , µ] do not depend
explicitly on µ the operators Ttf (x) = Ef (Xx(t)) form a
conservative Feller semigroup preserving the space of Lipschitz
continuous functions.



Basic well-posedness: example
(1) ν(x ; .) =

∑∞
n=1 νn(x ; .), νn(x , .) are probability measures

with
W2(νi(x ; .), νi(z ; .)) ≤ ai |x − z |

and the series
∑

a2
i converges.

It is well known that the optimal coupling of probability
measures (Kantorovich problem) can not always be realized via
a mass transportation (a solution to the Monge problem), thus
leading to the examples when the construction of the process
via standard stochastic calculus would not work.
(2) common star shape of the measures ν(x ; .):

ν(x ; dy) = ν(x , s, dr) ω(ds), r = |y |, s = y/r , (26)

with a certain measure ω on Sd−1 and a family of measures
ν(x , s, dr) on R+. This allows to reduce the general coupling
problem to a much more easily handled one-dimensional one.



Controlled nonlinear processes and games (1)

Consider a single control variable u and assume that µ only is
observable, so that the control is based on µ. This leads to
the following infinite-dimensional HJB equation

∂S

∂t
+ max

u

(
Lµ,u

δS

δµ
+ gu, µ

)
= 0. (27)

If the Cauchy problem for the corresponding kinetic equation
µ̇ = L?

µ,uµ is well posed (say, above theorem applies) uniformly
for controls u from a compact set, with a solution denoted by
µt(µ, u) this can be resolved via discrete approximations

Sk(t − s) = BkS(t), k = (t − s)/τ,

BS(µ) = max
u

[S(µτ (µ, u) + (gu, µ)].



Controlled nonlinear processes and games (2)

Convergence proof (yielding a Lipshitz continuous function for
a Lipshitz continuous initial one) is the same as in book [1],
Section 3.2, yielding a resolving operator Rs(S) for the inverse
Cauchy problem (27) as a linear operator in the max-plus
algebra, i.e. satisfying the condition

Rs(a1 ⊗ S1 ⊕ a2 ⊗ S2) = a1 ⊗ Rs(S1)⊕ a2 ⊗ Rs(S2)

with ⊕ = max, ⊗ = +. This linearity allows for effective
numeric schemes.
Extensions to a competitive control case (games) is settled via
the approach with generalized dynamic systems as presented in
Section 11.4 of book [2].
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