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Jump-type path integrals: abstract for-

mulations

Let us start with abstract formulations that

form the basis for the path integral represen-

tation of regularized Schrödinger equations

in momentum, position, or energy represen-

tations.

Consider the linear equation

ψ̇ = Aψ + V ψ, (1)

where A and V are operators in the complex

Hilbert space H. If A generates a strongly

continuous semigroup etA in H, the mild form

of (1) is

ψt = etAψ0 +
∫ t

0
e(t−s)AV ψs ds, (2)

leading to the perturbation series solutions:

ψt = etAψ0 +
∫ t

0
e(t−s)AV esAψ0 ds + · · ·

+
∫

0≤s1≤···≤sn≤t
e(t−sn)AV e(sn−sn−1)AV

+ · · ·+ V es1Aψ0 ds1...dsn + ... (3)



Theorem 1. Let (Ω,F , M) be a Borel mea-

sure space such that in L2(Ω) the operator A

is represented as the multiplication operator

on the function A(x), and V be an integral

operator of the form V f(x) =
∫

f(y)V (x, dy)

with certain (possibly unbounded) transition

kernel V (x, dy). Suppose Re A(x) ≤ c and

‖V etA‖Cb(Ω) ≤ ct−β, (4)

with c > 0 and β < 1. Then series (3) con-

verges in Cb(Ω) for any ψ0 ∈ Cb(Ω) and all

finite t > 0. Its sum ψt solves equation (2)

and is represented as the path integral (where

y = yn)

ψt(y) =
∫

PCy(t)
VPC(dY (.))F (Y (.))ψ0(Y (t)),

=
∞∑

n=0

∫

PCn
y (t)

VPC
n (dY (.))F (Y (.))ψ0(Y (t)),

=
∞∑

n=0

∫

Simn
t

ds1...dsn

∫

Ωn

n∏

j=1

V (yj+1, dyj)ψ0(y1)

exp{(t−sn)A(y)+(sn−sn−1)A(yn)+· · ·+s1A(y1)}.
(5)



Proof. Condition (4) ensures that the terms

of this series are estimated as
∫

0≤s1≤···≤sn≤t
ec(t−sn)cn(sn − sn−1)

−βs
−β
1 ,

which implies the required convergence.

Aiming at the Schrödinger equation in posi-

tion representation, denote by CPL the set of

continuous piecewise linear paths in Rd. Let

CPLx,y(0, t) denote the class of paths joining

x and y in time t. CPL
x,y
n (0, t) ⊂ CPLx,y(0, t)

have exactly n jumps of their derivative.

CPLx,y(0, t) = ∪∞n=0CPLx,y
n (0, t).

Notice also that the set CPLx,y(0, t) belongs

to the Cameron-Martin space of curves that

have derivatives in L2([0, t]).



To any σ-finite measure M on Rd there cor-

responds a unique σ-finite measure MCPL on

CPLx,y(0, t) such that if

q(s) = q
s1...sn
η1...ηn(s)

= ηj + (s− sj)
ηj+1 − ηj

sj+1 − sj
, s ∈ [sj, sj+1] (6)

(where s0 = 0, sn+1 = t, η0 = y, ηn+1 = x)

is a typical path in CPL
x,y
n (0, t) and Φ is a

functional on CPLx,y(0, t), then
∫

CPLx,y(0,t)
Φ(q(.))MCPL(dq(.))

=
∞∑

n=0

∫

CPL
x,y
n (0,t)

Φ(q(.))MCPL
n (dq(.))

=
∞∑

n=0

∫

Simn
t

ds1...dsn

∫

Rdn
M(dη1)...M(dηn)Φ(q(.)).

(7)



Theorem 2. Let the operator V in (1) is

the multiplication operator by a function V

on Rd or, more generally, by a measure V

on Rd, and the operator etA in L2(R
d) be

an integral operator of the form etAf(x) =∫
At(x, y)f(y)dy with certain measurable func-

tion At(x, y). Suppose ‖etA‖Cb(Ω) ≤ c and

‖etAV ‖Cb(Ω) ≤ ct−β (8)

with c > 0 and β < 1. Then series (3) con-

verges in Cb(Ω) for any ψ0 ∈ Cb(Ω) and all

finite t > 0. Its sum ψt solves equation (2)

and is represented as a path integral on the

space CPL:

ψt(x) =
∫

CPLx,y(0,t)

∫

Rd
ψ0(y)Φ

A(q(.))V CPL(dq(.)),

(9)

where ΦA(q(.)) equals

At−sn(x, ηn)Asn−sn−1(ηn, ηn−1) · · ·As1(η1, y).

(10)

Proof. Similar estimates to the previous case.



For applications to the Schödinger equation

with magnetic fields one needs to handle the

case when V is the composition of a multi-

plication and the derivation operator, which

is the subject of the next result.

Theorem 3. As in Theorem 3, assume that

etA is an integral operator of the form etAf(x) =∫
At(x, y)f(y)dy with certain measurable func-

tion At(x, y) such that ‖etA‖Cb(Ω) ≤ c. But

suppose now that V = (∇, F ) with a bounded

measurable vector-function F on Rd, i.e.

V (f) =
d∑

j=1

∇j(Fjf)(x).

Assume that At(x, y) is differentiable with re-

spect to the second variable for t > 0 and

At(x, y) → 0 as y → ∞ for any x. Denote by

∇2etA the integral operator with the kernel

being the derivative of A with respect to the

second variable, i.e.

[(∇2etA)f(x)]j =
∫

[
∂

∂yj
At(x, y)]f(y) dy.

Finally, assume

‖(∇2etA, F )‖Cb(Ω) ≤ ct−β (11)



with c > 0 and β < 1. Then series (3) con-

verges in Cb(Ω) for any ψ0 ∈ Cb(Ω) and all

finite t > 0. Its sum ψt solves equation (2)

and is represented as a path integral on the

space CPL:

ψt(x) =
∫

CPLx,y(0,t)

∫

Rd
ψ0(y)Φ̃

A(q(.))FCPL(dq(.)),

(12)

where Φ̃A(q(.)) equals

∂

∂ηn
At−sn(x, ηn) · · · ∂

∂η1
As2−s1(η2, η1)As1(η1, y).

(13)

Proof. It is a consequence of Theorem 3, if

one notices that

etAV = etA(∇, F ) = (∇2etA, F )

by the integration by parts.



Finally, when working with Schrödinger equa-

tion, the most natural convergence is mean

square. The following statement is a mean

square version of the above results. Its proof

is straightforward.

Proposition 1.Under the assumptions of The-

orems 1 or 2 suppose instead of (4) and (8)

one has the estimates

‖V etA‖L2(Ω
) ≤ ct−β (14)

or respectively

‖etAV ‖L2(Rd) ≤ ct−β. (15)

Then the statements of the theorems remain

true, but for ψ0 ∈ L2(Ω), and with the con-

vergence of the series understood in the mean

square sense (meaning that the correspond-

ing path integral should be considered as an

improper Riemann integral).



Regularization by complex time or mass,
or continuous observation

To apply the path integral construction (as
well as their extensions) to the Schrödinger
equations beyond the case of potentials rep-
resenting Fourier transform of finite measures,
one often needs certain regularization. For
instance, one can use the same regularization
as is used to define the finite- dimensional in-
tegral

(2πti)−d/2
∫

Rd
exp{−|x− ξ|2

2ti
}f(ξ) dξ (16)

giving the free propagator eit∆/2f . Namely,
this integral is not well defined for general
f ∈ L2(Rd). The most natural way to define
it is based on the observation that, according
to the spectral theorem, for all t > 0

eit∆/2f = lim
ε→0+

eit(1−iε)∆/2f (17)

in L2(Rd). Hence the integral (16) can be
defined as

lim
ε→0+

(2πt(i+ε))−d/2
∫

Rd
exp{− |x− ξ|2

2t(i + ε)
}f(ξ) dξ,

(18)



where convergence holds in L2(Rd).

More generally, if the operator −∆/2 + V (x)

is self-adjoint and bounded from below, by

the spectral theorem,

exp{it(∆/2− V (x))}f

= lim
ε→0+

exp{it(1− iε)(∆/2− V (x))}f. (19)

In other words, solutions to the Schrödinger

equation

∂ψt(x)

∂t
=

i

2
∆ψt(x)− iV (x)ψt(x) (20)

can be approximated by the solutions to the

equation

∂ψt(x)

∂t
=

1

2
(i + ε)∆ψt(x)− (i + ε)V (x)ψt(x),

(21)

which describes the Schrödinger evolution in

complex time. The corresponding equation

on the Fourier transform u is

∂u

∂t
= −1

2
(i + ε)y2u− (i + ε)V (i

∂

∂y
)u. (22)



As we shall see, the results of the previous

section are often applicable to regularized equa-

tions (21) with arbitrary ε > 0, so that (19)

yields an improper Riemann integral represen-

tation for ε = 0, i.e. to the Schrödinger equa-

tion per se. Thus, unlike the usual method of

analytical continuation often used for defin-

ing Feynman integrals, where the rigorous

integral is defined only for purely imaginary

Planck’s constant h, and for real h the in-

tegral is defined as the analytical continua-

tion by rotating h through a right angle, in

our approach, the measure is defined rigor-

ously and is the same for all complex h with

non-negative real part. Only on the bound-

ary Im h = 0 the corresponding integral does

usually become an improper Riemann inte-

gral.



A more physically motivated regularization can

be obtained from the quantum theory of con-

tinuous measurement describing spontaneous

collapse of quantum states, which regular-

izes the divergences of Feynman’s integral for

large position or momentum. The work with

this regularization is technically more diffi-

cult. Not going into detail here, note only

that for regularization the momentum mea-

surement is most handy, given by the equa-

tion

dψ =
(
1

2
(i +

λ

2
)∆ψ − iV (x)ψ

)
dt+

1

i

√
λ

2

∂

∂x
ψ dW.

(23)

As λ → 0, equation (23) approaches the stan-

dard Schrödinger equation.



Singular potentials and magnetic fields

Using regularization we can apply the abstract

results given at the beginning to the Schrödinger

equation with various kinds of potentials and

with a possibly curvilinear state space.

Proposition 2. Let V (x) =
∫

e−ixpf(p)dp (in

the sense of distributions) and f ∈ L1 + Lq,

i.e. f = f1 + f2 with f1 ∈ L1(Rd), f2 ∈
Lq(Rd), with q in the interval (1, d/(d − 2)),

d > 2. Then for any ε > 0 the regularized

Schrödinger equation in momentum represen-

tation (22) satisfies the conditions of Theo-

rem 1 yielding a representation for its solu-

tions in terms of the path integral. Moreover,

the operator −∆/2+V is self-adjoint so that

(19) yields an improper Riemann integral rep-

resentation for ε = 0, i.e. to the Schrödinger

equation per se.

Proof. One sees that the conditions of Theo-

rem 1 are satisfied using the Hölder inequality.

Self-adjointness of the Schrödinger operators

for this class of potentials is well known.



Remark 1.The class of potentials from Propo-

sition 2 includes the Coulomb case V (x) =

|x|−1 in R3. For this case f(y) = |y|−2.

We shall turn now to the Schrödinger equa-

tion in the position representation, aiming at

the application of Theorem 2. Of course, if V

is a bounded function, the conditions of this

theorem for regularized Schrödinger equation

(21) are trivially satisfied (with β = 0). Let

us discuss singular potentials. The most im-

portant class of these potentials represent

Radon measures supported by null sets such

as discrete sets (point interaction), smooth

surfaces (surface delta interactions), Brown-

ian paths and more general fractals. Less ex-

otic examples of potentials satisfying the as-

sumptions of Proposition 4 below are given

by measures with a density V (x) having a

bounded support and such that V ∈ Lp(Rd)

with p > d/2.



The one-dimensional situation turns out to

be particularly simple in our approach, be-

cause in this case no regularization is needed

to express the solutions to the correspond-

ing Schrödinger equation and its propagator

in terms of path integral.

Proposition 3. Let V be a bounded (com-

plex) measure on R. Then the solution ψG

to equation (21) with ε ≥ 0 (i.e. includ-

ing equation (20)) and the initial function

ψ0(x) = δ(x − x0) (i.e. the propagator or

the Green function of (21)) exists and is a

continuous function of the form

ψG(t, x) = (2π(i+ε)t)−1/2 exp{−|x− x0|2
2t(i + ε)

}+O(1)

uniformly for finite times. Moreover, the path

integral representation for ψG is given by The-

orem 2.

Proof. The condition of Theorem 2 are sat-

isfied with β = 1/2 (one-dimensional effect).



For the Schrödinger equation in finite-dimensional

case one needs a regularization.

A number dim(V ) is called the dimensionality

of a measure V if it is the least upper bound

of all α ≥ 0 such that there exists a constant

C = C(α) such that

|V (Br(x))| ≤ Crα

for all x ∈ Rd and all r > 0.

Proposition 4. Let V be a finite complex

Borel measure on Rd with dim(V ) > d − 2.

Then (i) for any ε > 0 the regularized Schrödinger

equation (21) satisfies the conditions of The-

orem 2 yielding a representation for its solu-

tions in terms of the path integral; (ii) one

can give rigorous meaning to the formal ex-

pression H = −∆/2 + V as a bounded below

self-adjoint operator in such a way that the

operators exp{−t(i + ε)H} defined by means

of functional operator calculus are given by

the path integral of Theorem 2; (iii) formula

(19) yields an improper Riemann integral rep-

resentation for ε = 0.



Proof. To check the conditions of Theorem 2

for the regularized Schrödinger equation (21)

we need to show that for any ε > 0

∫

Rd
[2πt(i+ε)]−d/2 exp

{
− |x− ξ|2

2t(i + ε)

}
V (dξ) ≤ c(ε)t−β

with β < 1 uniformly for all x. To this end,

let us decompose this integral into the sum

of two integrals I1 + I2 by decomposing the

domain of integration into two parts:

D1 = {ξ : |x− ξ| ≥ t−δ+1/2}, D2 = Rd \D1.

Then I1 is exponentially small for small t and

I2 ≤ [2πt
√

1 + ε2]−d/2
∫

D2

V (dξ)

≤ c(α, ε)t−d/2(t−δ+1/2)α

with α > d − 2. This expression is of order

t−β with β = δα + (d − α)/2 < 1 whenever

δ < (α−d+2)/(2α). It remains to prove self-

adjointness. This can be obtained from the

properties of the corresponding semigroup.



Let us extend this result to the case of a

formal Schrödinger operator with magnetic

fields in L2(Rd) of the form

H =
1

2

(
1

i

∂

∂x
+ A(x)

)2
+ V (x) (24)

under the following conditions:

C1) the magnetic vector-potential A is a bounded

measurable mapping Rd → Rd,

C2) the potential V and the divergence div A =∑d
j=1

∂Aj

∂xj (defined in hte sense of distribu-

tions) are both (signed) Borel measures,

C3) if d > 1 there exist α > d − 2 and C > 0

such that for all x ∈ Rd and r ∈ (0,1]

|div A|(Br(x)) ≤ Crα, |V |(Br(x)) ≤ Crα,

if d = 1the same holds for α = 0.

The corresponding regularized Schrödinger equa-

tion can be written in the form

∂ψ

∂t
= −DHψ,



where D is a complex number with Re D =

ε ≥ 0, |D| > 0, and the corresponding integral

(mild) equation is

ψt = eDt∆/2ψ0−D
∫ t

0
eD(t−s)∆/2(W+i(∇, A))ψs ds,

(25)

where

W (x) = V (x) +
1

2
|A(x)|2 +

i

2
div A(x).

More precisely, W is a measure, which is the

sum of the measure V (x) + i div A(x)/2 and

the measure having the density |A(x)|2/2 with

respect to Lebesgue measure.

Theorem 4. Suppose C1)-C3) hold for oper-

ator (24). Then all the statements of Propo-

sition 4 are valid for the operator H.

Proof. It is the same as for Proposition 4

above, but one needs to use Theorem 3 in-

stead of Theorem 2.

Precise estimates for the hear kernel of e−tDH

are also available.



Growing potentials and curvilinear state

spaces

Let us consider the Schrödinger equation

∂ψt(x)

∂t
= −iHψt(x)− iV (x)ψt(x), (26)

where V is the operator of multiplication by

a function V and H is a selfadjoint operator

in L2(Ω) with discrete spectrum.

Basic examples:

(i) H is the Laplace operator (or more gen-

erally an elliptic operator) on a compact Rie-

mann manifold (curvilinear state space),

(ii) H = −∆ + W (x) in L2(Rd), where W is

bounded below and W (x) →∞ for x →∞,

(iii) many particle versions of the situations

from (i)-(ii).



In this case the most natural representation

for the Schrödinger equation is the energy

representation. In other words, if λ1 ≤ λ2 ≤
... are eigenvalues of H and ψ1, ψ2, · · · are

the corresponding normalized eigenfunctions,

then any ψ ∈ L2(Ω) can be represented by its

Fourier coefficients {cn}, where ψ =
∑∞

n=1 cnψn

is the expansion of ψ with respect to the or-

thonormal basis {ψj}. In terms of {cn} the

operator e−itH acts as the multiplication cn 7→
exp{−itλn}cn, and V is represented by the

infinite-dimensional symmetric matrix Vnm =∫
ψn(x)V (x)ψm(x) dx (i.e. it is a discrete in-

tegral operator). If V is a bounded function,

condition (14) of Proposition 1 is trivially sat-

isfied (with β = 0) yielding a path integral

representation for the solutions of equation

(26) in the spectral representation of the op-

erator H. It is not difficult to find examples

when the conditions of Theorem 1 hold, but

these examples do not seem to be generic.



Connection with infinite-dimensional os-

cillatory integrals

Proposition 5. If V is the Fourier transform

of a finite measure, suppose X(s) be any con-

tinuous curve. Then

exp{−i
∫ t

0
V (X(s)) ds}

=
∫

PC0(t)
exp{−i

∫ t

0
Xs dYs}(−iµ)PC(dY (.)).

(27)

The r.h.s. of (27) is sometimes called the

Fourier-Feynman transform of the complex

measure (−iµ)PC.

The approach of infinite-dimensional oscilla-

tory integrals of Albeverio-Hoegh-Krohn and

Elworthy-Truman is based on the possibility

to represent the function exp{−i
∫ t
0 V (X(s)) ds}

as the Fourier transform of a finite measure

MV on the Cameron-Martin space of curves

with square integrable derivatives. Formula

(27) yields a precise description of this mea-

sure.



Namely, as on the classical paths of the free

dynamics the position and its velocity are con-

nected via the trivial ODE ẋ = p, the set PC

of piecewise constant paths in the velocity

space corresponds to the set CPL of con-

tinuous piecewise linear paths in the position

space. One can thus naturally transform a

measure on the set PC to the measure on

CPL. Formula (27) shows that the function

exp{−i
∫ t
0 V (X(s)) ds} can be represented as

the Fourier transform of the measure on CPL

(which is a subspace of the Cameron-Martin

space) that is obtained by transforming the

measure (−iµ)PC from PC to CPC via the

transformation aove.
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