
Nonlinear Markov processes

and games via SDEs driven by

nonlinear Lévy noise
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Abstract and Plan

1. We introduce a general construction of

Markov processes and semigroups (both lin-

ear and nonlinear) via SDEs driven by nonlin-

ear Levy noise.

2. The corresponding fractional dynamics is

described in terms of subordination by the

hitting times of Levy subordinators.

3. Including control, allows us to extend the

analysis to nonlinear controlled Markov pro-

cesses and games.



1. SDEs driven by nonlinear Lévy noise

Weak equations of the form

d

dt
(f, µt) = (Lµtf, µt), µt ∈ P(Rd), µ0 = µ,

(1)

(that should hold, say, for all f ∈ C2
c (Rd)),

where

Lµf(x) =
1

2
(G(x, µ)∇,∇)f(x)+(b(x, µ),∇f(x))

+
∫

(f(x+y)−f(x)−(∇f(x), y)1B1
(y))ν(x, µ, dy),

(2)

play indispensable role in the theory of inter-

acting particles (mean field approximation)

and exhaust all positivity preserving evolu-

tions on measures subject to certain mild reg-

ularity assumptions. I call them general ki-

netic equations as they include Vlasov, Boltz-

mann, Smoluchovski, Landau-Fokker-Planck

equations, McKean diffusions and many other

models. The strong form is of course

µ̇ = L?
µµ.



A resolving semigroup Ut : µ 7→ µt of the

Cauchy problem for this equation specifies a

so called generalized or nonlinear Markov pro-

cess X(t), whose distribution µt at time t can

be determined by the formula Ut−sµs from its

distribution µs at any previous moment s.

In the case of diffusions (when ν vanishes)

the theory of the corresponding semigroups

is well developed, as well as pure jump case.

We exploit the idea of nonlinear integrators

combined with a certain coupling of Lévy pro-

cesses in order to push forward the proba-

bilistic construction in a way that allows the

natural Lipschitz continuous dependence of

the coefficients G, b, ν on x, µ. Thus obtained

extension of the standard SDEs with Lévy

noise represents a probabilistic counterpart of

the celebrated extension of the Monge mass

transformation problem to the generalized Kan-

torovich one.



Wasserstein-Kantorovich metrics Wp, p ≥ 1,

on the set of probability measures P(Rd) on

Rd are defined as

Wp(ν1, ν2) =
(
inf
ν

∫
|y1 − y2|pν(dy1dy2)

)1/p
,

(3)

where inf is taken over the class of probability

measures ν on R2d that couple ν1 and ν2, i.e.

that satisfy
∫ ∫

(φ1(y1)+φ2(y2))ν(dy1dy2) = (φ1, ν1)+(φ2, ν2)

(4)

for all bounded measurable φ1, φ2.

The Wasserstein distances between the dis-

tributions in the Skorohod space D([0, T ],Rd):

Wp,T (X1, X2) = inf

(
E sup

t≤T
|X1(t)−X2(t)|p

)1/p

,

(5)

where inf is taken over all couplings of the

distributions of the random paths X1, X2.

To compare the Lévy measures, we extend

these distances to unbounded measures with

a finite moment.



For simplicity, we present the arguments for

Lµ having the form

Lµf(x) =
1

2
(G(x, µ)∇,∇)f(x)+(b(x, µ),∇f(x))

+
∫

(f(x + z)− f(x)− (∇f(x), z))ν(x, µ; dz)

(6)

with ν(x, µ; .) ∈ M2(R
d). Let Yτ(z, µ) be a

family of Lévy processes depending measur-

ably on the points z and probability measures

µ in Rd and specified by their generators

L[z, µ]f(x) =
1

2
(G(z, µ)∇,∇)f(x)+(b(z, µ),∇f(x))

+
∫

(f(x + y)− f(x)− (∇f(x), y))ν(z, µ; dy)

(7)

where ν(z, µ) ∈M2(R
d).



Our approach to solving (1) is via the so-

lution to the following nonlinear distribution

dependent stochastic equation with nonlinear

Lévy type integrators:

X(t) = X+
∫ t

0
dYs(X(s),L(X(s))), L(X) = µ,

(8)

with a given initial distribution µ and a ran-

dom variable X independent of Yτ(z, µ).

We shall define the solution through the Euler

type approximation scheme, i.e. by means of

the approximations Xτ
µ:

Xτ
µ(t) = Xτ

µ(lτ) + Y l
t−lτ(X

τ
µ(lτ),L(Xτ

µ(lτ))),

(9)

L(Xτ
µ(0)) = µ, where lτ < t ≤ (l + 1)τ , l =

0,1,2, ..., and Y l
τ(x, µ) is a collection (depend-

ing on l) of independent families of the Lévy

processes Yτ(x, µ) introduced above. Clearly

these approximation processes are cadlag.



Theorem 1. Let an operator Lµ have form

(6). Moreover assume that

‖
√

G(x, µ)−
√

G(z, η)‖+ |b(x, µ)− b(z, η)|

+W2(ν(x, µ; .), ν(z, η; .)) ≤ κ(|x−z|+W2(µ, η)),

(10)

holds true with a constant κ and

sup
x,µ

(√
G(x, µ) + |b(x, µ)|+

∫
|y|2ν(x, µ, dy)

)
< ∞.

(11)

Then

(i) for any µ ∈ P(Rd) ∩M2(R
d) the approxi-

mations X
τk
µ , τk = 2−k, converge to a process

Xµ(t) in the sense that

sup
µ

W2
2,t0

(
X

τk
µ , Xµ

)
≤ c(t0)τk, (12)

where c(t0) depends only on the upper bounds

in (10), (11);



(ii) the processes

M(t) = f(Xµ(t))− f(Xµ(0))

−
∫ t

0
(LL(Xµ(s))f(Xµ(s)) ds (13)

are martingales for any f ∈ C2(Rd), and the

distributions µt = L(Xµ(t)) satisfy the weak

nonlinear equation (1) (that holds for all f ∈
C2(Rd));

(iii) the resolving operators Ut : µ 7→ µt of the

Cauchy problem (1) form a nonlinear Markov

semigroup, i.e. they are continuous map-

pings from P(Rd) ∩M2(R
d) (equipped with

the metric W2) to itself such that U0 is the

identity mapping and Ut+s = UtUs for all s, t ≥
0. If L[z, µ] do not depend explicitly on µ the

operators Ttf(x) = Ef(Xx(t)) form a conser-

vative Feller semigroup preserving the space

of Lipschitz continuous functions.



For example, assumption on ν is satisfied if

one can decompose the Lévy measures ν(x; .)

in the countable sums ν(x; .) =
∑∞

n=1 νn(x; .)

of probability measures so that

W2(νi(x; .), νi(z; .)) ≤ ai|x− z|
and the series

∑
a2

i converges. It is well known

that the optimal coupling of probability mea-

sures (Kantorovich problem) can not always

be realized via a mass transportation (a so-

lution to the Monge problem), thus leading

to the examples when the construction of

the process via standard stochastic calculus

would not work.

Another important particular situation is that

of a common star shape of the measures ν(x; .),

i.e. if they can be represented as

ν(x; dy) = ν(x, s, dr)ω(ds), r = |y|, s = y/r,

(14)

with a certain measure ω on Sd−1 and a fam-

ily of measures ν(x, s, dr) on R+. This allows

to reduce the general coupling problem to

a much more easily handled one-dimensional

one.



2. Fractional dynamics via subordination

Let X(u), u ≥ 0 be a Lévy subordinator, i.e.

an increasing càdlàg Feller process (adapted

to a filtration on a suitable probability space)

with the generator

Af(x) =
∫ ∞
0

(f(x + y)− f(x))ν(dy) + a
∂f

∂x
,

(15)

where a ≥ 0 and ν is a Borel measure on

{y > 0} such that
∫ ∞
0

min(1, y)ν(dy) < ∞.

The inverse function process or the first hit-

ting time process Z(t) defined as

Z(t) = inf{u : X(u) > t} = sup{u : X(u) ≤ t},
(16)

is also an increasing càdlàd process.

Assume that there exist ε > 0 and β ∈ (0,1)

such that ν(dy) ≥ y1+β dy for 0 < y < ε. Then



(i) The process X(u) is a.s. increasing at

each point; (ii) distribution of X(u) for u > 0

has a density G(u, y) vanishing for y < 0,

which is infinitely differentiable in both vari-

ables and satisfies the equation

∂G

∂u
= A?G, (17)

where A? is the dual operator to A given by

A?f(x) =
∫ ∞
0

(f(x− y)− f(x))ν(dy)− a
∂f

∂x
,

(iii) if extended by zero to the half-space {u <

0} the locally integrable function G(u, y) on

R2 specifies a generalized function satisfying

the equation

∂G

∂u
= A?G + δ(u)δ(y). (18)

Consequently: (i) the process Z(t) is a.s.

continuous and Z(0) = 0; (ii) the distribu-

tion of Z(t) has a continuously differentiable

probability density function Q(t, u) for u > 0

given by

Q(t, u) = − ∂

∂u

∫ t

−∞
G(u, y) dy. (19)



Theorem 2. Density Q satisfies the equation

A?Q =
∂Q

∂u
(20)

for u > 0, where A? acts on the variable t,

and the boundary condition

lim
u→0+

Q(t, u) = −A?θ(t) (21)

where θ(t) is the indicator function equal one

(respectively 0) for positive (respectively neg-

ative) t. If Q is extended by zero to the half-

space {u < 0}, it satisfies the equation

A?Q =
∂Q

∂u
+ δ(u)A?θ(t), (22)

in the sense of distribution (generalized func-

tions).

Moreover the (point-wise) derivative ∂Q
∂t also

satisfies equation (20) for u > 0 and satisfies

the equation

A?∂Q

∂t
=

∂

∂u

∂Q

∂t
+ δ(u)

d

dt
A?θ(t) (23)

in the sense of distributions.



Remark 1. In the case of a β-stable subordi-

nator X(u) with the generator

Af(x) = − 1

Γ(−β)

∫ ∞
0

(f(x+y)−f(x))y−1−βdy,

(24)

one has

A = − dβ

d(−x)β
, A? = − dβ

dxβ
, (25)

in which case equation (22) takes the form

dβQ

dtβ
+

∂Q

∂u
= δ(u)

t−β

Γ(1− β)
. (26)

This remark gives rise to the idea to call the

operator (15) a generalized fractional deriva-

tive.



Theorem 3. Under the conditions of the pre-

vious Theorem let Y (t) be a Feller process in

Rd, independent of Z(t), and with the domain

of the generator L containing (C∞∩C2)(Rd).

Denote the transition probabilities of Y (t) by

T (t, x, dy).

Then the averages f(t, x) = Ef(Yx(Z(t))) of

the (time changed or subordinated) process

Yx(Z(t)) for t > 0 and f ∈ (C∞ ∩ C2)(Rd)

satisfy the (generalized) fractional evolution

equation

A?
tf(t, x) = −Lxf(t, x) + f(x)A?θ(t) (27)

(where the subscripts indicate the variables,

on which the operators act), and their time

derivatives h = ∂f/∂t satisfy for t > 0 the

equation

A?
th = −Lxh + f(x)

d

dt
A?θ(t). (28)



Proof (sketch). For a continuous bounded

function f one has for t > 0 that

Ef(Yx(Z(t)) =
∫ ∞
0

E(f(Yx(Z(t))|Z(t) = u)Q(t, u) du

=
∫ ∞
0

∫
f(y)T (u, x, dy)Q(t, u) du

by the independence of Z and Y . Hence for

t > 0

A?
tf = lim

ε→0

∫ ∞
ε

∫
T (u, x, dy)f(y)A?

tQ(t, u) du

= lim
ε→0

∫ ∞
ε

∫
T (u, x, dy)f(y)

∂

∂u
Q(t, u) du

= −
∫ ∞
0

∂

∂u

∫
T (u, x, dy)f(y)Q(t, u) du+δ(x−y)A?θ(t),

implying (27).



Remark 2. In the case of a β-stable Lévy

subordinator X(u) with the generator (24),

where (25) hold, the left hand sides of the

above equations become fractional derivatives

per se. In particular, if Y (t) is a symmetric α-

stable Lévy motion, equation (27) takes the

form

∂β

∂tβ
g(t, y−x) =

∂α

∂|y|αg(t, y−x)+δ(y−x)
t−β

Γ(1− β)
.

(29)

deduced earlier by Saichev-Zaslavski and Uchaikin.

One can generalize this theory to the case

of Lévy type subordinators X(u) specified by

the generators of the form

Af(x) =
∫ ∞
0

(f(x+y)−f(x))ν(x, dy)+a(x)
∂f

∂x
(30)

with position depending Lévy measure and

drift.



Nonlinear extension.

Suppose nonlinearity sits only in the drift (po-

tential interaction) so that

Lµf = Lf + b(x, µ)
∂f

∂x

with L being a Levy-type generator. Let Yx,µ

be the corresponding process. Then for f(t, x) =

Ef(Yx,µ(Z(t))) one gets the same, but with

an ugly nonlinear correction:

A?
tf(t, x) = −Lxf(t, x) + f(x)A?θ(t)

−
∫ ∞
0

∫
b(z, µu)

∂f

∂z
f(z)µu(dz)Q(t, u) du. (31)

However, for µu with a density, the last term

turns to the linear integral operator on f by

transferring the derivative of f to the deriva-

tion of µ via the integration by parts.



3. Controlled Markov processes and games

Suppose first that L does not depend on µ

explicitly, but there is additional controllable

drift f(x, α, β) and an integral payoff given by

g(x, α, β). This leads to the HJB equation

∂S

∂t
+ H(x,

∂S

∂x
) + LS = 0 (32)

with

H(x, p) = max
α

min
β

(
f(x, α, β)

∂S

∂x
+ g(x, α, β)

)
.

Theorem 4. Suppose H(x, p) is Lipshitz in

p uniformly in x with a Lipshitz constant κ,

and the process generated by L has a heat

kernel (Green’s function) G(t, x, ξ), which is

of class C1 with respect to all variables for

t > 0. Moreover

sup
x

∫ t

0

∫ ∣∣∣∣
∂

∂x
G(s, x, ξ)

∣∣∣∣ dsdξ < ∞

for t > 0. Then for any S0 ∈ C1(Rd) there ex-

ists a unique classical solution for the Cauchy

problem for equation (32) yielding also the

solution to the corresponding optimal control

problem.



Proof (sketch). It is based of course on the
fixed point argument for the mapping

Φt(S) =
∫

G(t, x, ξ)S0(ξ)dξ

+
∫ t

0

∫
G(t− s, x, ξ)H(ξ,

∂Ss

∂x
)dsdξ,

which is applicable, because for S1, S2 with
S1
0 = S2

0
∥∥∥∥∥
∂Φt(S1)

∂x
− ∂Φt(S2)

∂x

∥∥∥∥∥

≤ κ
∫ t

0

∂G

∂x
(t− s, x, ξ)dξds sup

s≤t

∥∥∥∥∥
∂S1

∂x
− ∂S2

∂x

∥∥∥∥∥
implying the contraction property of Φ for
small enough t.

Example: controlled stable-like processes with
the generator ∆α(x) or more generally∫

Sd−1
|(∇, s)|α(x)µ(ds).

Example of an application: extension of Nash
Certainty Equivalence (NCE) principle of P.
Caines et al (obtained for interacting diffu-
sions) to stable-like processes.



4. Controlled nonlinear Markov processes

and games (a starter)

Returning to L depending on µ consider a

single control variable u. Assume that µ only

is observable, so that the control is based

on µ. This leads to the following infinite-

dimensional HJB equation

∂S

∂t
+ max

u

(
Lµ,u

δS

δµ
+ gu, µ)

)
= 0. (33)

If the Cauchy problem for the correspond-

ing kinetic equation µ̇ = L?
µ,uµ is well posed

(see book [7]) uniformly for controls u from

a compact set, with a solution denoted by

µt(µ, u) this can be resolved via discrete ap-

proximations

Sk(t− s) = BkS(t), k = (t− s)/τ,

BS(µ) = max
u

[S(µτ(µ, u) + (gu, µ)].



Convergence proof (yielding a Lipshitz con-

tinuous function for a Lipshitz continuous ini-

tial one) is the same as in book [5], Section

3.2, yielding a resolving operator Rs(S) for

the inverse Cauchy problem (33) as a linear

operator in the max-plus algebra, i.e. satis-

fying the condition

Rs(a1⊗S1⊕a2⊗S2) = a1⊗Rs(S1)⊕a2⊗Rs(S2)

with ⊕ = max, ⊗ = +. This linearity allows

for effective numeric schemes.

Extensions to a competitive control case (games)

is settled via the approach with generalized

dynamic systems as presented in Section 11.4

of book [6].
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