Introduction
There are a growing number of longitudinal fMRI studies collecting rich datasets. Standard software, SPM and FSL in particular, cannot accurately model these data when there are $k > 2$ visits (repeated measurements). Specifically, FSL can only accommodate a single contrast (COPE) at the second level (e.g. for visit 2 - visit 1) and SPM, though it models repeated measures correlation, unrealistically assumes that the correlation is equal over the whole brain. While proper longitudinal modeling is available in standard statistics software (e.g. SAS’s proc_mix, or R’s lme), the iterative estimation procedures can be prohibitively slow.

In this work we propose the use of Ordinary Least Squares (OLS) combined with the sandwich estimator (White, 1982), which should provide fast and valid P-values (with possibly sub-optimal sensitivity). We compare this approach to the commonly used “poor man’s” OLS longitudinal model for longitudinal data (which is fast, but possibly both inaccurate P-values and poor sensitivity), and Generalized Least Square (GLS) to fit a proper longitudinal model that accounts for intrasubject correlation (which is the gold standard, but may be slow).

We use the R software to perform these evaluations in order to have access to state of the art GLS MFX modelling tools and sandwich estimators. Note that OLS is offered in all fMRI software, and SW does not require iteration and is easily implemented.

Results
Fig. 1 shows the situation for compound symmetry. The Relative Bias in standard errors, FPR of the three estimators are approximately the same, indicating that the SW does not perform poorly when compound symmetry holds. When compound symmetry does not hold (Fig. 2), OLS is least accurate. The FPRs in Fig. 2 show that SW is reasonably robust against number of visits. All methods show stronger errors for fewer number of subjects. Note that the variation of SW is larger than both GLS and OLS.

Discussion
We have shown that the widely used OLS approach to modelling longitudinal data can be inaccurate in a variety of settings, due to bias in the standard errors of the effect. Although SW is not always significantly better than OLS, SW can be more robust than OLS to more extreme covariance structures than shown here. While GLS-based MFX provides optimal inferences, the use of the Sandwich Estimator Standard Errors with OLS provides a computationally efficient, robust, flexible and accurate approach to longitudinal fMRI.

Methods
It is common practice to fit longitudinal data via OLS by including dummy variables for each subject to account for subject-specific differences in the overall mean. While this “poor man’s MFX” approach is not correct in general, it happens to be valid when the data form a balanced 1-way ANOVA and intra-visit correlation is the same for all pairs of visit (the condition of “compound symmetry”). When compound symmetry doesn’t hold, the estimates will be suboptimal (inefficient) and standard errors biased.

We compare three univariate models for MFX inference on longitudinal data: OLS, GLS, and SW via Monte Carlo simulation. For a range of subject sample sizes ($n = 12, 25, 50, 100, 200$) and number of visits ($k = 3, 5, 8$), and compound symmetric and non-compound symmetric (autoregressive structure, AR(1)) intra-visit correlation structure, we evaluate the properties of the MFX estimates of the linear change in BOLD over time: (1) SE (Standard Error) bias, the average error in the estimated variance of BOLD change, (2) FPR relative accuracy, the relative false positive rate (FPR) compared to the nominal level, and (3) SE Stdev, the standard deviation of the standard error estimates divided by the Monte Carlo mean of the standard error. We use 1000 simulations for each setting.

We use the R software to perform these evaluations in order to have access to state of the art GLS MFX modelling tools and sandwich estimators. Note that OLS is offered in all fMRI software, and SW does not require iteration and is easily implemented.

References

Figure 1: With compound symmetry, in the rows are relative bias in the standard error, FPR, and efficiency of OLS (red), GLS (green) and SW (blue) for $k = 3, 5, 8$ time points.

Figure 2: Without compound symmetry (AR(1)), in the rows are relative bias in the standard error, FPR, and efficiency of OLS (red), GLS (green) and SW (blue) for $k = 3, 5, 8$ visits.