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Abstract

In this thesis, we develop some novel methods for univariate and multivariate ana-
lyses of additive genetic factors including heritability and genetic correlation.

For the univariate heritability analysis, we present 3 newly proposed estimation
methods—Frequentist ReML, LR-SD and LR-SD ReML. The comparison of these
novel and those currently available approaches demonstrates the non-iterative LR-
SD method is extremely fast and free of any convergence issues. The properties
of this LR-SD method motivate the use of the non-parametric permutation and
bootstrapping inference approaches. The permutation framework also allows the
utilization of spatial statistics, which we find increases the statistical sensitivity of
the test.

For the bivariate genetic analysis, we generalize the univariate LR-SD method to
the bivariate case, where the integration of univariate and bivariate LR-SD provides
a new estimation method for genetic correlation. Although simulation studies show
that our measure of genetic correlation is not ideal, we propose a closely related
test statistic based on the ERV, which we show to be a valid hypothesis test for
zero genetic correlation. The rapid implementation of this ERV estimator makes it
feasible to use with permutation as well.

Finally, we consider a method for high-dimensional multivariate genetic analysis
based on pair-wise correlations of different subject pairs. While traditional genetic
analysis models the correlation over subjects to produce an estimate of heritability,
this approach estimates correlation over a (high-dimensional) phenotype for pairs
of subjects, and then estimates heritability based on the difference in MZ-pair and
DZ-pair correlations. A significant two-sample t-test comparing MZ and DZ correl-
ations implies the existence of heritable elements. The resulting summary measure

xii



of aggregate heritability, defined as twice the difference of MZ and DZ mean correl-
ations, can be treated as a quick screening estimate of whole-phenotype heritability
that is closely related to the average of traditional heritability.

xiii



Chapter 1

Introduction

The objective of this thesis is to develop methods for the analysis of genetic herit-
ability suitable for brain imaging data. Heritability measures the extent to which
the inter-individual variation in twin data can be accounted for by the genetic influ-
ences; this can be considered for a single observable trait (i.e., trait heritability), as
well as for multiple traits, where heritability concerns the overlapping genetic effects
shared between measurable characteristics (i.e., genetic correlation between traits).
Based on the data from a single trait, we construct novel heritability estimation
and inference approaches with the goal of increasing computational efficiency and
statistical sensitivity while controlling the type I error rate over the whole brain.
We extend these results to the multivariate setting, where the genetic correlation
of the paired traits can be estimated with our newly proposed method and the sig-
nificance of both heritability and genetic correlation can be tested simultaneously
with a test statistic that performs extremely quick and satisfactorily. Finally, during
the high-dimensional multivariate heritability inference, we analyze a rapid aggreg-
ate measurement of the heritability over the entire brain volume, yielding a fast
screening method useful when searching over a large collection of high-dimensional
imaging phenotypes.

1.1 Background

As the most complicated structure within the central nervous system, the human
brain is an organ that is highly organized to control the body’s vital functions by
sending, receiving, analyzing and storing information from the internal and external
environments. In the human brain, there are many nerve cells including around
100 billion neurons and about 10–50 times more glial cells, where neurons receive

1



and transmit electrochemical signals across the brain and nervous system, and glial
cells provide physical and nutritional support for neurons (Chudle, 2007). The
earlier studies have revealed that the adult human brain receives 15–20% of the
body’s blood supply and consumes roughly 20% of the amount of whole-body en-
ergy budget for supporting brain functions, even though the brain only occupies 2%
of the total body weight (Raichle, 2006).

Gaining an explicit understanding how the brain works is one of the greatest chal-
lenges scientists face. The recent developments in imaging techniques provide neur-
oscientists new insights into the investigation of neurophysiological and psycholo-
gical diseases and allow researchers to take a closer look at the brain structures
and functions. In particular, the non-invasive scanning techniques, such as mag-
netic resonance imaging (MRI) and positron emission tomography (PET), are ima-
ging approaches that aid in the diagnosis of diseases and the detection of intrinsic
physiological activities.

For over a decade there has been a rapidly growing interest in joint studies of ima-
ging phenotypes and molecular genetics (Glahn et al., 2007). Imaging genetics is a
multi-disciplinary research field studying the genetic influences on brain structures
and functional activities using the data obtained from neuroimaging and genetics.
The imaging techniques are integrated with the genetic analytical approaches, with
the potential of providing greater statistical power and more effective prediction
in neuroimaging (Tairyan and Illes, 2009). The recent advances in both molecular
genetics and non-invasive neuroimaging provide numerous promising approaches for
researchers to investigating the underlying mysteries of the human brain. Imaging
genetics also allows the researchers to explore and identify the gene-related diseases
before the behavioral symptoms are present, fostering the potential of patients to
seek appropriate medical treatments earlier (Hariri et al., 2006).

A trait in biology can be any single feature or quantifiable measurement of an or-
ganism, and a phenotype in genetics is an individual’s observable physical trait or
characteristic that results from the interaction of genetic inheritance and environ-
mental conditions. Heritability of a phenotypic trait is conceptualized as a fraction
of the phenotypic variation that is attributable to the genetic influence, and sum-
marizes how strong the genetic effects are for that phenotype (see Section 2.4 for
a precise definition of heritability). The genetic effects of a trait can be attributed
to a particular gene only or the aggregate of multiple genes. For the neuroimaging
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traits of interest, neuroscientists want to evaluate the unknown genetic causes, and
precisely measure the degree of the genetic factors, i.e., heritability. Typically, some
traditional (non-imaging) phenotypes have been studied in heritability analysis of
psychiatric disorders, which are mostly moderately to highly heritable, like heritab-
ility estimates of 0.83 for schizophrenia (Cannon et al., 1998) and 0.85 for bipolar
affective disorder using narrow concordance (McGuffin et al., 2003). Similarly in the
brain imaging studies, prior research has observed considerable genetic influence on
neuroanatomy and functional neuroimaging, such as the heritability estimates of
0.88 for total gray matter volume and 0.85 for total white matter volume (Glahn
et al., 2007), and the highest heritability estimates with a range of 0.40–0.65 for
working memory task-related brain response (Blokland et al., 2011).

If the genetic data is available, heritability for a particular gene or a genetic marker
can be measured. Without the genetic data, heritability can only be estimated by
studying the individuals with varying degrees of genetic relatedness. The classic
twin study is a valuable tool designed to measure the genetic effects distinct from
the environmental effects common to each twin pair. Family studies, with more
variation in relatedness, can also be used to explore the relative importance of
genetic and environmental factors to the observable traits.

1.2 Existing Approaches

Currently there exist two commonly used approaches to estimating heritability, one
based on method of moments, and another based on maximum likelihood. The so-
called “Falconer’s formula” (Falconer and Mackay, 1996) is a simple point estimate
for heritability using twin data based on moment matching. The best-practice and
commonly used likelihood-based method constructs a variance component model
using a variance decomposition, which parameterizes the varying degree of covari-
ance expected with varying relatedness between subjects; the variance parameters
are estimated by maximizing the likelihood or restricted likelihood function with
respect to those parameters. Hypothesis tests are generally made with likelihood
ratio test, and the asymptotic standard error of the maximum likelihood estimator
can be computed with the Fisher information matrix. These methods for heritabil-
ity inference will be discussed in Section 3.2.

While the first neuroimaging studies measuring heritability used Falconer’s method,
e.g., Wright et al. (2002), likelihood-based approaches are becoming more prevalent,
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with the use of variance components or structural equation modeling methods. But
such methods cannot exploit the spatial nature of the imaging data to improve
the statistical sensitivity, nor provide inferences corrected for searching the brain
for heritability; in particular, neuroimaging researchers wish to control the rate of
family-wise errors (FWE), the chance of making one or more false positives among all
hypotheses in the whole brain. Although a simple Bonferroni correction is a p-value
adjustment approach offering the control of FWE, it is typically quite conservative
for smooth images, and thus is often not useful with brain imaging data. When
feasible, permutation inference offers an exact control of false positive risk and allows
the use of specialized spatial statistics while implicitly accounting for the spatial
dependence. However, the maximum-likelihood-based approaches mentioned above
are mostly iterative and can be too time-consuming and unreliable (i.e., can fail to
converge) to allow permutations. Another, quite practical concern, is that current
tools are not designed for brain imaging data, cannot compute basic spatial statistics,
and can neither read nor write brain image file formats.

1.3 Thesis Organization and Main Contributions

The organization of this thesis is as follows. In Chapter 2, we review the basic prin-
ciples and concepts of functional magnetic resonance imaging (fMRI). The fMRI
data pre-processing and modeling approaches are also introduced in this chapter,
which is followed by the description of principles, terminology and approaches re-
lated to the heritability inference, where we also present the basics of permuta-
tion and bootstrapping approaches in detail. In the subsequent chapters including
Chapter 3 and Chapter 4, we propose a linear regression-based method that is new
to the neuroimaging community. This method allows fast voxel-wise heritability es-
timation with an approximate but remarkably accurate performance. In Chapter 3,
we focus on univariate heritability inference, which is developed for both voxel- and
cluster-wise inferences, with its corresponding application to two real fMRI BOLD
datasets. In Chapter 4, the bivariate modeling approach is proposed and evaluated
with simulations, and then is further evaluated with real data. An aggregate her-
itability inference approach for high-dimensional multivariate heritability analysis
is also investigated with the use of correlation mean difference approach in this
chapter. In Chapter 5, we summarize our work in Chapter 3 and Chapter 4 and
discuss our future research direction.
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Chapter 2

Background on Magnetic
Resonance Imaging and
Heritability Analysis

Before statistically analyzing the acquired datasets, we focus on the introduction of
the background information related to data acquisition, pre-processing and modeling
firstly in this chapter, and then we introduce the related terminology and describe
the inference approaches used in heritability analysis.

2.1 Functional Magnetic Resonance Imaging

The functional magnetic resonance imaging (fMRI) procedure, as a burgeoning
neuroimaging method, uses the magnetic resonance imaging (MRI) technology to
detect and measure the brain activity by means of associated changes in blood
flow, volume and oxygenation. Since the 1990s, the fMRI technique has gradually
become the most widely applied method for mapping brain function, owing to its
non-invasiveness, excellent spatial and good temporal resolutions, and wide availab-
ility. In this section, we will briefly introduce the MRI technique, and then describe
the important Blood Oxygenation Level Dependent (BOLD) response.

2.1.1 A Brief Introduction to MRI

The rapid growth of neuroimaging is supported by various imaging techniques, such
as MRI, positron emission tomography (PET), electroencephalography (EEG) and
magnetoencephalography (MEG), for the purpose of visualizing the brain structures
and functions. Compared with EEG and MEG, which provide brain images with
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high temporal resolution but relatively poor spatial localization, MRI has excellent
spatial resolution to allow better visualization and reliable localization of the brain
regions; in particular, it offers a means to capture both brain structure as well as
function. While PET involves the injection of radioactive tracers, MRI is completely
non-invasive and involves no ionizing radiation. MRI is utilized for the studies of
human brain structure in vivo and has become clinically prevalent. With the use of
the principles of nuclear magnetic resonance (NMR), MRI can produce high-quality
cross sectional images. The NMR phenomenon is based on the quantum-mechanical
properties of nuclear spin in an external magnetic field, which underlies the MRI
technology.

In 1946, Bloch and Purcell discovered the phenomenon of NMR and introduced this
technique independently. In 1952, Gabillard proposed the method to investigate
NMR under a gradient, or spatially-varying, magnetic field for spatial discrimina-
tion of the NMR phenomenon. In 1971, Damadian’s studies of rats showed that the
NMR relaxation time in healthy and tumor tissues differed, providing the basis for
tissue discrimination in the analysis of medical images and disease identification.
Nowadays, the MRI technique has been developed and widely used as a common
analytical imaging tool for chemical and physical molecular analysis.

According to the principles of quantum mechanics, if there is an odd number of
protons or neutrons in the nucleus of a specified atom, this atomic nucleus has a
magnetic moment and is NMR-active. A hydrogen nucleus has a single proton and
zero neutrons, and therefore is NMR active. Since the hydrogen nuclei are the most
abundant in the human body, making up about 60% of the human body (e.g., each
water molecule consists of two hydrogen atoms and one atom of oxygen), conven-
tional MRI obtains the magnetic signal from hydrogen nuclei (protons).

Each hydrogen proton has the magnetic characteristic of nuclear spin, and usually
the axes of these spins are randomly oriented. In the presence of an external, strong
and static main magnetic field (with the strength of B0) for the hydrogen atoms,
the hydrogen protons align themselves with this field. They align both parallel
and anti-parallel to the applied magnetic field, producing a net magnetization M0

obtained along with the direction of the external field. Roughly, each hydrogen
proton can be thought of like a little magnet. With the influence of the external
static magnetic field, these little magnets precess around the axis of the external
field. The frequency of precession occurs at the resonant frequency determined by
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the Larmor equation:
f = γB0, (2.1)

where γ = 42.58 MHz/T is the gyromagnetic ratio of hydrogen atoms, and B0 is as
stated to be the strength of this external magnetic field in Tesla (T).

The “little magnets” of the hydrogen protons cannot be directly detected when
aligned with the massive external field. To measure these protons the phenomenon
of magnetic resonance is used. An oscillating magnetic field (with the strength of
B1), perpendicular to the main static field, is applied for a very short interval at the
resonance (Larmor) frequency. This B1 magnetic field is also referred to as a radio
frequency (RF) field, and turning on this RF field for a brief period is known as RF
pulse. After applying an RF pulse, the spinning hydrogen protons absorb energy,
become excited and precess in phase and at an angle tipped away from the main B0

field towards the B1 field. Following the excitation, these excited hydrogen atoms
will return to their equilibrium state by emitting energy at the same radio frequency
and becoming relaxed gradually when the RF pulse is switched off. The process of
energy exchange for the hydrogen protons by absorbing and releasing energy at the
Larmor frequency is called magnetic resonance and gives rise to the MRI signal.

The magnetization M0 can be decomposed into two orthogonal components: a lon-
gitudinal or z componentMz arisen from the mainB0 field, and a transverse compon-
ent Mxy lying on the transverse xy plane. After the RF excitation, the longitudinal
and transverse components of the magnetization return to their equilibrium val-
ues at an exponential rate, where the relaxation process can also be separated into
two parts: spin-lattice relaxation and spin-spin relaxation for the longitudinal and
transverse components respectively. The recovery of the longitudinal component for
spin-lattice relaxation is characterized by a relaxation time constant T1, whereas
T2, the spin-spin relaxation time constant, describes the decay process on the trans-
verse plane, where T1 is typically 5-10 times larger than T2. Specifically, these two
independent exponential processes of the longitudinal recovery and the transverse
decay can be characterized by the temporal changes of Mz along z axis and Mxy

within the xy plane over time t:

Mz(t) = M0

[
1− exp

(
− t

T1

)]
,

Mxy(t) = M0 exp
(
− t

T2

)
,
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Figure 2.1: The exponential processes of longitudinal recovery of the Mz(t) com-
ponent (left) and transverse decay of the Mxy(t) component (right) over time once
the RF pulse is switched off.

which are depicted in Figure 2.1 (Hashemi et al., 2010). The spatial inhomogeneity
of the applied static magnetic field and the interactions between the magnetized
protons within the human body cause the phase dispersal, leading to a more rapid
decay of the transverse component and a faster reduction of the acquired MRI signal
(Hashemi et al., 2010). Hence the observed spin-spin relaxation time, denoted as
T ∗2 , is always shorter than T2. The clinical success of MRI is derived from the fact
that different tissues (e.g., white matter, grey matter and cerebral spinal fluid) have
distinct combination of T1 and T2 time constants, and thus distinct image contrast.

The use of the spatially varying gradient magnetic field for spatial encoding is the
fundamental of spatial localization and creation of 3D volumes with the MRI tech-
nique. The details of “spatial encoding”, the process of how spatial information is
induced in resonance properties of the object and subsequently reconstructed, are
involved; see Weishaupt et al. (2006); Hashemi et al. (2010) for a detailed descrip-
tion. In brief, linearly-varying gradient fields are controlled and applied along the
direction of x, y and z axes separately, which results in distinct resonance frequen-
cies for different locations in the 3D space. The Fourier transform can be used to
decode the received MRI signal so as to discriminate and identify the spatial pos-
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itions associated with different resonance frequencies based on Equation (2.1). In
the longitudinal direction, an 1D RF excitation pulse is applied for the separation
and selection of different brain slices. For each longitudinal slice, the employment
of frequency encoding and phase encoding for the adjunction of two gradient fields
on the x and y axes respectively makes the localization of spatial positions on the
2D transverse xy plane feasible by converting the MRI data into the corresponding
spectrum. The phase encoding on the y axis requires repetitive excitations of the
selected slice for each phase difference, which is often time-consuming, and thus a
fast MRI technique of echo planar imaging (EPI), proposed in 1977 by Mansfield
(Mansfield, 1977), is commonly used, involving a single RF excitation pulse to obtain
all information of spatial encoding.

2.1.2 Hemodynamic Response

The fMRI technique, as a specialized form of MRI, was developed to indirectly
measure and image the neural activity caused by task performance or stimulus with
the accompanying hemodynamic response. A number of studies have demonstrated
there exists a linear relationship between neural activity and hemodynamic response
(Logothetis, 2003). The procedure of fMRI is based on the different magnetic sus-
ceptibility of oxyhemoglobin and deoxyhemoglobin, and the changing concentration
of deoxyhemoglobin along with the blood flow, volume and oxygenation change in
response to the neural activity. Figure 2.2 illustrates the hemodynamic response
corresponding to the neural activation after a stimulus onset. When the neurons
in a brain area are activated, they require more glucose and oxygen, and thus an
increase of local cerebral blood flow and blood volume occurs in order to satisfy the
excess demand of energy consumption in this active brain region. After a delay of
around 1–5 seconds, a more rapid oxygen release can normally be seen in this active
area than the rest areas with a initial dip, which is followed by an overshoot of the
MRI signal. This process is called hemodynamic response, which leads to the local
raise and drop in the relative concentration of oxyhemoglobin and deoxyhemoglobin
in veins respectively during activation even if the active neurons consume more oxy-
gen by altering oxyhemoglobin to deoxyhemoglobin. The magnetic properties of
oxyhemoglobin and deoxyhemoglobin vary since the oxyhemoglobin is diamagnetic
and the deoxyhemoglobin is paramagnetic, and the difference in magnetic susceptib-
ility between oxyhemoglobin and deoxyhemoglobin gives rise to the magnetic signal
variation for MRI detection and allows the spatial localization and functional map-
ping of the activated brain region. After the activation, the received signal falls
immediately and returns to the original level or the baseline, which is generally fol-
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Figure 2.2: With the stimulus onset, the hemodynamic response corresponding to
neural activity starts with a initial dip and then is followed by an overshoot of the
MRI signal. After neural activation, a post-stimuli undershoot below the baseline
can be seen after a rapid decline in MRI signal.

lowed by a post-stimuli undershoot below the baseline. In 1990, Ogawa et al. (1990)
firstly described that the changes in blood flow oxygenation level corresponding to
the neural activation can be used for the functional brain image generation. This
imaging approach is called BOLD contrast, which is sensitive to the effects of hemo-
dynamic response and has been widely applied in many fields. The predicted BOLD
time series, which include a large number of images acquired in a temporal order,
can be modeled and obtained by convolving the predicted neural activity curve
based on the experimental design with a canonical hemodynamic response function
(HRF), where a good match between the predicted and observed response implies
the activation is related to the task or stimuli.

2.2 Pre-processing of fMRI Data

The pre-processing procedure, an essential part of neuroimaging data analysis, gen-
erally includes an ordered sequence of individual image and signal processing steps,
which varies between different software packages. The raw fMRI BOLD time series
from the MRI scanner are quite variable with fairly low functional signal-to-noise
ratio (SNR) and require pre-processing to prepare the right data prior to statistical
analysis. Pre-processing attempts to reduce the noise within the data caused by ab-
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normalities and artifacts from the scanner or experimental subject and to correct for
the variability of no interest from the data unrelated with the task. Pre-processing
also assists us in preparing the data to meet the assumptions needed in the later
analysis (Poldrack et al., 2011).

Although the subjects are requested to avoid moving their head during the exper-
iment, in practice some involuntary head motion is unavoidable. Even small head
motions can corrupt the activation-related BOLD signal changes, and thus the pre-
processing step of image realignment is requisite for motion correction by realigning
each fMRI volume to a selected common reference. In addition, there is a consid-
erable variation between individuals in brain size and shape. The pre-processing
step known as spatial normalization consists of warping each individual’s brain into
a common reference space, and allowing for the examination of fMRI BOLD sig-
nal changes across individuals within a group or between groups. One commonly
used reference brain space is the Talairach atlas based on a single subject, where
certain landmarks are used to transform each brain into a common pose and size;
another is the MNI atlas, based on a population of subjects. Other artifacts and
distortions induced by various reasons, such as spin-history changes, RF interfer-
ence, inhomogenous magnetic field, physiological cardiac and respiratory pulsations,
and instrumental instability, can be similarly dealt with by the corresponding pre-
processing methods (e.g., slice timing correction and image reconstruction). The
final pre-processing step is usually spatial smoothing. The commonly used method
of Gaussian smoothing blurs the images with a Gaussian kernel function for the pur-
pose of removing the isolated points of noise in the image with improved SNR, and
compensating the imperfect spatial normalization. Another motivation for smooth-
ing is to improve the Gaussian behaviour, due to the averaging of the convolution.

2.3 Statistical Modeling of fMRI Data

After obtaining the pre-processed fMRI BOLD time series, the statistical analysis
proceeds with the intra-subject modeling, which assesses the single-subject data for
the evidence against the null hypothesis of no task- or stimulus-related effects, and
then generates the statistic output image for each subject. This intra-subject model
can also be embedded in the group model to form a single model investigating all
subjects simultaneously for longitudinal data analysis, but normally, it would be
more intuitive and more efficient to separate this single statistical model into two
parts: first level or intra-subject modeling, and group level or between-subject mod-
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eling, and extract the information needed from the first level to yield the group data.

For each voxel, the first-level or intra-subject modeling is to build and fit the general
linear model (GLM) to a single subject’s fMRI BOLD time series with one scan per
timepoint (Frackowiak et al., 2004). Assume that the sample size is n. The first-
level GLM of subject i (i = 1, . . . , n) for a particular voxel can be described in a
matrix form as follows:

Yi = Xiβi + εi, εi ∼ N(0,Vi),

where Yi is an si × 1 vector of BOLD time series, Xi is an si × pi design matrix
with the use of the predicted hemodynamic response to each task or stimulus as a
regressor, βi is the unknown time-invariant pi × 1 regression parameter vector (or
effect sizes for all tasks or stimuli), εi is the within-subject random error, and Vi

is the within-subject covariance matrix (Beckmann et al., 2003; Frackowiak et al.,
2004; Muford and Nichols, 2006). Here, si denotes the number of scans for subject
i, which can vary between subjects, and pi specifies the number of explanatory
variables related to the tasks or stimuli according to the experimental design. Denote
the overall voxel-wise output statistic values for the first-level inference as a vector
ϕ = (ϕ1,ϕ2, . . . ,ϕn)T from these n subjects after ignoring the voxel index. Here ϕ
consists of all the information of interest extracted from the first-level inference and
its element ϕi (i = 1, . . . , n) can be true values of the parameter vector (ϕi = βi),
estimates of the parameter vector (ϕi = β̂i), contrast (ϕi = cTβi), or contrast
estimate (ϕi = cTβ̂i), where the contrast coefficient vector c is pre-defined according
to the experimental requirement. The matrix form of group-level or between-subject
GLM for a specified voxel is

ϕ = Gθ + η, η ∼ N(0,M),

where G is the (
∑n
i=1 pi) × p group-level design matrix, involving subject-specific

covariates (e.g., age and gender), θ is a p-vector of the p unknown between-subject
regression coefficients, η is a (

∑n
i=1 pi) × 1 vector specifying the between-subject

random error, and M represents the between-subject covariance matrix.

If the summarized statistic of the information from first-level inference is simply the
true parameter values βi (i = 1, . . . , n) for subject i, then the group data ϕ can
be written as β = (β1,β2, . . . ,βn)T, and the integration of the intra-subject and
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between-subject models provides a single model below:

Y = XGθ + γ, γ = Xη + ε ∼ N(0,XMXT + V), (2.2)

where

Y =


Y1

Y2
...

Yn

 , X =


X1 0 · · · 0
0 X2 · · · 0
...

... . . . ...
0 0 · · · Xn

 , ε =


ε1

ε2
...
εn

 ,

and the covariance matrix V is a block-diagonal matrix with the block Vi, as pre-
viously mentioned, specified as the within-subject covariance matrix for subject i
(Beckmann et al., 2003).

As the true within-subject parameter values (effect sizes) are unknown in practice,
the group data ϕ can be derived as the estimated parameter values from first-level
inference, the contrast estimate (defined as a linear combination of the parameter
estimates), or the contrast-related test statistic value using t-test or F-test, e.g.,
ϕi = cTβ̂i for some pi-vector β̂i. The formation of the group data is based on the
experimental protocol, and the structure of between-subject covariance matrix can
be distinct for different sample formations. For example, when we consider the single
model (2.2), it can be equally separated into two levels and the group data is the
unknown first-level parameter vector β. We consider adapting the generalized least
squares parameter estimate β̂ as the group data instead of the unknown parameter
vector. In this case, the combination of the separated intra-subject and between-
subject models can be equivalent to the single model (2.2) in respect of parameter
estimation only if the group-level GLM is constructed as

β̂ = Gθ + η̃, η̃ ∼ N(0, M̃),

where M̃ = M + (XTV−1X)−1 (Beckmann et al., 2003). When the task-related or
stimulus-response brain activation is investigated, different types of events including
various tasks (or stimuli) and the rest baseline are sequentially designed, and the
observed single subject’s data is compared against our prediction for the whole
time series based on the convolution of HRF and neural event timings (activation
patterns). If the within-subject contrast estimates from all subjects are treated as
the group data and written in a vector notation as

ϕ =
(
cTβ̂1, cTβ̂2, . . . , cTβ̂n

)T
,
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ϕ is also normally distributed as each of its element ϕi = cTβ̂i (i = 1, . . . , n) follows
a Gaussian distribution, where the variance for ϕi is

Var(ϕi) = cTCov(β̂i)c,

and then the covariance matrix of ϕ can be correspondingly constructed with this
equation (Frackowiak et al., 2004).

2.4 Heritability and Twin Studies

Heritability can be interpreted as the proportion of phenotypic variation explained
by a single genetic marker (Filippini et al., 2008) or the entire genome (Stein et al.,
2010). In quantitative genetics, the phenotypic variance of an observable trait, de-
noted as σ2

P, can be seen as the sum of independent genetic (σ2
G) and environmental

(σ2
E) contributions (Falconer and Mackay, 1996), as per

σ2
P = σ2

G + σ2
E.

The heritability in the broad sense measures the overall genetic influence σ2
G on a

phenotypic trait:

H2 = σ2
G
σ2
P
,

where H2 represents the broad-sense heritability.

The total genetic variation is comprised of additive and non-additive genetic factors.
The additive genetic factor is influenced by the linear addition of the independent
genes, or more technically, allelic contributions at different gene loci, while the non-
additive genetic effect refers to the influence of the interactions among alleles within
or between gene loci, such as dominance and epistasis effects. The heritability in
the narrow sense is defined as the proportion of phenotypic variation accounted for
by the additive genetic effect (σ2

A):

h2 = σ2
A
σ2
P
,

where h2 denotes the narrow-sense heritability.

The additive genetic variation is usually of more interest because the additive factor
is due to the sum of mean effects of the alleles at a particular locus or at multiple
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trait-related loci, and only this additive genetic effect can be passed down from
one generation to the next. Hence we will follow the typical convention, and use
the term “heritability” to refer to narrow-sense heritability unless otherwise noted.
Heritability of a particular trait can vary between 0 and 1, where a heritability of
0 means that there are no additive genetic effects at all, while a heritability of 1
implies the additive genetic factor completely explains this trait.

There are generally two types of twins, identical or monozygotic (MZ) twins and
fraternal or dizygotic (DZ) twins. MZ twins have exactly identical genes and DZ
twins share 50% genes on average, which leads to the sharing of additive genetic
effects. Even in the absence of a genetic influence on the response, it is possible that
twins are similar since each has been raised in the same family environment. This
gives rise to the common environmental factor, which induces the covariance within
twin pairs regardless of MZ or DZ type. Finally there is an independent unique er-
ror, corresponding to the usual independent and identically distributed (i.i.d.) noise
corrupting the measurements.

Therefore the phenotypic variance within a population is assumed to be homogen-
eous and can be partitioned into three components:

σ2 = A+ C + E,

where σ2 = σ2
P denotes the phenotypic variation (subsequently, we suppress the sub-

script “P”), and A, C and E represent the additive genetic, common environmental
and unique environmental components of the phenotypic variance. The so-called
ACE modeling in twin studies is based on this variance decomposition (Lee et al.,
2010). In the ACE model, then, the narrow-sense heritability is

h2 = A

A+ C + E
, (2.3)

and the modeling of heritability consists of the modelling of these three variance
components.

2.5 Inference on Heritability

This section concentrates on the introduction of the commonly used terminology
on heritability inference, the permutation approach for constructing the empirical
distribution of test statistic and computing the permutation-based p-value, and
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the bootstrap procedure for calculating bootstrapping confidence intervals for the
statistic or parameter of interest.

2.5.1 Terminology on Heritability Analysis

Hypothesis testing is a fundamental statistical tool. It is based on some statement of
the population under a default state, referred to as the null hypothesis and denoted
as H0; the test then measures the evidence against this hypothesis, allowing one to
(possibly) reject H0 in favor of an alternate hypothesis H1, the negation of H0. The
evidence against H0 is measured with a test statistic, which is a numerical summary
extracting the interested information from the sample for comparison purposes, in
order to distinguish the null hypothesis in favor of the alternative hypothesis. For a
single test, the result of rejecting the null hypothesis at a pre-determined significance
level α (e.g., α = 0.05), which gives rise to the critical value that is a threshold for
the test statistic deciding the rejection of the null hypothesis, is called statistically
significant and is unlikely to have happened by chance. The rejection of the null
hypothesis at a given level α can also be determined by the p-value, which is defined
as the conditional probability of obtaining the test statistic at least as extreme as
the observed value under the null hypothesis, and the result of p-value less than the
significance level indicates that the observed result is not arisen by chance and the
null hypothesis should be rejected.

Conventionally, the sampling distribution of the test statistic assuming the null
hypothesis is true, which is called null distribution, is exactly or approximately
computable. When the null distribution is not tractable or accurate, permutation
inference can be utilised (described below). When testing a null hypothesis, we
may arrive at a wrong decision if the result does not correspond with the reality.
If the true null hypothesis is incorrectly rejected at a given level α, i.e., the value
of the test statistic lies within the rejection region: [Tα,∞] for a one-tailed test or
[−∞,T 1

2α
] ∪ [T1− 1

2α
,∞] for a two-tailed test, where Tα is the α-level critical value,

or the corresponding p-value is smaller than α while the null hypothesis is actually
true, we call a type I error or false positive occurs; if we fail to reject the false null
hypothesis, i.e., the value of the test statistic is outside the rejection region or the
corresponding p-value exceeds the level α while the null hypothesis is invalid, we
call a type II error or false negative occurs. The occurrence of both type I and
type II errors should be controlled, but there is a trade-off between the probability
of making these two types of errors (type I and type II error rates) since reducing
one type of error generally induces an increase in another for the same sample size.
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Type I error rate, also called the false positive rate (FPR), relates to the proportion
of correct identification of true negatives (or specificity) of a test and type II error
rate is related to the statistical power (or sensitivity) of the test. The only way to
reduce both error rates without improving the test is to increase the sample size;
while for a given sample, one of these error rates is constrained by a given level α,
and another is minimized by improving the sensitivity or specificity of the test.

Until now, we only focus on assessing a single particular test, and now we will
consider testing multiple hypotheses simultaneously. When there are multiple, say
m, comparisons in total to be performed, there is no longer a unique measure of the
false positive risk. The most commonly used measure, the family-wise error rate
(FWER) is defined as the probability of any false positives occurring among the m
tests. If all the tests were independent, and a significance level of α was used for
each test, the FWER would be controlled at level αFWER,

αFWER = 1− (1− α)m.

Another measure, the false discovery rate (FDR) is the expected proportion of false
discoveries among all discoveries (i.e., the expected proportion of false positives
among all rejections of the null hypothesis), resulting in a higher statistical sensitiv-
ity for the FDR control than the FWE procedure at the expense of increased FPR.
The procedure of FDR control works by correcting and adjusting the p-value for
each test, which was introduced explicitly by Benjamini and Hochberg (Benjamini
and Hochberg, 1995). For thosem tests, denote the derived p-values in an ascending
order as

p(1) ≤ · · · ≤ p(m),

and denote the corresponding null hypotheses as H(i)
0 (i = 1, . . . ,m). If imax is the

largest index i satisfying
p(i) ≤

i

mc(m)α,

where α is a fixed threshold within [0, 1] and c(m) = 1 or c(m) =
∑m
i=1

1
i , then

all hypotheses H(i)
0 (i = 1, . . . , imax) should be rejected at level α, and the FDR-

corrected p-values are defined and calculated as

q(i) =
p(i)m

i
c(m).

The choice of c(m) is based on the correlation assumption for the tests: c(m) = 1
is more sensitive and valid when independence or positive dependence is assumed;
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c(m) =
∑m
i=1

1
i is valid under any situations (Benjamini and Yekutieli, 2001). As q(i)

is not a monotonic function of p(i), the FDR-adjusted p-values are further defined
as

q̃(i) = min
(
q(i), . . . , q(m)

)
to ensure the monotonicity (Yekutieli and Benjamini, 1999). For the imaging data,
the assumption of positive dependence is reasonable, and thus c(m) = 1 should be
chosen with more sensitivity.

2.5.2 Permutation Test and FWE Correction

Permutation test is a non-parametric technique that makes minimal assumptions
about the data. With few simple assumptions like exchangeability of the observed
data under the null hypothesis, the non-parametric permutation test is conceptu-
ally simple and theoretically intuitive (Nichols and Hayasaka, 2003; Nichols and
Holmes, 2001). When the null hypothesis is true, the data will exhibit a form of
exchangeability, allowing permutation, re-fitting the model and computation of test
statistic. With multiple permutations, an empirical null distribution can be con-
structed and critical thresholds and p-values computed. Currently this approach
has become well-known and widespread gradually owing to the recent development
of inexpensive and powerful computers.

Applying variance component inference approach voxel-by-voxel yields a test stat-
istic image. For each voxel, if the null hypothesis of no heritability, H0 : h2 = 0,
is assumed to be true, the MZ and DZ twin pairs become exchangeable, allowing
P =

((nMZ+nDZ)/2
nMZ/2

)
possible permutations in total. Normally a small-to-medium

sample gives a comparatively large P, so an approximate, or Monte Carlo permuta-
tion test can be exploited instead with a smaller number of permutations, say N,
based on a random subsample of all permutations (Nichols and Holmes, 2001).

In order to resolve the multiple comparisons problem and strictly control the false
positives over the whole volume of the ROI’s simultaneously, permutation test can
be employed to implement the procedure of FWE correction. Type I errors for
all these comparisons are under strong control, and FWE-corrected p-values are
computed by considering the maximum test statistics (Nichols and Holmes, 2001).
With a permutation test, we obtain FWE-corrected p-values on peak height (voxel-
wise test statistic value) for voxel-wise inference, and cluster size (number of voxels
involved in a cluster after thresholding) and cluster mass (sum of voxel-wise test
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statistic values from all voxels within a cluster after thresholding) for cluster-level
inference. Hence, this permutation approach can be further separated into two
parts: voxel-wise single threshold test and cluster-wise suprathreshold tests.

Voxel-wise Single Threshold Test

Along with the single threshold test, the omnibus null hypothesis of no heritab-
ility for all voxels over the ROI’s is rejected if any voxel-wise test statistic value
exceeds a given critical threshold, or equivalently, if the maximum voxel-wise test
statistic value exceeds this threshold. The critical threshold is pre-defined with the
significance level α. By permuting the labels of MZ and DZ for twin pairs and
computing the test statistic image for each permutation, the empirical distribution
of this maximum test statistic can be constructed using the maximum test statistic
values obtained from all permutations, and the critical threshold is the c+ 1 largest
value of the empirical distribution, where c = bαNc (Nichols and Holmes, 2001).

The procedure of single threshold test is detailed as follows. For permutation p (p =
1, . . . ,N), the maximum test statistic over the ROI’s is denoted as Tmax

p . The
original (unpermuted) data and the other N−1 relabelings together provide totally N
maximum test statistic values, which can be used to create the empirical distribution
of this maximum test statistic, and then provide the α-level critical threshold as the
c + 1 = bαNc + 1 largest value, denoted as Tα. If the unpermuted maximum
test statistic value is greater than Tα, the omnibus hypothesis can be rejected.
The corresponding FWE-corrected p-value, written as pFWE, for each voxel can
be calculated as the proportion of these N maximum test statistic values in the
constructed permutation-based empirical distribution that are not smaller than the
original voxel-wise test statistic value (T0):

pFWE =
#{Tmax

p ≥ T0}
N .

Cluster-wise Suprathreshold Tests

The significance of suprathreshold cluster tests can be assessed by the spatially
informed cluster statistics, such as cluster size and cluster mass. A pre-selected
cluster-forming threshold, which can be expressed as a p-value using the sampling
distribution of the test statistic, is given and applied to the derived test statistic
image to threshold test statistic values and form suprathreshold clusters, which are
brain regions of connecting voxels with the test statistic values above that cluster-
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forming threshold. Accordingly, the suprathreshold cluster size and suprathreshold
cluster mass are defined as the number of voxels in a suprathreshold cluster and the
sum of voxel-wise test statistic values within a suprathreshold cluster respectively.
Theoretically similar to the single threshold test, suprathreshold cluster tests require
constructing the empirical distribution of the maximum suprathreshold cluster stat-
istics with permutations. The pre-determined significance level α also provides the
critical threshold to be the c + 1 = bαNc + 1 largest member within the empirical
distribution.

The mechanics of the cluster-wise suprathreshold tests are described as follows.
For permutation p (p = 1, . . . ,N), the maximum suprathreshold cluster size (or
cluster mass) is denoted as Kmax

p (or Mmax
p ). An original data and the other N− 1

relabelings (permuted data vectors) are analyzed, and the resulting N measures
of maximum suprathreshold cluster size (or cluster mass) are sorted to form the
empirical distribution of this cluster statistic. The critical threshold at level α can
be calculated as the c+ 1 = bαNc+ 1 largest member of the empirical distribution,
denoted as Kα (or Mα). Significance of the test is determined by whether or not the
original maximum suprathreshold cluster size (or cluster mass) is greater than Kα (or
Mα). The associated FWE-corrected p-value, denoted as pFWE, for each individual
suprathreshold cluster on the original test statistic image can be computed as the
proportion of these N measures of maximum suprathreshold cluster size (or cluster
mass) within the empirical distribution greater than or equal to the observed size
(or mass) of that cluster (Nichols and Holmes, 2001), i.e.,

pFWE =
#{Kmax

p ≥ K0}
N ,

pFWE =
#{Mmax

p ≥ M0}
N ,

for cluster statistics of size and mass respectively.

2.5.3 Bootstrapping Confidence Interval

While permutation is a straightforward procedure to obtain p-values, it is difficult to
obtain confidence intervals. Hence we use bootstrapping technique for constructing
confidence intervals. The bootstrapping confidence intervals for unknown popula-
tion parameters are conceptually simple and based on a simple idea of resampling
the data with replacement from the observed sample. For each original sample, the
model is re-fitted to each bootstrap sample, and the sampling distribution is ap-
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proximated by its bootstrap resampling distribution (for a sufficiently large number
of bootstrap replicates, e.g., B = 1000). A so-called balanced bootstrap algorithm
is generally preferable and can be performed to supply the required B bootstrap
replicates, where each observation from the original sample is equally used B times
in all bootstrap samples (Gleason, 1988).

For twin studies, the bootstrap resampling is stratified by separating the original
sample data into a MZ group, a DZ group and a singleton group, and then drawing
bootstrap samples individually from these three groups with the same size and struc-
ture as the original sample; specifically, twins are always sampled in pairs within MZ
or DZ group. For each bootstrap sample, the evaluated statistic is denoted as Tb.
The empirical bootstrap distribution of the statistic of interest is used to compute
the confidence intervals via the standard error or percentiles (DiCiccio and Efron,
1996).

In this section, we will propose a joint method of standard bootstrap, percentile
bootstrap and bias-corrected percentile bootstrap for the construction of bootstrap-
ping confidence intervals (CIs).

The standard bootstrap 100(1− α)% CI is defined as[
T0 − z1− 1

2α
sb, T0 + z1− 1

2α
sb
]
,

where T0 is the observed value of the statistic from the original data, z1− 1
2α

is the
100(1− 1

2α)% percentile of the standard normal distribution, and sb is the bootstrap
sample standard deviation. The standard bootstrap does not perform well when the
data is highly non-normal. The percentile bootstrap CI uses the empirical percentiles
of the bootstrap distribution with the 100(1− α)% interval of[

Tb
1
2α
, Tb

1− 1
2α

]
,

where Tb
1
2α

and Tb
1− 1

2α
denote the 100(1

2α)% and 100(1 − 1
2α)% percentiles of the

bootstrap distribution respectively. While the percentile CI is intuitive, it too can
have poor coverage. The bias-corrected percentile bootstrap CI adjusts the bias in
bootstrap distribution for a better approximation. The bias-adjusted 100(1 − α)%
interval is: [

Φ(2z0 − z1− 1
2α

), Φ(2z0 + z1− 1
2α

)
]
,
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where
z0 = Φ−1

[#{Tb ≤ T0}
B + 1

]
,

and Φ(·) is the cumulative distribution function of the standard normal distribution.

We found that none of these 3 methods provided accurate coverage in the context of
heritability inference, so we created a joint method based on the union of intervals
from these methods. Denote the interval using our joint method as [Tb

L, Tb
U]. The

lower and upper bounds of this interval are characterized as the minimum of the
lower bounds of the above three intervals and the maximum of the upper bounds of
those intervals respectively:

Tb
L = min

(
T0 − z1− 1

2α
sb, Tb

1
2α
, Φ(2z0 − z1− 1

2α
)
)
,

Tb
U = max

(
T0 + z1− 1

2α
sb, Tb

1− 1
2α
, Φ(2z0 + z1− 1

2α
)
)
.

In simulation evaluations we found this joint bootstrap method has a favorable per-
formance, generating intervals with accurate coverage probability and reasonable
length.

There exists a close correspondence between hypothesis tests and confidence inter-
vals. If the plausible value of the statistic of interest, specified by the null hypothesis,
is not included within the constructed confidence interval at a given level α, it sup-
plies an evidence, provided by the confidence interval, against the null hypothesis
at level α. Thus, the confidence interval can also be treated as a complement of
hypothesis testing aiding in the assessment of the null hypothesis.

2.5.4 Summary Statistics

The test statistic for hypothesis testing is a quantity derived from the sample in or-
der to measure the compatibility between the null hypothesis and the sample data,
and determine whether this null hypothesis should be rejected or not. Test statistics
developed from a likelihood ratio are optimally powerful according to the Neyman-
Pearson lemma, under certain conditions. Other types of test statistics, however,
may also be useful even if not theoretically optimal. A statistic that is interpretable
and captures the differences between the observed data and the null-hypothesized
models may indeed be useful.

Conventionally, hypothesis testing utilizes test statistics whose exact or approximate
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theoretical null distribution is known under certain strong assumptions of the data
such as normality. The permutation test, nevertheless, has an important property
of allowing the use of non-standard test statistics with unknown or complicated
null distribution (Winkler et al., 2014). Owing to this key feature of permutation
test, we also considered employing the useful whole-image summary statistics as test
statistics in addition to cluster statistics for the analysis of the imaging data: the
unweighted (h2) and variance-weighted (wh2) averages of all voxel-wise heritability
estimates, the second (Q2, the median) and third (Q3) quartiles of these estimates,
mean of those heritability estimates greater than Q2 (h2(Q2)), and mean of those
heritability estimates greater than Q3 (h2(Q3)). These statistics emphasize the right
“tail” (e.g., we omit the first quartile Q1), as exact-zero h2 values make interpreting
the left “tail” difficult. If we assume that there are totally K in-mask voxels within
the ROI’s, these mean statistics are defined as follows:

h2 = 1
K

K∑
r=1

h2
r ,

wh2 = 1
K

K∑
r=1

(
σ2
r

/
σ2
)
h2
r , σ2 = 1

K

K∑
r=1

σ2
r ,

h2(Q2) = #{h2
r > Q2}
K

,

h2(Q3) = #{h2
r > Q3}
K

,

where σ2
r and h2

r denote the voxel-wise phenotypic variance and the corresponding
heritability for voxel r (r = 1, . . . ,K).

The permutation inference can be implemented rapidly using these summary stat-
istics, their empirical null distribution can be formed by permutation test, and the
corresponding permutation-based p-values can be obtained using these null distri-
butions. The fast implementation of these summary statistics provides a tool for
exploring the whole brain quickly and a significant result with p-values less than the
given level α implies that there should be some significantly heritable brain regions.
Moreover, the utilization of bootstrap procedure can provide the bootstrapping con-
fidence intervals for these summary statistics, which can also act as the complement
to assessing the corresponding hypothesis test.
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Chapter 3

Mass-univariate Heritability
Inference

This chapter begins with the construction of an univariate model describing the
covariance structure of the data at each voxel. At each voxel, the variance component
parameters are estimated, and then heritability estimates obtained. We briefly
review those existing heritability estimation methods, and then discuss our newly
proposed methods for heritability estimation in detail. In this chapter we only
consider a sample comprised of twins and singletons (individuals unrelated to any
other subjects).

3.1 The General Linear Model

Suppose that there are 1
2nMZ > 0 MZ twin pairs (nMZ individuals), 1

2nDZ > 0 DZ
twin pairs (nDZ individuals), and nS ≥ 0 singletons (unrelated subjects), and in
total n = nMZ + nDZ + nS participants in the experiment. For a particular voxel
r ∈ {1, . . . ,K}, the column vector Y(k)

r is used to denote the observations from all
these n participants for the phenotype k ∈ {1, . . . , J}:

Y(k)
r =

(
Y(k)

1,1,r , Y(k)
2,1,r , . . . ,

Y(k)
nMZ+1, 1

2nMZ+1,r , Y(k)
nMZ+2, 1

2nMZ+1,r , . . . ,

Y(k)
nMZ+nDZ+1,0,r , Y(k)

nMZ+nDZ+2,0,r , . . .
)T
.

That is, Y(k)
i,j,r represents the observation for voxel r from subject i (twin or singleton,

i = 1, . . . , n), where j (j = 0, 1, . . . , 1
2(nMZ + nDZ)) is the index of twin pair with

j = 0 for singletons. While somewhat cumbersome, we need this detailed notation
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for later expressions. Note that we always arrange phenotypic data elements so that
twin pairs are adjacent, and so that all MZ twins come first, then DZ twins and
then finally singletons.

Some types of brain imaging data are directly measured, like gray matter density,
producing one image per subject. However fMRI, in distinction, is a derived measure
based on hundreds of scans per subject to estimate blood flow change. As reviewed
in Section 2.3, for each subject, an intra-subject model is fitted to the time series
for each of the voxels, producing an image of BOLD effect magnitude (Frackowiak
et al., 2004). If an fMRI phenotype is used we presume that a BOLD effect contrast
has been computed, one measure per subject, per voxel. Thus, for voxel r, the
group GLM adopted in genetic variance components analysis for phenotype k is
constructed in a matrix form as

Y(k) = X(k)β(k) + ε(k), (3.1)

where X(k) is the n × p design matrix including an intercept and p − 1 covariates
(Typical covariates would include age, gender, or other inter-subject effects.), ε(k) is
the error vector assumed to be normally distributed, written as ε(k) ∼ N(0,V(k)),
and we have suppressed the subscript r, as we will fit the same form of model at
each voxel; the definition of the variance-covariance matrix V(k) is detailed below.
In this chapter, the univariate case is considered, therefore the superscript index k
for varying phenotypes can also be suppressed.

To simplify the description of the variance components, we introduce a subject type
indicator function T : {1, . . . , n} → {MZ,DZ, S} that maps a subject index i to its
corresponding subject type MZ, DZ or S. For the data arrangement we prescribe,
this mapping is

T (i) =


MZ, if i = 1, . . . , nMZ,

DZ, if i = nMZ + 1, . . . , nMZ + nDZ,

S, otherwise.

The ACE model (see Section 2.4) gives the covariance for MZ twin pair j (j =
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1, . . . , 1
2nMZ) as

CovMZ = Cov

Y2j−1,j

Y2j,j



=
(
A+ C + E A+ C

A+ C A+ C + E

)
, (3.2)

where A, C and E denote the additive genetic, common environmental, and unique
error components, respectively. Correspondingly, the covariance of DZ twin pair
j (j = 1

2nMZ + 1, . . . , 1
2(nMZ + nDZ)) is

CovDZ = Cov

Y2j−1,j

Y2j,j



=
(
A+ C + E 1

2A+ C
1
2A+ C A+ C + E

)
. (3.3)

Note how CovMZ (3.2) has a covariance of A + C, whereas CovDZ (3.3) has a
covariance of 1

2A+ C, reflecting how DZ twin pairs share only half of their genetic
material; both have the same term C, as a common environment equally affects
MZ and DZ twin pairs. Each singleton is unrelated with all other subjects, and
therefore a pair of subjects with at least one singleton is uncorrelated to each other.
The covariance between singleton i (i = nMZ+nDZ+1, . . . , n) and any other singleton
or twin i′ (i′ 6= i) is

CovUN = Cov

Yi,0

Yi′,j



=
(
A+ C + E 0

0 A+ C + E

)
, (3.4)

j = 0, 1, . . . , 1
2(nMZ + nDZ). Finally, individuals in different twin pairs are mutually

independent, so inter-twin covariance is also as given in Equation (3.4).

The covariance matrices for MZ twin pairs (3.2), DZ twin pairs (3.3) and unrelated
subject pairs (3.4) can be further written in a linear fashion for a general algorithm
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implementation:

CovMZ = A

(
1 1
1 1

)
+ C

(
1 1
1 1

)
+ E

(
1 0
0 1

)
, (3.5)

CovDZ = A

(
1 1

2
1
2 1

)
+ C

(
1 1
1 1

)
+ E

(
1 0
0 1

)
, (3.6)

CovUN = A

(
1 0
0 1

)
+ C

(
1 0
0 1

)
+ E

(
1 0
0 1

)
. (3.7)

If we denote ρ = (A,C,E)T as a column vector consisting of these variance com-
ponents, then we have a concise expression for the variance-covariance matrix V:

V =
3∑
l=1

ρlQl,

where Ql (l = 1, 2, 3) is a block-diagonal matrix with blocks specified in Equations
(3.5), (3.6) and (3.7), corresponding to the arrangement of MZ, DZ and singletons.
For example, if nMZ = 2, nDZ = 2, nS = 1, then

Q1 =



1 1 0 0 0
1 1 0 0 0
0 0 1 1

2 0
0 0 1

2 1 0
0 0 0 0 1


, Q2 =



1 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 1


, Q3 =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


.

3.2 Brief Review of the Existing Methods

3.2.1 Falconer’s Method

The heritability method due to Falconer (Falconer and Mackay, 1996) is based on
moment matching of intraclass correlation coefficients between MZ twins (rMZ) and
DZ twins (rDZ):

E [rMZ] = A+ C

A+ C + E
,

E [rDZ] =
1
2A+ C

A+ C + E
.
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Solving for narrow sense heritability (2.3), these equations give the Falconer’s her-
itability estimator:

ĥ2
F = 2× (rMZ − rDZ). (3.8)

This method is the earliest and simplest way to estimate the heritability (Falconer
and Mackay, 1996), but earlier work has shown that it performs worse than the
likelihood-based methods (Nichols et al., 2009).

3.2.2 Bayesian Restricted Maximum Likelihood

Compared with Falconer’s method, an implementation of restricted maximum like-
lihood (ReML) (Harville, 1977), a modified ikelihood-based estimation method by
applying the maximum-likelihood principles to the residuals (see more details in
Section 3.3.1), is embedded in the Statistical Parametric Mapping (SPM) software
1 in MATLAB. The SPM software package, including a suite of MATLAB functions
and subroutines (with some externally compiled C routines), is designed for the
brain imaging data analysis, and is freely available to the neuroimaging community.
Previous studies showed that this Bayesian ReML approach in SPM is more accur-
ate than Falconer’s method in heritability estimation, producing the estimates with
lower bias and smaller variance (Nichols et al., 2009).

SPM uses a non-standard ReML implementation, a Bayesian version of ReML, for
the estimation of variance components (hyperparameters in the hierarchical model)
with a Gaussian prior, where the log transformation can be further employed to en-
force the non-negative constraints on variance components 2. In Bayesian inference,
the parameters are treated as random variables with a Gaussian distribution, and a
linear hierarchical model for timeseries Y from all subjects can be constructed as

Y = X(1)θ(1) + ε(1),

θ(1) = X(2)θ(2) + ε(2),

where X(i) is the specified design matrix at level i, θ(i) are parameters at level i, and
the errors ε(i) at level i are distributed as N(0,C(i)

ε ). The covariance matrix C(i)
ε

can be written as C(i)
ε =

∑
j ρ

(i)
j Q(i)

j , where the hyperparameters ρ(i)
j are variance

1http://www.fil.ion.ucl.ac.uk/spm/
2For reference, the SPM user-recommended configuration for the Gaussian prior distribution of

log-hyperparameters is with hyperprior expectation hE = log(Var(Y))−1 and hyperprior covariance
hC = exp(8), both of which were shown to be preferable to other settings in simulations in terms
of estimation accuracy and model selection.
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components at level i and Q(i)
j is the corresponding basis set. This two-level model

is identical to a non-hierarchical model:

Y = X(1)X(2)θ(2) + X(1)ε(2) + ε(1),

and can be re-written as

Y = Xθ + ε(1), X = [X(1),X(1)X(2)], θ = [ε(2),θ(2)]T.

Based on the conditional probability and Bayes’ rule in probability theory, the pos-
terior density of parameters is proportional to the product of the prior density and
the likelihood function, and thus the conditional covariance Cθ|Y and conditional
expectation ηθ|Y of the posterior density are derived as

Cθ|Y = (XTC−1
ε X)−1,

ηθ|Y = Cθ|Y(XTC−1
ε Y),

where

X = [X, I]T, Y = [Y,E [θ]]T, Cε =
(

C(1)
ε 0
0 Cov(θ)

)
,

and Cov(θ(2)) =∞ if θ(2) are treated as unknown or Cov(θ(2)) = 0 if known.

The expectation-maximization (EM) algorithm is adopted to iteratively search for
the maximum likelihood estimator for the parameters and hyperparameters jointly
by maximising the ReML log-likelihood (the objective function). In general, the
EM algorithm in this Bayesian framework can be partitioned into two steps: the
E-step is to find the conditional expectation and covariance of the parameters with
fixed hyperparameters; the M-step is to update the maximum likelihood estimate of
the hyperparameters using Fisher scoring algorithm (see Section 3.3.2) by holding
the parameters fixed. For linear models under the Gaussian assumptions, the EM
scheme is equivalent to the classical ReML (Friston et al., 2002a,b).

3.2.3 Structural Equation Modeling

The freely accessible software “Mx” 3 and R package “OpenMx” 4 offer a specialized
structural equation modeling (SEM) framework to allow flexible model definition

3http://www.vcu.edu/mx/
4http://openmx.psyc.virginia.edu/
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Figure 3.1: Path diagram for the univariate ACE twin model.

and parameter estimation for variance components, both of which are commonly
used in analyzing genetic data for heritability inference. The SEM ACE model for
univariate twin data can be commonly displayed as a path diagram, shown in Figure
3.1, where the influence caused by the latent variables a, c and e can be described
by the path coefficients

√
A,
√
C and

√
E respectively (Rijsdijk and Sham, 2002).

According to path tracing rules, the covariance matrices for MZ and DZ twin pairs
are (

A+ C + E A+ C

A+ C A+ C + E

)
and

(
A+ C + E 1

2A+ C
1
2A+ C A+ C + E

)

respectively, which have the same structure as matrices (3.2) and (3.3). The good-
ness of fit of this model is also measured using the maximum likelihood criterion
(Rijsdijk and Sham, 2002). However, there exist some drawbacks of this SEM ap-
proach employed in Mx and OpenMx for the imaging data analysis. The goodness-
of-fit likelihood ratio test statistic asymptotically follows a mixture of chi-square
distributions (Self and Liang, 1987; Dominicus et al., 2006; Zhang and Lin, 2008),
but Mx incorrectly uses a single standard chi-square distribution (Rijsdijk and Sham,
2002). Also the use of these softwares requires file conversion between different soft-
wares (e.g., R and Matlab).

3.3 Frequentist Restricted Maximum Likelihood

The standard method for estimating variance components in the small sample prob-
lems is restricted maximum likelihood (ReML), which is also the default method
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for variance components analysis in most statistical packages. ReML is simply
applying maximum likelihood approach on least squares residuals. The variance
component parameters are estimated using the Fisher scoring algorithm (Jennrich
and Sampson, 1976; Harville, 1977). However, there are two issues with this numer-
ical optimization problem, having to do with non-negativity and convergence, and
thus this algorithm is further modified to both satisfy the non-negative constraint
and improve the convergence of the algorithm.

The modified algorithm includes the logarithm parameterization of variance com-
ponents and numerical optimization of the maximum likelihood function on the log
domain of parameters to keep the non-negativity constraint. A novel reparameter-
ization approach is adopted to alter the boundary of the parameter space seeking
for a better convergence rate. We also consider applying the line search method to
largely guarantee the increase of the likelihood for each iteration of the algorithm.
We call this modified algorithm “Frequentist ReML”.

3.3.1 Restricted Likelihood Maximum

Maximum likelihood estimation (MLE) is a well-known and widely used approach
to estimating unknown parameters in statistical models, which has various exten-
sions. When used in variance components inference, however, MLE produces biased
estimates since MLE fails to take into account the loss in degrees of freedom res-
ulting from estimating the nuisance fixed effect parameters (Harville, 1977), but its
estimator is asymptotically unbiased. In contrast with MLE, ReML is an alternat-
ive form of MLE, which accounts for the loss of degrees of freedom and, in general,
produces less biased variance component estimates than MLE. The ReML approach
was first proposed and introduced by Patterson and Thompson (1971), and later
reviewed and summarised by Harville (1977). Currently ReML has become the most
commonly used means of variance component analysis.

The ReML log-likelihood, after removing the constant term, is expressed as

`(ρ|Y) = −1
2
[

log |V|+ log |XTV−1X|+ (Y−Xβ̂GLS)TV−1(Y−Xβ̂GLS)
]
, (3.9)

where

β̂GLS = arg min
β

(Y−Xβ)TV−1(Y−Xβ) = (XTV−1X)−1XTV−1Y
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is the generalized least squares (GLS) estimator for β (Harville, 1977). Simplifying
Equation (3.9) and denoting R = I − X(XTV−1X)−1XTV−1 yield a simplified
expression of ReML log-likelihood:

`(ρ|Y) = −1
2
[
log |V|+ log |XTV−1X|+ YTV−1RY

]
.

The ReML estimate is obtained by maximizing this ReML log-likelihood function.
But the solution of this optimization problem is implicit and no analytical expres-
sions can be achieved, so an iterative algorithm—Fisher scoring algorithm (FSA) is
employed to numerically and iteratively approximate the optimal value.

3.3.2 Fisher Scoring Algorithm

Similar to Newton’s method, FSA is used to successively approximate the solution of
this maximization problem based on Taylor’s theorem. By substituting the observed
information matrix ∇2`(ρ|Y) with its expectation (i.e., Fisher information matrix),
FSA is defined to numerically search for the ReML estimate with zero gradient of
the ReML log-likelihood function. As the remainder of Taylor approximation tends
to zero for increasing sample size, the derived ReML estimate approximates to a
local maximum point.

Denote the gradient, observed information matrix and Fisher information matrix of
the ReML log-likelihood as

∇`(ρ|Y) =
(
∂`(ρ)
∂ρ1

,
∂`(ρ)
∂ρ2

,
∂`(ρ)
∂ρ3

)T
,

∇2`(ρ|Y) =


−∂2`(ρ)

∂ρ12 − ∂2`(ρ)
∂ρ1∂ρ2

− ∂2`(ρ)
∂ρ1∂ρ3

− ∂2`(ρ)
∂ρ2∂ρ1

−∂2`(ρ)
∂ρ22 − ∂2`(ρ)

∂ρ2∂ρ3

− ∂2`(ρ)
∂ρ3∂ρ1

− ∂2`(ρ)
∂ρ3∂ρ2

−∂2`(ρ)
∂ρ32

 ,

I(ρ|Y) = E[∇2`(ρ|Y)],

respectively. The first-order partial derivative of ReML log-likelihood with respect
to ρl (l = 1, 2, 3) is

∂`(ρ|Y)
∂ρl

= 1
2
[
YTV−1RQlV−1RY− tr(RQlV−1)

]
,

the second-order derivative of the ReML log-likelihood with respect to ρl and ρl′ (l, l′ =
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1, 2, 3) is

∂2`(ρ|Y)
∂ρl∂ρl′

= 1
2
[
tr(QlV−1RQl′V−1R)−YT(V−1RQl′V−1RQl ×

V−1R + V−1RQlV−1RQl′V−1R)Y
]
,

and the (l, l′)th element of the Fisher information matrix is derived with the expres-
sion of

{I(ρ|Y)}ll′ = 1
2tr
(
QlV−1RQl′V−1R

)
.

Thus we finally establish the recursion equation of FSA as

ρs+1 = ρs + I−1(ρs|Y)∇`(ρs|Y),

where s ≥ 0 indexes iterations.

The initial value ρ0 (starting point) is pre-defined to be the product of sample
variance and Falconer’s estimates (see Section 3.2.1). The convergence of FSA is
measured in terms of the absolute difference between the consecutive ReML log-
likelihood values: |`(ρs+1|Y)−`(ρs|Y)|, and the criterion of |`(ρs+1|Y)−`(ρs|Y)| <
10−4 is used to determine when to stop iterations. Under mild regularity conditions,
the inverse matrix of Fisher information is the asymptotic variance of the ReML
estimator for large samples.

3.3.3 Algorithm Modifications

Under certain regularity conditions, FSA converges in probability to the local max-
imum for convex log-likelihood (Osborne, 1992), however, the ReML log-likelihood
can be non-convex and FSA may not converge (Mishchenko et al., 2008). In Figure
3.2, we illustrate a simulated example of the quadric-shaped ReML log-likelihood
function with the true ACE parameter setting of (A,C,E)T = (0, 0, 1)T and total
variance σ2 = 1, which shows the ReML log-likelihood values for valid parameter set-
tings in the ACE parameter space of {(A,C,E)T|A,C,E ∈ [0, 1] and A+C+E = 1}.
Nevertheless, the estimate of the parameter vector can jump outside the parameter
space and the ReML log-likelihood measures may not keep non-positive (i.e., the
ReML likelihood values are not between 0 and 1), leading to the divergence or the
inaccuracy of an algorithm. As a variant of Newton’s method, FSA is also sensit-
ive to the starting point chosen; FSA can fail to converge if the given initial value
ρ0 is poor. For instance, when the starting point is near or at the boundary of
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the parameter space, FSA is frequent to finally arrive at a point estimate outside
the parameter space. Therefore, some possible modifications of the algorithm are
proposed below, attempting to solve the convergence problems.

Line Search

The line search method can be applied and embedded in FSA in order to make sure
an adequate increase in the objective function is achieved for each iteration. For the
iteration s,

ρs+1 = ρs + αsps,

where ps = I−1(ρs|Y)∇`(ρs|Y) denotes a decent search direction of the objective
function, and the step length αs is employed so as to achieve certain progress in
the objective values, i.e., to ensure an increase in the ReML log-likelihood. The
optimised choice of step length would be the exact step length obtained by solving
the equation ∇`(ρs + αsps|Y) = 0 with fixed ρs and ps, but the full analytical
expression of the maximum point is unachievable in this case. As the exact step
length is impossible to derive, the inexact step length must be used.

An acceptable inexact step length increases the ReML log-likelihood sufficiently,
which can be determined by the Wolfe conditions (Wolfe, 1969, 1971). If αs > 0
satisfies the following two inequalities

`(ρs + αsps|Y) ≥ `(ρs|Y) + c1αspsT∇`(ρs|Y),

pT
s∇`(ρs + αsps|Y) ≤ c2psT∇`(ρs|Y),

where 0 < c1 < c2 < 1, then αs is the optimal step size satisfying the Wolfe
conditions. In practice, we use the recommended values of c1 = 10−4 and c2 = 0.9
(Nocedal and Wright, 1999). For each iteration, the first inequality guarantees a
sufficient increase of the objective function is obtained, and the second ensures that
αs sufficiently decreases the gradient of ReML log-likelihood—∇`(ρs|Y), so that it
converges to zero (Wolfe, 1969, 1971). Our use of the backtracking rule for line
search starts with an admissible choice of αs = 1, and repeats halving the step
length with αs = 1

2αs until the Wolfe conditions are satisfied.

Logarithm Parameterization

The FSA algorithm can fail for some starting points and the reason is the constraints
on the parameters, e.g., non-negativity. In order to guarantee that the variance
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(a) ReML log-likelihood values on 3D surface.
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(b) ReML log-likelihood values projected on 2D AC
plane. The true parameter setting is marked in a red
circle “o” and the parameters with the largest ReML
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Figure 3.2: An example of the ReML log-likelihood values for all valid parameters in
the parameter space on (a) 3D surface and (b) 2D AC plane. Here the sample size
is n = 100 with nMZ = 50 MZ twins and nDZ = 50 DZ twins. The true parameter
setting is (A,C,E)T = (0, 0, 1)T with the total variance of σ2 = 1.
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components are non-negative for each iteration, we further consider a logarithm
parameterization of these variance components: ρ = exp(λ), and the variance-
covariance matrix V is written as

V =
3∑
l=1

exp(λl)Ql.

The numerical optimization of the ReML log-likelihood in terms of this log trans-
formed parameter vector λ is implemented in the log domain. More specifically, the
starting value of the variance components ρ is converted to provide the initial guess
for λ, FSA is applied to numerically search for the optimal values until iterating
to convergence in the log scale, and the derived estimate of λ is exponentiated to
derive the estimate of the parameter vector ρ.

Reparametrization

While in real data applications we often found the C effect to be minor, it is not
negligible since it improves the estimation accuracy and reduces the type I error
rate for the A effect, i.e., the heritability. This small common environmental factor
makes the parameter vector always close to the boundary of the parameter space,
and thus, we consider a reparametrization of the variance components as a further
attempt to improve convergence. The new reparametrization is defined as follows:

• Additional covariance of MZ twins: Ã = 1
2A,

• Overall minimum covariance: C̃ = 1
2A+ C,

• Unique environmental variance: Ẽ = E.

In this way, the variance-covariance matrix V can be written as

V =
3∑
l=1

ρ̃lQ̃l,

where ρ̃ = (Ã, C̃, Ẽ)T, and Q̃l (l = 1, 2, 3) can be analogously constructed like Ql

in the ACE parameterization (see Section 3.1). The above-mentioned approaches
for the ACE parameterization can also be applied to make inference on this ÃC̃Ẽ
reparametrization.
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3.4 Linear Regression with Squared Differences

In the 1980s, a simple linear regression method for variance components estimation
using squared differences (SD’s) of each subject pair was proposed by Grimes and
Harvey (1980), which is new for neuroimaging studies. For a sample of n subjects,
there are totally n2−n possible SD’s, 1

2(n2−n) unique and distinct. This SD analysis
is based on the derivation that the variance of the difference between two correl-
ated random variables depends on the variance-covariance parameters in a linear
fashion, and the expectation of the SD’s can be expressed in terms of variance com-
ponents A, C and E (Grimes and Harvey, 1980; Lindquist et al., 2012). However,
in Grimes and Harvey’s paper, the non-negative restriction for variance components
and heritability can not be satisfied with the ordinary least squares, and the derived
negative heritability estimates were either eliminated (in their simulation study)
or accepted as the impractical estimates during real data analysis, which results in
this linear regression method being an inaccurate method for heritability estimation.

To deal with the non-negativity problem, Lawson and Hanson proposed a now ubi-
quitous solution called non-negative least squares (NNLS) (Lawson and Hanson,
1987). The foundation of this algorithm is the Karush-Kuhn-Tucker (KKT) con-
ditions (Karush, 1939; Kuhn and Tucker, 1951), which were first proposed for the
complex non-linear programming problems (Lawson and Hanson, 1987). In our lin-
ear case, the KKT conditions can be further simplified to accelerate the computation.
Although other methods had been proposed to solve this non-negativity problem for
large and sparse matrix settings, Luo and Duraiswami (2011) suggested that NNLS
still maintained its superiority when small or moderate dense matrices were handled.

While Grimes and Harvey’s method specifies a linear regression model with the
use of 1

2(n2 − n) different observations of SD’s, our modification of this method
simplifies the computation so that only 1

2(nMZ + nDZ) observations are utilized in
computing SD’s. Thus, the integration of constructing linear regression model with
SD’s and estimating parameters using NNLS with computational modification yields
a novel and fast non-negative least squares regression approach for unknown variance
components estimation, entitled “LR-SD”.

3.4.1 Linear Regression Model

The means of linear regression model construction with SD’s varies depending on
whether the between-subject covariates are included or not in the GLM model (3.1).

37



For the simplest case, where there is an intercept only, we call the model simple linear
regression. While in a bit more complicated case, we call the model multiple linear
regression when some covariates are considered.

Simple Linear Regression

Consider the case where our original GLM model (3.1) is a trivial simple linear
regression model with an intercept coefficient only:

Y = 1β0 + ε, (3.10)

where 1 is an all-ones vector and β0 is the population mean. By the extension of
the covariance matrices (3.2), (3.3) and (3.4) and the basic properties of variance
operator, we get

E
[
(Y2j−1,j −Y2j,j)2

]
= Var(ε2j−1,j − ε2j,j)

= 2E (3.11)

for MZ twin pair j (j = 1, . . . , 1
2nMZ),

E
[
(Y2j−1,j −Y2j,j)2

]
= Var(ε2j−1,j − ε2j,j)

= A+ 2E (3.12)

for DZ twin pair j (j = 1
2nMZ+1, . . . , 1

2(nMZ+nDZ)), and for the remaining unrelated
subject pair of Yi,j and Yi′,j′ ,

E
[
(Yi,j −Yi′,j′)2

]
= Var(εi,j − εi′,j′)

= 2A+ 2C + 2E. (3.13)

These relationships (3.11), (3.12) and (3.13) describe the expected values for all
these 1

2(n2 − n) SD’s and specify the mean structure of a linear regression model
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with SD’s as the observations:

E



(Y1,1 −Y2,1)2

...
(YnMZ−1, 1

2nMZ
−YnMZ,

1
2nMZ

)2

(YnMZ+1, 1
2nMZ+1 −YnMZ+2, 1

2nMZ+1)2

...
(YnMZ+nDZ−1, 1

2 (nMZ+nDZ) −YnMZ+nDZ,
1
2 (nMZ+nDZ))2

(Y1,1 −Y3,2)2

...
(Yn−1,0 −Yn,0)2



=



0 0 2
...

0 0 2

1 0 2
...

1 0 2

2 2 2
...

2 2 2




A

C

E

 ,

where the first 1
2nMZ SD’s are derived from MZ twin pairs and based on Equation

(3.11), the following 1
2nDZ elements are from DZ twin pairs and based on Equation

(3.12), and the remaining are from the unrelated subject pairs and based on Equation
(3.13). For simplicity, this linear regression model with SD’s can be denoted as

E [D] = Zρ, (3.14)

where D is a 1
2(n2 − n)-vector of 1

2(n2 − n) observations (SD’s), Z is a pre-defined
1
2(n2−n)×3 design matrix as shown above, and ρ is the parameter vector of variance
components.

Multiple Linear Regression

Now suppose that the GLM model (3.1) is a multiple regression model containing
an regression intercept and multiple covariates, expressed as

Y = 1β0 + X1β1 + · · ·+ Xp−1βp−1 + ε, (3.15)

where the n-vectors of X1, . . . ,Xp−1 are regressors, each associated with one of
the p− 1 covariates, and β1, . . . , βp−1 are the corresponding regression coefficients.
Even though the parameter vector β = (β0, . . . , βp−1)T is not of interest and we
treat its elements as nuisance parameters in variance component analysis, it must
be accounted for during the analysis. If we estimate these parameters by ordinary
least squares (OLS), the resulting OLS estimator for β is expressed as

β̂OLS = (XTX)−1XTY,
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where X = (1,X1, . . . ,Xp−1) is the complete design matrix, and thus the OLS
residual is

e = Y−Xβ̂OLS =
[
I−X(XTX)−1XT]Y. (3.16)

Denote a symmetric and idempotent matrix as R = I −X(XTX)−1XT. The OLS
residual e = RY = Rε follows a normal distribution with mean E [e] = 0 and vari-
ance Cov(e) = RVR, i.e., e ∼ N(0,RVR), where the projection matrix R projects
the unobservable error vector ε to its estimate e that is orthogonal to the column
space spanned by the columns of design matrix X.

Covariates contribute to the between-subject variation, however, these “contribu-
tions” may confound the heritability estimation and bias the estimator. Hence it is
important to model all known covariate-related effects in X, and subsequently we
base all heritability analyses on e, calculated with Equation (3.16). For simplicity
of notation going forward, we write Y instead of e for the covariate-adjusted data.
This embodies an assumption that we can estimate covariate effects β with high
precision, and that n � p so that V approximates the actual covariance matrix
RVR of the adjusted data; we neglect any correlation induced by removing covari-
ates and mean centering, and omit the lost information due to the loss of degrees
of freedom caused by OLS estimation. Thus Y has mean 0 during the subsequent
linear regression model construction with SD’s.

Hence the expectations for different subject pairs are similarly derived as

E
[
(Y2j−1,j −Y2j,j)2

]
= Var(Y2j−1,j −Y2j,j)

≈ 2E

for MZ twin pair j (j = 1, . . . , 1
2nMZ);

E
[
(Y2j−1,j −Y2j,j)2

]
= Var(Y2j−1,j −Y2j,j)

≈ A+ 2E

for DZ twin pair j (j = 1
2nMZ+1, . . . , 1

2(nMZ+nDZ)); and for the remaining unrelated
subject pair of Yi,j and Yi′,j′ ,

E
[
(Yi,j −Yi′,j′)2

]
= Var(Yi,j −Yi′,j′)

≈ 2A+ 2C + 2E.
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The deriving linear regression model with SD’s in this case can be analogously
denoted as

E [D] ≈ Zρ. (3.17)

3.4.2 Non-negative Least Squares

Our LR-SD method proceeds by applying NNLS algorithm to the linear regression
model with SD’s (3.14) or (3.17) for the unknown variance components estimation;
precisely, we seek

min
ρ
f(ρ) s.t. ρ ≥ 0, (3.18)

where f(ρ) = 1
2‖Zρ−D‖2 is the objective function to be minimized. Karush-Kuhn-

Tucker (KKT) conditions provide the necessary conditions for this optimization
problem: If ρ∗ is the local minimizer of f(ρ) satisfying the inequality constraint:
ρ ≥ 0, then the following conditions hold:

∇f(ρ∗)Tρ∗ = 0, ∇f(ρ∗) ≥ 0, ρ∗ ≥ 0,

where the gradient vector is ∇f(ρ) = ZT(Zρ−D) (Karush, 1939; Kuhn and Tucker,
1951). As ZT(Zρ −D) = 0 corresponds to the least squares normal equation, for
any Z, D and ρ found by least squares, the first two conditions are trivially satisfied.

Algorithm Simplification

The NNLS algorithm can be further modified and simplified for computation in our
case since there are only 3 parameters A, C and E in total. Inclusion and exclu-
sion of these parameters for minimization of the objective function lead to totally
23 − 1 = 7 parameter vectors for the non-negativity selection. As the unique en-
vironmental factor E always exists due to the unavoidable measurement error, only
4 possible models E, AE, CE and ACE are taken into consideration finally, with
parameter vectors denoted as ρE = (0, 0, E)T, ρAE = (A, 0, E)T, ρCE = (0, C,E)T

and ρACE = (A,C,E)T respectively.

Since the space of possible models is so small, we can enumerate and evaluate all
these 4 models. If all parameter estimates of the full ACE model are non-negative,
then ρ̂ACE is selected as the estimate ρ̂ solving the above-mentioned NNLS problem
(3.18); otherwise, the 3 remaining models corresponding to the parameter vectors
ρE, ρAE, and ρCE are compared. Among the optional models out of 3 with valid
estimates (i.e., all non-negative), we select the NNLS estimate as the one derived
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from the more complicated model with more dimensions considered, which has more
variance components taken into consideration and involved in parameter estimation,
and considers a larger parameter space. If both of the AE and CE models have
valid estimates, we compute their OLS residual sum of squares (RSS) and choose
the one with the smallest RSS value. Alternatively, we could compute the ReML
log-likelihood of the original GLM model (3.1) and select the valid estimate that has
the largest ReML log-likelihood value. We call the former method “LR-SD”, and
the latter “LR-SD ReML”. But this simplification does not address the issue that
for large n, the computation and storage of the length 1

2(n2 − n) data and design
matrix are unwieldy.

Computational Modification

In NNLS algorithm, we make use of the regular structure of D (the SD vector) to
directly compute the least squares estimates. Specifically, observe that

ZTD =



∑ 1
2 (nMZ+nDZ)
l= 1

2nMZ+1 Dl + 2
∑ 1

2 (n2−n)
l= 1

2 (nMZ+nDZ)+1 Dl

2
∑ 1

2 (n2−n)
l= 1

2 (nMZ+nDZ)+1 Dl

2
∑ 1

2 (n2−n)
l=1 Dl

 ,

where Dl denotes the lth element of D. We can avoid computing all possible differ-
ences, needed for the third element, if we note that in simple linear regression,

1
2 (n2−n)∑
l=1

Dl = 1
2

n∑
l=1

n∑
l′=1

(Yl −Yl′)2

= 1
2

n∑
l=1

n∑
l′=1

[(Yl −Y) + (Y−Yl′)]2

= n
n∑
l=1

(Yl −Y)2

= (n2 − n)× s2(Y),

where the sample variance of the n observations,

s2(Y) = 1
n− 1(Yl −Y)2,
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is an estimator for the phenotypic variance σ2 with n− 1 degrees of freedom. While
in multiple linear regression, the sum can be similarly approximated with the OLS
RSS value derived from the GLM model (3.1), i.e.,

1
2 (n2−n)∑
l=1

Dl ≈ (n2 − n)× σ̂2,

where
σ̂2 = eTe

n− p

is the OLS estimator for the variance σ2 with n−p degrees of freedom. Thus, we have
modified and derived a simpler computational algorithm so that only 1

2(nMZ +nDZ)
rather than 1

2(n2 − n) observations of SD’s are used.

3.4.3 Likelihood Ratio Test

Tests on parameter estimates are performed as usual, with a likelihood ratio test
(LRT) comparing the fitted model (alternative model) with the constraint H1 : A ≥
0 to the null model with the hypothesis H0 : A = 0 (i.e., the model ACE is compared
to CE, and AE is compared to E). The LRT statistic, termed as “T”, is defined as

T = −2× [`(ρ̂0|Y)− `(ρ̂1|Y)],

where ρ̂0 and ρ̂1 are parameter estimates derived from the null model and the
alternative model respectively, and proven to asymptotically follow a chi-squared
distribution with 1 degree of freedom, i.e., χ2

1 (Wilks, 1938). However the variance
parameter A lies on the boundary of the parameter space of ρ = (A,C,E)T under
the null hypothesis H0 : h2 = 0 or, equivalently, H0 : A = 0, and thus the asymp-
totic sampling distribution of this LRT statistic, assuming H0 is true, is a mixture of
chi-squared distributions

(
1
2χ

2
0 + 1

2χ
2
1

)
instead of a standard chi-square distribution

(χ2
1) (Self and Liang, 1987; Dominicus et al., 2006; Zhang and Lin, 2008).

Given the asymptotic null distribution of the LRT statistic, the theoretical p-value
can be easily calculated. Obtaining a p-value less than a given significance level α,
which is typically a small number (e.g., α = 0.05), suggests that there is a significant
evidence against the null hypothesis and the null hypothesis should be rejected at
level α. The p-value, denoted as p, also indicates there is a 100p% risk of incorrectly
rejecting a true null hypothesis. Aside from the asymptotic theoretical p-value, the
permutation-based p-value is exact, based on the empirical distribution of the LRT
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statistic.

3.4.4 Relation to U-statistic

The use of U-statistics is an effective way of obtaining unbiased estimators, and even
the minimum-variance unbiased estimators. Assume the existence of a sequence of n
i.i.d. random variables (or random vectors) Y1, . . . ,Yn from an unknown population.
For a positive integer m (m ≤ n), the unknown parameter θ that is required to be
estimated is of the form

θ = E [h(Yi1 , . . . ,Yim)]

with a certain function h(·), which is assumed to be symmetric of its m arguments
and gives rise to the U-statistic associated with the estimable parameter θ. The
U-statistic corresponding to this symmetric function h(·) of order m is defined as

Un =
(
n

m

)−1∑
· · ·
∑

(i1,...,im)∈Ωn
m

h(Yi1 , . . . ,Yim),

where n is the sample size, h(·) is called the kernel function, and

Ωn
m = {(i1, . . . , im)|1 ≤ i1 < · · · < im ≤ n}

is a set of all possible combinations of m different elements from {1, . . . , n}.

For each pair of twins regardless of MZ or DZ type with paired data (Y2j−1,j ,Y2j,j)T

for twin pair j, let m = 1 and the kernel function be

h

((
Y2j−1,j

Y2j,j

))
= 1

2(Y2j−1,j −Y2j,j)2.

Based on Equations (3.11) and (3.12) for MZ and DZ twins, we obtain

E
[
h

((
Y2j−1,j

Y2j,j

))]
=


E, for MZ twins,

1
2A+ E, for DZ twins.

As distinct twin pairs are mutually independent, the U-statistic associated with E
using the data from MZ twins is

UnMZ = 1
nMZ

1
2nMZ∑
j=1

(Y2j−1,j −Y2j,j)2, (3.19)
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and the U-statistic corresponding to 1
2A+ E with the data from DZ twins is

UnDZ = 1
nDZ

1
2 (nMZ+nDZ)∑
j= 1

2nMZ+1

(Y2j−1,j −Y2j,j)2. (3.20)

With the use of Equations (3.19) and (3.20) as the unbiased estimators for E and
1
2A+ E respectively, we derive the unbiased estimators for A and E to be

Â = 2
nDZ

1
2 (nMZ+nDZ)∑
j= 1

2nMZ+1

(Y2j−1,j −Y2j,j)2 − 2
nMZ

1
2nMZ∑
j=1

(Y2j−1,j −Y2j,j)2,

Ê = 1
nMZ

1
2nMZ∑
j=1

(Y2j−1,j −Y2j,j)2,

which are identical with those estimators for A and E derived using the LR-SD
method.

3.5 Simulation Studies

In this section, the 1D simulation analysis is conducted to compare our newly pro-
posed voxel-wise univariate heritability estimation methods with those frequently
used methods in terms of prediction accuracy, validity, sensitivity, and the over-
all computation time for different variance component settings. The ROC-based
simulation studies generate 2D imaging data for power evaluation and comparison
between the voxel- and cluster-wise heritability inference approaches with various
simulation settings.

3.5.1 Simulation Evaluations

In order to evaluate our proposed heritability estimation methods—Frequentist
ReML, LR-SD and LR-SD ReML, the Monte Carlo simulation is undertaken by
fitting the GLM model (3.1), or linear regression model with SD’s (3.14) or (3.17)
to the 1D simulated datasets generated with different (A,C,E)T parameter settings.

Simulation Setting

The parameter settings shown in Table 3.1 are motivated as follows. If we create
a 3D Cartesian coordinate system with x, y and z axes representing the possible
values for A, C and E, then the parameter space is formed and can be visualized

45



Table 3.1: 15 parameter settings of variance components (A,C,E)T.

A C E

Complete Null 0 0 1
Only Common Environmental 0 1/6 5/6
Component 0 1/3 2/3
(A = 0 & C > 0) 0 1/2 1/2

0 2/3 1/3
Only Genetic Component 1/6 0 5/6
(A > 0 & C = 0) 1/3 0 2/3

1/2 0 1/2
2/3 0 1/3

Both Genetic and Common 1/6 1/6 2/3
Environmental Components 1/3 1/6 1/2
(A > 0 & C > 0) 1/6 1/3 1/2

1/2 1/6 1/3
1/3 1/3 1/3
1/6 1/2 1/3

as an equilateral triangle. Within this equilateral triangular parameter space, a 2D
Barycentric coordinate system can be set up by assigning a vertex of the triangle
to be the origin, as shown in Figure 3.3. In reality, E � max(A,C) always holds,
so we can evenly choose 15 possible sets of (A,C,E)T from the upper part of this
parameter space (the equilateral triangle) satisfying E ≥ 1

3 for simulation analysis,
shown in Figure 3.3. Define the total variance as σ2 = A + C + E > 0. Since we
are more concerned about heritability, the relative portion of A over the sum of A,
C and E. Without loss of generality, A, C and E can be scaled such that σ2 = 1;
that is, the value of A is exactly h2. However, we still use

ĥ2 = Â

Â+ Ĉ + Ê

during computation to account for the genetic random variation in total variance.

There are 3 samples considered with the size of n = 20, 60, 100, each comprised
of twins only, where the number of MZ twins is assumed to be identical with that
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Figure 3.3: Parameter space with various circled (A,C,E)T parameter settings. The
large equilateral triangle depicts the ACE parameter space with y axis representing
the values of E and circled points representing the selected (A,C,E)T parameter
settings shown in Table 3.1. The colored small triangles indicate the values of A for
the top vertices.

of DZ twins. For instance, the sample of 20 subjects is comprised of 5 MZ twin
pairs (10 subjects) and 5 DZ twin pairs (10 subjects). In summary, 3 different
sample sizes, along with 15 parameter settings of (A,C,E)T, lead to the 45 1D
simulation settings. For each simulation setting, we considered both cases of the
GLM model (3.1)—simple linear regression (3.10) and multiple linear regression
(3.15). For simple linear regression, the design matrix is the all-ones vector, i.e.,
X = (1, . . . , 1)T. For multiple linear regression, the design matrix X is generated
to have two columns, where the first column is an all-ones vector and the second
is a standard uniformly distributed random vector approximating the covariates.
Totally nRlz = 10000 simulations were executed.

Comparison Results

We make a comparison between our proposed methods of Frequentist ReML, LR-
SD and LR-SD ReML and those existing methods including Falconer’s method,
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Bayesian ReML used in SPM and SEM used in OpenMx. The statistical measures
including mean squared error (MSE), false positive rate (FPR) and statistical power
of LRT, and overall running time of nRlz = 10000 simulations for these methods are
used for comparative purposes. Since both cases of simple linear regression and
multiple linear regression reflect strongly similar simulation results, we will only
illustrate the results obtained from simple linear regression for simplicity.

Accuracy and Precision The MSE comparison of these 6 heritability estima-
tion methods is shown in Figure 3.4, which exhibits that the two linear regression
methods—LR-SD and LR-SD ReML, have nearly identical MSE measures in all
simulation settings, implying that they provide heritability estimates with resem-
bling accuracy. The method of SEM in OpenMx also shows strong similarity of
the MSE performance compared with the linear regression methods. Nevertheless,
both Frequentist ReML and Bayesian ReML in SPM show larger MSE values for
the first 5 null settings with A = 0 in the smallest sample case of size 20 = 10 + 10,
especially for Frequentist ReML. As expected, the MSE in heritability estimator
using Falconer’s method always exceeds that using the other 5 methods, which is as
reported in previous results (Nichols et al., 2009).

Statistical Sensitivity Figure 3.5 shows the statistical power comparison of LRT
using these 6 methods at the nominal significance level α = 0.05 under the null
hypothesis of no heritability. The validity of all these methods is verified except
Frequentist ReML. Although Frequentist ReML has the largest statistical power
overall, its FPR is above the upper confidence bound, which means Frequentist
ReML is not applicable due to its high risk of wrongly rejecting the true null hypo-
thesis with LRT. It should also be noted that the estimation inaccuracy and high
FPR of Frequentist ReML may be due to the saddle point problem and need to
be further investigated, where a saddle point is a stationary point but not a local
extremum of a function. For the remaining 5 methods, they are all within or below
the confidence limits. Even if these 5 estimation methods similarly return low power
when small samples are dealt with, increasing the sample size results in a notably
enlarged statistical power. For nearly all simulation settings considered, LR-SD, LR-
SD ReML and SEM in OpenMx perform fairly similar, and their statistical power
exceeds that of Falconer’s method and Bayesian ReML in SPM, particularly for the
parameter settings with low values of E. The estimated FPR is employed to assess
the validity for all these methods in Figure 3.6, where laying in or below the 95%
binomial proportion confidence interval (plotted as the region between the two red
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MSE comparison: ReML (‘n’) vs. LR−SD (‘b’) vs. LR−SD ReML (‘g’) vs. Falconer’s (‘y’) vs. SPM (‘o’) vs. OpenMx (‘r’), n=10+10
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MSE comparison: ReML (‘n’) vs. LR−SD (‘b’) vs. LR−SD ReML (‘g’) vs. Falconer’s (‘y’) vs. SPM (‘o’) vs. OpenMx (‘r’), n=30+30
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MSE comparison: ReML (‘n’) vs. LR−SD (‘b’) vs. LR−SD ReML (‘g’) vs. Falconer’s (‘y’) vs. SPM (‘o’) vs. OpenMx (‘r’), n=50+50

Figure 3.4: The MSE comparison: Frequentist ReML (‘n’: navy), LR-SD (‘b’: blue),
LR-SD ReML (‘g’: green), Falconer’s method (‘y’: yellow), Bayesian ReML used
in SPM (‘o’: orange), and SEM used in OpenMx (‘r’: red). Comma ordered pairs
on x-axis correspond to the rounded parameter values of A and C, i.e., (A,C); see
Table 3.1 and Figure 3.3 for exact parameter settings used.

49



(.2,0) (.3,0) (.5,0) (.7,0) (.2,.2) (.3,.2) (.2,.3) (.5,.2) (.3,.3) (.2,.5)
0

20

40

60
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Power of LRT: ReML (‘n’) vs. LR−SD (‘b’) vs. LR−SD ReML (‘g’) vs. Falconer’s (‘y’) vs. SPM (‘o’) vs. OpenMx (‘r’), n=50+50

Figure 3.5: The comparison of statistical power of LRT in percent at α = 0.05 with
false null hypothesis (H0 : h2 = 0): Frequentist ReML (‘n’: navy), LR-SD (‘b’:
blue), LR-SD ReML (‘g’: green), Falconer’s method (‘y’: yellow), Bayesian ReML
used in SPM (‘o’: orange), and SEM used in OpenMx (‘r’: red). Comma ordered
pairs on x-axis correspond to the rounded parameter values of (A,C) with A > 0;
see Table 3.1 and Figure 3.3 for exact parameter settings used.
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Rejection rate of LRT: ReML (‘n’) vs. LR−SD (‘b’) vs. LR−SD ReML (‘g’) vs. Falconer’s (‘y’) vs. SPM (‘o’) vs. OpenMx (‘r’), n=10+10
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Rejection rate of LRT: ReML (‘n’) vs. LR−SD (‘b’) vs. LR−SD ReML (‘g’) vs. Falconer’s (‘y’) vs. SPM (‘o’) vs. OpenMx (‘r’), n=30+30
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Rejection rate of LRT: ReML (‘n’) vs. LR−SD (‘b’) vs. LR−SD ReML (‘g’) vs. Falconer’s (‘y’) vs. SPM (‘o’) vs. OpenMx (‘r’), n=50+50

Figure 3.6: The comparison of the estimated FPR (false rejection rate) of LRT in
percent at level α = 0.05 with true null hypothesis (H0 : h2 = 0): Frequentist ReML
(‘n’: navy), LR-SD (‘b’: blue), LR-SD ReML (‘g’: green), Falconer’s method (‘y’:
yellow), Bayesian ReML used in SPM (‘o’: orange), and SEM used in OpenMx (‘r’:
red). Comma ordered pairs on x-axis correspond to the rounded parameter values
of (A,C) with A = 0; see Table 3.1 and Figure 3.3 for exact parameter settings
used. The two red dash-dotted lines show the lower and upper bounds of the 95%
binomial proportion confidence interval. The FPR should be 0.05, but its estimates
can vary within the 95% binomial proportion confidence interval [0.0457, 0.0543] for
nRlz = 10000 simulations.

dash-dotted lines) indicates valid tests are used.

Running Time The running time of entirely nRlz = 10000 simulations for these
6 variance components estimation methods is shown in Figure 3.7. The computa-
tional performance comparing all these methods reveals Falconer’s method and the
linear regression methods with SD’s—LR-SD and LR-SD ReML always outperform
other iterative methods including Frequentist ReML, Bayesian ReML in SPM and
SEM in OpenMx. For each simulation setting, the overall computation time of all
simulations for those non-iterative methods is far smaller than the other iterative
methods. Specifically, LR-SD is roughly 2.5 times faster than LR-SD ReML and
around 300 times faster than SEM in OpenMx on average, which indicates that an
evident decrease of the computation time has been achieved. However, the compu-
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Figure 3.7: The total running time comparison for nRlz = 10000 simulations after
base-10 log transformation (log10(t)): Frequentist ReML (‘n’: navy), LR-SD (‘b’:
blue), LR-SD ReML (‘g’: green), Falconer’s method (‘y’: yellow), Bayesian ReML
used in SPM (‘o’: orange), and SEM used in OpenMx (‘r’: red). Comma ordered
pairs on x-axis correspond to the rounded parameter values of (A,C); see Table 3.1
and Figure 3.3 for exact parameter settings used.

tation time of Frequentist ReML is prohibitive with the running time of around 4
times longer than that of Bayesian ReML in SPM averagely.

3.5.2 ROC-based Power Evaluation

To compare the voxel- and cluster-wise heritability inference approaches described
in Section 2.5.2, receiver operating characteristic (ROC) curves are applied, with
the use of our newly proposed univariate LR-SD method, to examine the statistical
sensitivity of these two approaches.

Simulation Setting

With simulations, we now intend to evaluate the statistical power (sensitivity) of the
voxel- and cluster-wise inference approaches using our LR-SD method for univariate
heritability analysis. The sample sizes considered are exactly the same as those
mentioned above in 1D simulations to be n = 20, 60, 100, where only twins are
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involved in the analysis 5 and the number of MZ and DZ twins is equal. The signal
data is generated with 6 parameter settings shown in Table 3.2 consisting of different
extents of heritability and environmental sharing. For the null heritability settings,
varying degrees of shared environmental effect are investigated including C = 0, 1

3 ,
2
3 .

While for the non-null heritability settings, there are 3 levels of heritability settings
considered of h2 = 1

3 ,
1
2 ,

2
3 . Since our main focus is on the heritability, we only set one

setting with non-zero C effect. For this non-null setting, the unique environmental
effect E is set the same as another non-null setting so as to examine the influence of
the C effect by comparing these two settings with identical E effect. Without loss
of generality, the parameters A, C and E are also scaled so that unit phenotypic
variance σ2 = 1 is used.

Table 3.2: 6 parameter settings of heritability h2 and parameters (A,C,E)T.

h2 A C E

No Heritability 0 0 0 1
(h2 = 0) 0 0 1/3 2/3

0 0 2/3 1/3
Positive Heritability 1/3 1/3 0 2/3
(h2 > 0) 1/2 1/2 1/6 1/3

2/3 2/3 0 1/3

Without loss of generality, the simulated images are 2D with the image size of
128 × 128 pixels. The process of ground noise image generation starts by simulat-
ing multiple 2D i.i.d. Gaussian random images; the heritability signal images are
created later by substituting the signal-specific part within the generated ground
noise images with the simulated signal data. A range of spatial Gaussian smoothing
kernels with full width at half maximum (FWHM) of {0, 1.5, 3, 6} pixels are applied
for both noise and signal images separately to take into account of the similarity
of the neighboring voxels. We consider two tested signal shapes of the focal and
distributed that are shown in Figure 3.8 with matched number of involving signal
pixels. Totally nRlz = 1000 images were generated for each simulation setting.

5During 1D simulation, we found adding singletons can improve neither estimation accuracy nor
statistical power. However, we still suggest including singletons in the real data analysis since a
better estimate of the phenotypic variance can be obtained with more data taken into account.
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Figure 3.8: Illustration of the 2D simulated signal shapes. Focal signal (left) with 1
large circle in the middle; distributed signal (right) with 9 identical small circles.

Power Analysis

The ROC curves plot y axis as the true positive rate (TPR) against x axis as FPR
with varying threshold levels. In practice, the statistical measures of sensitivity (or
TPR) and specificity (or 1−FPR) can not be both large, so the ROC curves reflect
the trade-off between them. An ideal inference method will give 100% sensitivity
(i.e., TPR = 1) and 100% specificity (i.e., FPR = 0), which yield a point (0, 1)
in the ROC curve, and TPR will stay at 1 for all other FPR values (Smith and
Nichols, 2009). As each 2D image contains multiple pixels and the standard ROC
method was designed for a single test, the alternative free-response ROC approach
(Chakraborty and Winter, 1990), which uses the fraction of images with any false
positives as x axis and the proportion of true positives detected as y axis, is em-
ployed to control the family-wise error rate in multiple comparisons problem (Smith
and Nichols, 2009).

A commonly-used summary measure of the ROC curves, called the area under the
curve (AUC), is applied to summarize the ROC curves with larger value indicating
higher statistical power (e.g., AUC = 1 for the perfect methods). Since we are more
concerned about FPR values between 0 and 0.05 when the significance level of a test
is set α = 0.05, the normalized AUC, expressed as 20×AUC for FPR = 0 : 0.05, is
calculated for both voxel- and cluster-wise inference approaches for statistical power
comparison.

The following steps clarify this ROC-based approach for power evaluation of voxel-
and cluster-wise inference approaches for each simulation setting.
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(i) Generate nRlz = 1000 i.i.d. 2D Gaussian random noise images and the corres-
ponding nRlz = 1000 heritability signal images.

(ii) For each image, estimate heritability pixel-by-pixel and create the test statistic
image.

(iii) Voxel-wise Inference Apply a large number of pre-defined thresholds, obtain
the suprathreshold pixels, and then calculate family-wise FPR and TPR for
each of these threshold levels.
Cluster-wise Inference Threshold the LRT statistic images with an arbitrary
pre-determined cluster-forming threshold (e.g., 0.05) and form suprathreshold
clusters for all the statistic images. For each observed suprathreshold cluster,
consider a full range of possible cluster sizes as the thresholds, and then compute
family-wise FPR and TPR for each threshold level (i.e., cluster size).

• Family-wise FPR Computation The ground noise images are used for
FPR calculation for each threshold. For each noise image, count the num-
ber of images with one or more pixels detected, which is divided by the
number of realizations (i.e., nRlz = 1000) to obtain an estimate of the
family-wise FPR.
• TPR Computation The heritability signal images are used for TPR cal-
culation for each threshold. For each signal image, count the number of
true heritability pixels detected (#{TPs}), which is divided by the total
number of true heritability pixels (#{TPs + FNs}) to get a proportion of
true positive detection (rTPs), i.e.,

rTPs = #{TPs}
#{TPs + FNs} ,

where “TPs” and “FNs” denote true positive and false negative decisions
respectively 6. Average this proportion over all realizations to derive an
estimate of TPR.

(iv) Plot the ROC curves and calculate the corresponding normalized AUC values.

ROC-based Simulation Results

As described above, a range of simulation settings are investigated for both voxel-
and cluster-wise inference approaches using LR-SD. For different extents of smooth-

6Apart from this true positive proportion rTPs, a so-called “rand index” measure or its adjusted
form can also be utilized to compare the true data clustering and our detected clustering results,
and to evaluate the similarity between them, i.e., the accuracy of the search results.
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ness, the returned ROC curves have fairly similar shape, so we will only illustrate
the ROC curves created by medium degree of smoothing with FWHM of 3 pixels,
which are shown in Figures 3.9 and 3.10 for the simulated focal and distributed
signals respectively, and leave out those by other smoothness extents. The corres-
ponding normalized AUC comparison is then shown in Figure 3.11.

For the focal signal, the results are shown in Figure 3.9. The ROC curves of voxel-
wise method are always below those of cluster-wise method for different sample
sizes and all parameter settings, which reveals a higher statistical power obtained
for cluster- than voxel-wise inference approaches. For a particular family-wise FPR
level, the TPR value of both inference methods becomes larger when the sample
size is enlarged or the heritability extent is increased. Compared with the tightly
focal signal, the spatially distributed signal generates ROC curves, shown in Figure
3.10, behaving analogically in nearly all respects to the focal signal.

In Figure 3.11, we summarize the above ROC curves and follow up with a bar plot
of the normalized AUC, which is a meaningful ROC-related summary measure. As
stated above, we only care about FPR between 0 and 0.05 (i.e., FPR less than
the level α = 0.05), and the normalized AUC for FPR = 0 : 0.05 is employed
and calculated rather than the standard AUC. The voxel-wise method has poor
performance overall for all simulation settings with negligible AUC values, while
the cluster-wise inference approach has much larger AUC values, suggesting that
the cluster-wise method is more statistically powerful and motivating the use of the
cluster-wise approach.

3.6 Real Data Applications

In this section, we apply the voxel- and cluster-wise heritability inference approaches
using univariate LR-SD method to two fMRI datasets, with one investigating the
working memory brain activation and another associated with the amygdala-related
emotional stimuli.

3.6.1 Heritability of Working Memory Brain Activation

This section contributes to the investigation of the heritability of working memory
task-related brain activation. We illustrate the above-mentioned heritability infer-
ence approaches including univariate LR-SD and permutations.
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Figure 3.9: The ROC curve comparison of voxel- (dashed lines) and cluster-wise
(solid lines) inference approaches for different parameter settings of (A,C,E)T for
the focal signal with 3 sample sizes of 10+10 (upper), 30+30 (middle) and 50+50
(lower).
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Figure 3.10: The ROC curve comparison of voxel- (dashed lines) and cluster-wise
(solid lines) inference approaches for different parameter settings of (A,C,E)T for
the distributed signal with 3 sample sizes of 10+10 (upper), 30+30 (middle) and
50+50 (lower).
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Figure 3.11: The normalized AUC (20 × AUC for FPR = 0 : 0.05) comparison
of voxel- and cluster-wise inference approaches for different parameter settings of
(A,C,E)T, 3 samples of size n = 10 + 10, 30 + 30, 50 + 50, and two tested signals
(focal and distributed) with positive heritability h2 > 0.
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Real Data Acquisition

The experimental sample comprises entirely n = 319 young and healthy participants
(199 females and 120 males), consisting of nMZ = 150 MZ twins (75 pairs with 46
female and 29 male), nDZ = 132 DZ twins (66 pairs with 30 female, 11 male and
25 opposite sex) and nS = 37 unpaired twins (22 female and 15 male). The age
range of all these subjects is 20–28 years (mean ± SD : 23.6 ± 1.8). They were in-
vited to join the study in Brisbane, Australia, and performed the 0-back and 2-back
working memory tasks during the experiment. The 4T Bruker Medspec full-body
scanner was utilized and task-related fMRI BOLD signals were acquired to create
the brain images. Imaging pre-processing was implemented using the SPM5 software
in Matlab, including image realignment with a mean image generated, spatial nor-
malization to the standard T1 template in MNI atlas space, spatial smoothing with
isotropic Gaussian kernel, removal of global signal effects, and the use of high-pass
and low-pass filtering to discard uninterested signals. For each subject, the brain
activation, measured as the 2-back > 0-back t-contrast images using one-sample t
test, was extracted. Only areas of expected activation are included in the mask of
K = 14627 in-mask voxels in total. Age, gender and 2-back performance accuracy
(the percentage of correct responses) are considered and included as the covariates
in the statistical analysis (Blokland et al., 2011).

Results

As mentioned previously, normally there are quite massive possible permutations
in total, which requires large amounts of computation time. Since an effective and
efficient approximation to the permutation distribution can be pursued with a large
number of permutations, the characteristics of the permutation distribution can be
acquired with fewer permutations (Nichols and Holmes, 2001). Here we perform
N = 1000 permutations as suggested. One run of Mx took around two days on this
fMRI dataset while LR-SD only took about 6 minutes on a MacBook Pro with dual
quad-core CPUs (3.0 GHz). Applying our LR-SD method voxel-by-voxel and mak-
ing permutation inference on the fMRI twin data, all these N = 1000 permutations
took around 15.5 hours by separating them into 10 parallelized jobs, each with 100
permutations.

The permutation-based empirical distributions of maximum test statistics are shown
in Figure 3.12 for maximum LRT statistic Tmax

p , in Figure 3.13 for maximum supra-
threshold cluster size Kmax

p , and in Figure 3.14 for maximum suprathreshold cluster
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Figure 3.12: Empirical permutation distribution of maximum LRT statistic Tmax
p

with red dash-dot line for the critical threshold at level α = 0.05 and green solid
line for the observed maximum LRT statistic value.

mass Mmax
p . The appointed significance level is chosen to be α = 0.05, leading to the

critical threshold to be the 51th largest member of each permutation distribution,
with Tα = 11.3202, Kα = 62 and Mα = 271.7397. The most significant FWE-
corrected p-values are 0.007, 0.001 and 0.001 for voxel in Figure 3.12, for cluster size
in Figure 3.13, and for cluster mass in Figure 3.14 respectively, which implies that
the omnibus hypothesis of no heritability everywhere in the ROI’s is rejected in the
single threshold test (see Figure 3.12) and suprathreshold cluster tests (see Figures
3.13 and 3.14) at level α = 0.05.

The FWE-corrected p-value images after log transformation (i.e., − log10(pFWE))
for significant voxels and significant suprathreshold clusters with respect to size and
mass statistics are shown in Figure 3.15, and Figures 3.16 and 3.17, respectively.
Suprathreshold cluster tests (see Figures 3.16 and 3.17) found much larger significant
brain areas than single threshold test (see Figure 3.15) by comparing the FWE-
corrected p-value images. Only 2 significant voxels are found for voxel-wise single

61



0 62 196
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Empirical Distribution of Maximum Suprathreshold Cluster Size (K), FWE P−value=0.001

K

f(
K

)

Figure 3.13: Empirical permutation distribution of maximum suprathreshold cluster
size Kmax

p with red dash-dot line for the critical threshold at level α = 0.05 and green
solid line for the observed maximum suprathreshold cluster size.
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Figure 3.14: Empirical permutation distribution of maximum suprathreshold cluster
mass Mmax

p with red dash-dot line for the critical threshold at level α = 0.05 and
green solid line for the observed maximum suprathreshold cluster mass.
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Figure 3.15: The log transformed p-value image (i.e., − log10(pFWE)) for voxels with
significant LRT statistic.

test, while 4 significant clusters with a total of 634 voxels are found for cluster-
wise tests. All these heritability-significant regions found in both single threshold
test and suprathreshold cluster tests are the memory-related brain regions, which is
consistent with the previous findings (Blokland et al., 2011).

3.6.2 Heritability of Amygdala Response to Emotional Stimuli

In this section, the heritability in response to the emotional stimuli is analyzed using
summary statistics of the ACE model over the brain region of amygdala, which is a
brain region typically associated with emotional processing. We provide inference on
the unweighted mean summaries for illustration, which is compared with the results
obtained from voxel- and cluster-wise inferences using the maximum statistics.

Real Data Acquisition

A sample of n = 111 subjects in total from a pre-processed fMRI dataset 7 includes
nMZ = 32 MZ twins (16 pairs), nDZ = 50 DZ twins (25 pairs) and nS = 29 singletons
8. These 111 subjects are all males, aged 10–12, from the Twins Early Development

7The access information of this fMRI dataset was provided in an email from Prof. T.E. Nichols
(t.e.nichols@warwick.ac.uk) in July 2011.

8Although we found the statistical power of the effect size h2 = 0.5 for this small sample is low
(less than 20%) using simulations, and nothing significant was found using the voxel-wise inference
for this dataset, the use of spatial statistics derived from cluster and summary inferences increases
the power of the test at the same significance level.
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Figure 3.16: The log transformed p-value image (i.e., − log10(pFWE)) for suprath-
reshold clusters on the observed image with significant suprathreshold cluster size.

 

Figure 3.17: The log transformed p-value image (i.e., − log10(pFWE)) for suprath-
reshold clusters on the observed image with significant suprathreshold cluster mass.
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Study (TEDS) 9. There are 50 participants out of 111 with the behavioural prob-
lems by SDQ assessment. Hence these 111 participants can be separated into two
groups: subjects with behavioural problems (CPCU+), and healthy subjects (Neg-
ative). During the experiment, all subjects equally performed an emotional pictures
matching task with the pictures from International Affective Picture System (IAPS)
(Coan and Allen, 2007). The brain ROI’s considered are left amygdala, right amy-
gdala and both amygdalas of overall 286, 269 and 555 in-mask voxels separatively.
There are 3 samples including all subjects, CPCU+ (n+ = 50 with 14 MZ twins, 30
DZ twins and 6 singletons) and Negative (n− = 61 with 18 MZ twins, 20 DZ twins
and 23 singletons) considered for heritability analysis. Both permutation and boot-
strapping inferences are utilized to compute the p-values and confidence intervals.
Before making the analysis, the inverse Gaussian transformation was implemented
with the use of probability integral transform to assure the normality of the response
data and remove the possible outliers, which is routinely designed to make the re-
sponse data variable with a skewed or non-normal distribution follow a normally
distributed pattern.

Results

In Tables 3.3 and 3.4, the results for the three samples of all subjects, the CPCU+
group and the Negative group are shown. For all subjects, the estimates, 95%
bootstrapping confidence intervals from 1000 bootstrap replicates, and permutation-
based p-values derived using 1000 permutations for different spatially informed test
statistics are explicitly listed for the considered brain ROI’s of both amygdalas, left
amygdala and right amygdala in Table 3.3. The spatial statistics employed include
the unweighted mean summaries of heritability (h2) and common environmental
factor (c2 = 1

K

∑K
r=1 c

2
r for all K in-mask voxels, where c2

r denotes the common
environmental factor for voxel r (r = 1, . . . ,K)), and the maximum statistics of
maximum LRT statistic (Tmax

p ) from voxel-wise inference, and maximum suprath-
reshold cluster size (Kmax

p ) and cluster mass (Mmax
p ) from cluster-wise inference. For

CPCU+ and Negative, the estimates and permutation-based p-values derived using
1000 permutation for the above-mentioned spatial statistics are displayed in Table
3.4 for those 3 amygdala ROI’s. In Table 3.4, the difference between these two
groups is also shown in terms of the estimate and its 95% bootstrapping confidence
interval from 1000 bootstrap replicates.

For all subjects, the cluster-wise statistics of maximum suprathreshold cluster size
9http://www.teds.ac.uk/
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and cluster mass and the unweighted mean statistic of heritability are found to be
significant at level α = 0.05 for the 3 considered brain ROI’s, but the voxel-wise
statistic (maximum LRT statistic) is only found to be significant for left amygdala.
Compared with right amygdala, left amygdala has a lower heritability summary
measure (h2 = 0.4108 for left amygdala vs. h2 = 0.4564 for right amygdala), but its
maximum LRT statistic value is higher than that of right amygdala (Tmax

p = 6.3357
for left amygdala vs. Tmax

p = 5.7304 for right amygdala) although its cluster size
statistic is smaller (Kmax

p = 70 for left amygdala vs. Kmax
p = 97 for right amygdala),

which reveals that left amygdala has a higher peak voxel while right amygdala has
a larger significant cluster.

In Table 3.4, we only find significance using mean heritability summary statistics
for those included brain regions for the CPCU+ group, while the evidence for her-
itability is found with cluster statistics for the Negative group for right amygdala
and both amygdalas, but not for left amygdala. There is no significance found using
voxel-wise statistic for either CPCU+ or Negative, which should be accounted for
by the reduced statistical power for small samples. Comparing the CPCU+ and
Negative groups using their difference, we find that the mean heritability measure
of CPCU+ is always smaller than that of Negative, and the values of spatial statist-
ics including the voxel-wise peak height and cluster size and mass for CPCU+ are
much smaller than those for Negative, indicating that these two groups are distinct
regarding heritability on amygdala.

Even for the larger sample of all subjects in Table 3.3, the 95% bootstrapping
confidence intervals for c2 still contain the tested value of 0, implying that the
omnibus hypothesis test of zero common environmental factor cannot be rejected.
In Table 3.4, even if the estimates of heritability mean summary h2 for CPCU+
are less than those for Negative for all 3 samples, h2 is always found significant for
CPCU+ while insignificant for Negative, which may be due to the smaller mean
measure of common environmental factor c2 for CPCU+.

3.7 Summary of the Chapter

In this chapter, we have presented 3 novel voxel-wise heritability estimation meth-
ods trying to improve the estimation accuracy and statistical sensitivity with a
controlled false positive rate (specificity), and reduce the computational complexity.
The simple LR-SD method based on linear regression modeling with squared differ-
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ences of paired observations has been introduced and established. This method is
found to have comparable or even better estimation accuracy and statistical power
relative to the existing methods and the other two newly proposed methods. Simu-
lation studies also show that LR-SD is the most computationally efficient approach
overall and will never encounter any convergence problems compared with the other
iterative methods. These time-efficient, accurate and non-iterative properties of
LR-SD make it more flexible and feasible to be applied for permutation inference to
correct for the family-wise error rate and bootstrapping inference to construct the
confidence intervals.
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Table 3.3: For all n = 111 subjects, the estimates, 95% bootstrapping confidence
intervals from 1000 bootstrap replicates (“95% CI”) and permutation-based p-values
derived using 1000 permutations for the unweighted mean summaries of h2 for her-
itability and c2 for shared environmental factor, and the maximum statistics of
Tmax
p , Kmax

p and Mmax
p from the voxel- and cluster-wise inferences are obtained for

3 brain ROI’s including both amygdalas, left amygdala and right amygdala.

Both Amygdalas
Estimate 95% CI P-value

h2 0.4329 (0.2145, 0.6012) 0.003
c2 0.0037 (0.0000, 0.1682) /
Tmax
p 6.3357 / 0.125

Kmax
p 97 / 0.017

Mmax
p 360.264 / 0.026

Left Amygdala
Estimate 95% CI P-value

h2 0.4108 (0.1993, 0.6093) 0.005
c2 0.0019 (0.0000, 0.1421) /
Tmax
p 6.3357 / 0.037

Kmax
p 70 / 0.006

Mmax
p 261.017 / 0.008

Right Amygdala
Estimate 95% CI P-value

h2 0.4564 (0.2218, 0.6367) 0.004
c2 0.0056 (0.0000, 0.2095) /
Tmax
p 5.7304 / 0.151

Kmax
p 97 / 0.023

Mmax
p 360.264 / 0.032
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Table 3.4: For both groups of CPCU+ (denoted as “+” and with n+ = 50 subjects)
and Negative (denoted as “–” and with n− = 61 subjects), the estimates (“Est”)
and permutation-based p-values derived using 1000 permutations (“P”) for the un-
weighted mean summaries of h2 for heritability and c2 for shared environmental
factor, and the maximum statistics of Tmax

p , Kmax
p and Mmax

p from the voxel- and
cluster-wise inferences are obtained for 3 brain ROI’s including both amygdalas, left
amygdala and right amygdala. The estimates and 95% bootstrapping confidence
intervals from 1000 bootstrap replicates (“95% CI”) for the difference between these
two groups are also shown in the table below.

Both Amygdalas
Est (“+”) P (“+”) Est (“–”) P (“–”) Est (Diff) 95% CI (Diff)

h2 0.3100 0.024 0.5029 0.068 0.1929 (0.0000, 0.6518)
c2 0.0078 / 0.0810 / 0.0732 (0.0000, 0.5197)
Tmax
p 3.5229 0.329 6.6650 0.134 / /

Kmax
p 3 0.333 91 0.025 / /

Mmax
p 9.543 0.311 343.952 0.024 / /

Left Amygdala
Est (“+”) P (“+”) Est (“–”) P (“–”) Est (Diff) 95% CI (Diff)

h2 0.2883 0.022 0.4993 0.120 0.2110 (0.0000, 0.6621)
c2 0.0017 / 0.0553 / 0.0536 (0.0000, 0.5394)
Tmax
p 2.8162 0.217 6.3375 0.150 / /

Kmax
p 2 0.174 61 0.065 / /

Mmax
p 5.618 0.174 206.803 0.075 / /

Right Amygdala
Est (“+”) P (“+”) Est (“–”) P (“–”) Est (Diff) 95% CI (Diff)

h2 0.3315 0.043 0.5067 0.059 0.1752 (0.0000, 0.6651)
c2 0.0139 / 0.1087 / 0.0948 (0.0000, 0.4813)
Tmax
p 3.5229 0.274 6.6650 0.063 / /

Kmax
p 3 0.272 91 0.020 / /

Mmax
p 9.543 0.247 343.952 0.020 / /
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Chapter 4

Multivariate Genetic Inference

In this chapter, we extend the univariate heritability inference approach discussed
in Section 3.4 to the multivariate case. The multivariate general linear model ac-
counting for multiple phenotypes or a high-dimensional phenotype is established,
the unknown phenotypic and genetic correlations underlying the phenotypic traits
are estimated, and then the hypothesis of zero genetic correlation is tested. We
investigate two multivariate inference approaches including bivariate LR-SD, the
generalization of univariate LR-SD described in Section 3.4, and correlation mean
difference to analyze the genetic effects. During the analysis, we only take twins
and singletons into consideration.

4.1 The General Linear Model

Assume that there are J phenotypes (or J phenotypic elements for a high-dimensional
phenotype) considered for the multivariate modeling. Suppose the sample contains
totally n subjects, as stated in Section 3.1, including nMZ MZ twins (1

2nMZ pairs),
nDZ DZ twins (1

2nDZ pairs) and nS singletons. In this chapter, we require an ad-
ditional index k to account for the different phenotypes jointly modeled. For a
particular voxel, the voxel-wise data vector for phenotype k is denoted as Y(k)

(k = 1, . . . , J) by eliminating the voxel index r. We suppose the number of covari-
ates included for the phenotype k is pk−1. Generalizing the univariate GLM model
(3.1) for a single phenotype with the data vector Y(k) to the multivariate case yields
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the multivariate GLM with respect to all these J phenotypes:
Y(1)

...
Y(J)

 =


X(1)β(1) + ε(1)

...
X(J)β(J) + ε(J)



=


X(1) · · · 0
... . . . ...
0 · · · X(J)



β(1)

...
β(J)

+


ε(1)

...
ε(J)

 ,
which can be simply written as

Y = Xβ + ε, (4.1)

where Y = (Y(1), . . . ,Y(J))T is an nJ-vector of nJ observations, the design matrix
X is a block-diagonal design matrix with blocks specified as X(k) (k = 1, . . . , J),
which is corresponding to phenotype k, β = (β(1), . . . ,β(J))T is a column vector of∑J
k=1 pk regression coefficients, and the error vector ε = (ε(1), . . . , ε(J))T is assumed

to be normally distributed with mean 0 and variance-covariance matrix V. The
covariance matrix V has the structure of

V =


V(1) · · · C(1J)

... . . . ...
C(J1) · · · V(J)

 ,

where each diagonal block V(k) is the phenotypic variance matrix associated with
phenotype k, and the off-diagonal covariance matrix C(kk′) for a pair of phenotypes
k and k′ (k 6= k′ and k, k′ = 1, . . . , J) can be analogously constructed with a similar
structure as V(k) (see details below). Since the statistical analysis of V(k) in terms
of variance components for phenotype k has been explicitly discussed in Chapter 3,
we will concentrate on the investigation of the lower triangular part of the symmet-
ric variance-covariance matrix V: C(kk′) (k > k′ and k, k′ = 1, . . . , J) in this chapter.

Given the subject type indicator function T (·) mapping the subject index to subject
type (see Section 3.1 for more details), we can use the covariance for different paired
response variables to construct C(kk′). Concerning the simplest bivariate case of two
observed trait variables Y(k)

i,j and Y(k′)
i,j from the same subject i with type index j

for two phenotypes k and k′, the covariance between these two data variables gives
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the within-subject cross-phenotype covariance:

CovY(kk′) = Cov

Y(k)
i,j

Y(k′)
i,j



=

 σ2
k σkσk′ρ

(kk′)
P

σkσk′ρ
(kk′)
P σ2

k

 , (4.2)

where σ2
k = A(k) + C(k) + E(k) is the phenotypic variance for phenotype k with the

accompanying variance components A(k), C(k) and E(k), as introduced in Section
3.1, and ρ(kk′)

P denotes the phenotypic correlation between the paired phenotypes k
and k′ measuring the overall genetic and environmental relationships between these
two phenotypes (Falconer and Mackay, 1996).

Concerning different subjects as well as paired phenotypes, the between-subject
cross-phenotype covariance matrices can be constructed. As the above within-
subject cross-phenotype covariance can be partitioned into genetic and environ-
mental components, the cross-phenotype covariance between a pair of subjects can
be derived based on the extent of genetic similarity between the paired subjects.
For MZ twin pair j (j = 1, . . . , 1

2nMZ), T (2j − 1) = T (2j) = MZ. Since MZ twins
have identical genotypes, the between-subject covariance between phenotypes k and
k′ for MZ twins is derived as

CovMZ(kk′) = Cov

Y(k)
2j−1,j

Y(k′)
2j,j

 = Cov

 Y(k)
2j,j

Y(k′)
2j−1,j



=

 σ2
k σkσk′hkhk′ρ

(kk′)
G

σkσk′hkhk′ρ
(kk′)
G σ2

k′

 , (4.3)

where hk represents the square root of heritability for phenotype k, ρ(kk′)
G denotes the

genetic correlation between the paired phenotypes k and k′ (see details below in the
coming section), and the cross-phenotype covariance between MZ twins is coming
from Equation (4.6) below. The genetic correlation measures the genetic association
between these two phenotypes by quantifying the genetic variation common to both
phenotypes (Glahn et al., 2012; Falconer and Mackay, 1996). For DZ twin pair
j (j = 1

2nMZ+1, . . . , 1
2(nMZ+nDZ)), T (2j−1) = T (2j) = DZ, and the corresponding

between-subject cross-phenotype covariance between phenotypes k and k′ for DZ
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twins is

CovDZ(kk′) = Cov

Y(k)
2j−1,j

Y(k′)
2j,j

 = Cov

 Y(k)
2j,j

Y(k′)
2j−1,j



=

 σ2
k

1
2σkσk′hkhk′ρ

(kk′)
G

1
2σkσk′hkhk′ρ

(kk′)
G σ2

k′

 (4.4)

owing to the averagely 50% commonly shared genes for DZ twins (Falconer and
Mackay, 1996). For a pair of unrelated individuals i and i′ (i 6= i′ and i, i′ = 1, . . . , n)
with subject type index of j and j′ respectively, their between-subject covariance
between the paired phenotypes k and k′ is expressed as

CovUN(kk′) = Cov

Y(k)
i,j

Y(k′)
i′,j′

 = Cov

Y(k)
i′,j′

Y(k′)
i,j



=
(
σ2
k 0

0 σ2
k′

)
(4.5)

because of the independence between the unrelated subjects, where the formation
of the possible unrelated subject pairs is as described in Section 3.1.

Based on these cross-phenotype covariance matrices including the within-subject
cross-phenotype covariance (4.2) for individuals and between-subject cross-phenotype
covariances (4.3), (4.4) and (4.5) for paired subjects from the MZ, DZ and UN
(the unrelated) groups, the n-by-n block-diagonal cross-phenotype covariance mat-
rix C(kk′) has the structure of

C(kk′) =



Q(kk′)
MZ · · · · · · · · · · · · · · · 0
... . . . ...
... Q(kk′)

MZ
...

... Q(kk′)
DZ

...
... . . . ...
... Q(kk′)

DZ
...

0 · · · · · · · · · · · · · · · Q(kk′)
S


,

where the diagonal blocks of Q(kk′)
MZ , Q(kk′)

DZ and Q(kk′)
S for phenotypes k and k′ are
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specified with the expressions as follows:

Q(kk′)
MZ = σkσk′

 ρ
(kk′)
P hkhk′ρ

(kk′)
G

hkhk′ρ
(kk′)
G ρ

(kk′)
P

 ,

Q(kk′)
DZ = σkσk′

 ρ
(kk′)
P

1
2hkhk′ρ

(kk′)
G

1
2hkhk′ρ

(kk′)
G ρ

(kk′)
P

 ,

Q(kk′)
S = σkσk′


ρ

(kk′)
P · · · 0
... . . . ...
0 · · · ρ

(kk′)
P


= σkσk′ρ

(kk′)
P I,

for MZ twins, DZ twins and singletons respectively, where I is the nS × nS identity
matrix. For each pair of phenotypes, there are 1

2nMZ Q(kk′)
MZ blocks for 1

2nMZ MZ
twin pairs at the top of diagonal blocks, then 1

2nDZ Q(kk′)
DZ blocks for 1

2nDZ DZ
twin pairs, and then a Q(kk′)

S block for all singletons in the end. As detailed in
Section 3.4, heritability h2

k (k = 1, . . . , J) for phenotype k can be estimated and
tested using univariate LR-SD and LRT respectively, whereas the estimation of
other unknown parameters and the inference on genetic correlation ρ

(kk′)
G (k > k′

and k, k′ = 1, . . . , J) for the paired phenotypes k and k′ still need to be investigated
and are the main concerns of this chapter.

Phenotypic and Genetic Correlations

The phenotypic correlation ρ(kk′)
P measures the correlation coefficient between a pair

of phenotypes k and k′ . Similar to decomposing the phenotypic variance into genetic
and environmental components, the phenotypic correlation can also be partitioned
into the additive genetic ρ(kk′)

G and environmental, denoted as ρ(kk′)
E , parts, where

the genetic correlation is conceptualized as the correlation coefficient between the
common genetic influences underneath the paired traits considered (Searle, 1961;
McGuffin et al., 2004).

By analogy with the decomposition of phenotypic variance σ2
k = Ak + Ck + Ek for

phenotype k, the within-subject covariance between two phenotypes k and k′ with
observations Y(k)

i,j and Y(k′)
i,j can also be partitioned into the genetic and environ-
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mental components:
Cov(Y(k)

i,j ,Y
(k′)
i,j ) = CovG + CovE,

which is equivalent to

σkσk′ρ
(kk′)
P =

√
AkAk′ρ

(kk′)
G +

√
(σ2
k −Ak)(σ2

k′ −Ak′)ρ
(kk′)
E

= σkσk′hkhk′ρ
(kk′)
G + σkσk′

√
(1− h2

k)(1− h2
k′)ρ

(kk′)
E (4.6)

if the covariances are expressed in terms of phenotypic, genetic and environmental
correlations. Therefore, the decomposition of the within-subject cross-phenotype
covariance leads to the function of phenotypic correlation, which is comprised of
heritabilities, genetic and environmental correlations and can be written as

ρ
(kk′)
P = hkhk′ρ

(kk′)
G +

√
(1− h2

k)(1− h2
k′)ρ

(kk′)
E . (4.7)

The formula of genetic correlation can also be derived and expressed as

ρ
(kk′)
G = CovG√

AkAk′
.

This genetic correlation for quantitative traits is important in quantitative genetics
for understanding the evolutionary process and predicting the genetically related
response of traits, which is independent of the heritability of the paired phenotypic
traits. That is, no matter how heritable the two traits are, the genetic correlation
could be anywhere from -1 to 1; a high genetic correlation indicates that the genes
found to have genetic influence on one trait are very likely to be associated with
another, while a zero genetic correlation implies the genetic influence on one trait
is not associated with that on another trait (McGuffin et al., 2004). However, when
either trait heritability is exactly zero, the genetic correlation should be zero as well
since there are no genetic effects.

Endophenotype Ranking Value

To study the neuropsychiatric diseases, particularly to understand the complex dis-
eases, the key thing is finding the appropriate phenotypes. The endophenotypes
were proposed to act as the intermediate phenotypes linking between illness and
genotype (Goldstein and Klein, 2014). An endophenotype is conceptualized as the
internal heritable characteristic that is measurable but not always observable, and
must be genetically associated with the illness, however, it is difficult to express it
precisely in the mathematical form. The optimal endophenotypes are less hetero-
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geneous and can also be found in unaffected relatives. Although the endophenotypes
are defined to be state-independent, people use them to predict the clinical states
and outcomes (Gottesman and Gould, 2003; Gotlib and Hamilton, 2012).

The endophenotype ranking value (ERV) is an index measuring the potential ge-
netic utility of the endophenotype for a given illness, which varies between 0 and
1 with higher value representing stronger genetic influence. The ERV can be used
to efficiently assess and exhaustively rank a large number of potential neuroima-
ging endophenotypes, and is easily applicable to any heritable diseases and relevant
traits. The identification of possible endophenotypes can be done by assessing the
ERV before conducting the molecular genetic analysis (Glahn et al., 2012; Gotlib
and Hamilton, 2012).

The ERV for a given pair of phenotypes k and k′ is defined as the absolute value
of the product of the square root of two heritabilities (hk and hk′) and the genetic
correlation

(
ρ

(kk′)
G

)
for the paired phenotypes k and k′, which can be expressed in

a formula:
ERV(kk′) =

∣∣hkhk′ρ(kk′)
G

∣∣ (4.8)

(Glahn et al., 2012). The value of ERV increases while either heritability of these
two phenotypes raises or the genetic correlation between this pair of phenotypes
enlarges. The definition of the ERV quantity balances the genetic strengths for the
paired phenotypes by importing the measure of their genetic relationship ρ(kk′)

G .

4.2 Accelerated Multivariate Heritability Analysis

The idea of constructing linear regression model with SD’s, estimating unknown
variance components A, C and E using NNLS algorithm in the univariate her-
itability analysis for a single observable trait (see details in Section 3.4) can be
analogously applied to the multivariate modeling of multiple phenotypes altogether.
This section contributes to the model construction and parameter inference for the
bivariate case and the generalization from the bivariate modeling to multivariate
modeling is fairly straightforward.

4.2.1 Bivariate Linear Regression with Squared Differences

In this section, the univariate LR-SD method is extended to be used for bivariate
inference with a pair of phenotypes. Compared with the univariate modeling, the
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bivariate case can similarly build the linear regression model using the bivariate
SD’s that can be calculated from different phenotypes within individuals or between
subjects. To take the subject-specific variability into consideration, the between-
subject covariates are measured and included in the multivariate GLM (4.1).

Linear Regression Model

As stated above in Section 3.4.1, for each phenotype, the differences among subjects
arisen with respect to the included covariates may lead to the unwanted between-
subject variation that needs to be controlled. The within-phenotype differences
explained by the covariates or cross-phenotype mean variation should be excluded
prior to the later analysis (if possible) so that the genetic effects will not be con-
founded with these redundant nuisance effects during the statistical analysis.

Moreover, the variances of unobservable subject-specific errors for distinct pheno-
types may differ substantially, and the use of the phenotypic datasets with different
variation may result in confounding and possibly lead to misleading conclusions.
This problem is described as variance instability, and the purpose of normalization
is to remove the non-negligible variation of the phenotypic variances and resolve
the instability of variance. For each phenotype, we attempt to further variance-
normalize the derived demeaned data (or residual) by dividing the residual by its
sample standard deviation (a scalar quantity) to account for different variances in
the residuals obtained from multiple phenotypes. This variance normalization deals
with the probable variation in phenotypic variances and allows those residuals to
be compared in the same scale. The variance-normalized (or scaled) residual is a
quotient, which is written as

ẽ(k) = e(k)

s
(
e(k)

) (4.9)

for phenotype k (k = 1, . . . , J) from all subjects, where the residual using OLS is
expressed as

e(k) = Y(k) −X(k)(X(k)TX(k))−1X(k)TY(k),

and s
(
e(k)

)
is the sample standard deviation of e(k). The key reason of applying

variance normalization is to dispose the disagreement between phenotypes in terms
of their variances. Even though it is suggested to variance-normalize the residual
e(k) in order to obtain unit variance, the step of variance normalization can be
omitted if the variances of phenotypic data appear to be indistinguishable and the
potential variation in phenotypic variances seems non-existent, and thus phenotypic
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variance σ2
k will be kept for generality in the later derivation.

Consider the bivariate modeling of J = 2 phenotypes. We denote the associated
data vectors from two phenotypes as Y(1) and Y(2), and then the multivariate GLM
model (4.1) is simply expressed as

(
Y(1)

Y(2)

)
=
(

X(1) 0
0 X(2)

)(
β(1)

β(2)

)
+
(
ε(1)

ε(2)

)
,

(
ε(1)

ε(2)

)
∼ N

((
0
0

)
,

(
V(1) C(12)

C(21) V(2)

))
.

Prior to the construction of linear regression model using bivariate SD’s for inference,
each phenotypic data vector Y(k) (k = 1, 2) is mean-centered (covariate-adjusted)
and variance-normalized by computing the scaled residual with Equation (4.9), and
the resulting scaled residuals will be treated as the observed data for the later linear
regression model construction with bivariate SD’s after normalization. For simpli-
city of notation going forward, we write Y(k) instead of ẽ(k) for the normalized data.
This represents an assumption that each entry of the phenotypic (or element-wise
phenotypic) data vector Y(k) has zero mean and unit variance after data transform-
ation using mean-centering and variance normalization; we neglect any correlation
induced by using these data normalization methods.

To analyze the phenotypic correlation, we compute the within-subject bivariate SD’s
using the data points of the two phenotypes from a single subject and employ the
within-subject cross-phenotype covariance matrix (4.2) to calculate the expected
value of each of these within-subject SD’s:

E
[
(Y(1)

i,j −Y(2)
i,j )2

]
= Var

(
Y(1)
i,j −Y(2)

i,j

)
= σ2

1 + σ2
2 − 2σ1σ2ρ

(12)
P (4.10)

for the subject i with type index j.

For the analysis of genetic correlation, we consider computing each between-subject
bivariate SD using the data from different subjects and across paired phenotypes,
where the between-subject SD’s can be further separated into 3 groups of MZ, DZ
and UN (unrelated subject pairs). The between-subject cross-phenotype covariance
matrices for MZ twin pairs (4.3), DZ twin pairs (4.4) and the unrelated subject
pairs (4.5) are utilized with the use of the basic properties of variance operator to
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compute the expectations of these 3 groups of between-subject SD’s; those are

E
[
(Y(1)

2j−1,j −Y(2)
2j,j)

2
]

= Var
(
Y(1)

2j−1,j −Y(2)
2j,j

)
= σ2

1 + σ2
2 − 2σ1σ2h1h2ρ

(12)
G (4.11)

for MZ twin pair j (j = 1, . . . , 1
2nMZ),

E
[
(Y(1)

2j−1,j −Y(2)
2j,j)

2
]

= Var
(
Y(1)

2j−1,j −Y(2)
2j,j

)
= σ2

1 + σ2
2 − σ1σ2h1h2ρ

(12)
G (4.12)

for DZ twin pair j (j = 1
2nMZ+1, . . . , 1

2(nMZ+nDZ)), and for the remaining unrelated
subject pair of Yi,j and Yi′,j′ ,

E
[
(Y(1)

i,j −Y(2)
i′,j′)

2
]

= Var
(
Y(1)
i,j −Y(2)

i′,j′

)
= σ2

1 + σ2
2 (4.13)

for the paired subjects i and i′ with type indices of j and j′ respectively.

Equations (4.10), (4.11), (4.12) and (4.13) describe the expected values for all n2

bivariate SD’s between the paired phenotypes within or between subjects. As we are
more concerned about the phenotypic and genetic correlations, we further attempt
to take the difference between (4.10), (4.11), (4.12) and (4.13) by subtraction so
as to exclude the nuisance term of σ2

1 + σ2
2 and hopefully improve the estimation

accuracy. For the estimation of phenotypic correlation ρ
(12)
P , the mean difference

between cross-phenotype SD’s for the UN group and within-subject cross-phenotype
SD’s, i.e., (4.13)− (4.10), is calculated and written as

E
[
(Y(1)

i′,j′ −Y(2)
i′′,j′′)

2 − (Y(1)
i,j −Y(2)

i,j )2
]

= E
[
(Y(1)

i′,j′ −Y(2)
i′′,j′′)

2
]
− E

[
(Y(1)

i,j −Y(2)
i,j )2

]
= 2σ1σ2ρ

(12)
P , (4.14)

where i′ and i′′ represent a pair of unrelated subjects with type indices of j′ and j′′

from the UN group, and the subject i with index j denotes an arbitrary individual
within the sample. While for the analysis of genetic correlation ρ

(12)
G , the mean

differences between cross-phenotype SD’s for the UN group and those for twin pairs
of MZ and DZ, i.e., (4.13) − (4.11) and (4.13) − (4.12) for the MZ and DZ groups
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respectively, are derived with the expression of

E
[
(Y(1)

i′,j′ −Y(2)
i′′,j′′)

2 − (Y(1)
2j̄−1,j̄ −Y(2)

2j̄,j̄)
2
]

= E
[
(Y(1)

i′,j′ −Y(2)
i′′,j′′)

2
]
− E

[
(Y(1)

2j̄−1,j̄ −Y(2)
2j̄,j̄)

2
]

=


2σ1σ2h1h2ρ

(12)
G for MZ twins

σ1σ2h1h2ρ
(12)
G for DZ twins

(4.15)

where i′ and i′′ represent a pair of unrelated subjects with type indices of j′ and j′′,
and 2j̄ − 1 and 2j̄ are twins from the pair j̄ regardless of MZ or DZ.

Therefore we can specify the mean structure of two linear regression models with
bivariate SD’s for the inference of correlations, one for phenotypic correlation using
Equation (4.14) with n(n2 − n− nMZ − nDZ) observations:

E


(Y(1)

1,1 −Y(2)
3,2)2 − (Y(1)

1,1 −Y(2)
1,1)2

...
(Y(1)

n−1,0 −Y(2)
n,0)2 − (Y(1)

n,0 −Y(2)
n,0)2

 =


2
...
2

(σ1σ2ρ
(12)
P

)
,

and another for genetic correlation using Equations (4.15) with totally (nMZ +
nDZ)(n2 − n− nMZ − nDZ) observations:

E



(Y(1)
1,1 −Y(2)

3,2)2 − (Y(1)
1,1 −Y(2)

2,1)2

...
(Y(1)

n−1,0 −Y(2)
n,0)2 − (Y(1)

nMZ−1, 1
2nMZ

−Y(2)
nMZ,

1
2nMZ

)2

(Y(1)
1,1 −Y(2)

3,2)2 − (Y(1)
nMZ+1, 1

2nMZ+1 −Y(2)
nMZ+2, 1

2nMZ+1)2

...
(Y(1)

n−1,0 −Y(2)
n,0)2 − (Y(1)

nMZ+nDZ−1, 1
2 (nMZ+nDZ) −Y(2)

nMZ+nDZ,
1
2 (nMZ+nDZ))

2


=



2
...
2

1
...
1


(
σ1σ2h1h2ρ

(12)
G

)
.
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For simplicity, these two linear regression models with cross-phenotype bivariate
SD’s can be simply denoted as

E
[
D(12)

P

]
= Z(12)

P η
(12)
P ,

E
[
D(12)

G

]
= Z(12)

G η
(12)
G ,

where η(12)
P = σ1σ2ρ

(12)
P and η(12)

G = σ1σ2h1h2ρ
(12)
G .

4.2.2 Parameter Estimation

The estimation of the unknown parameters η(12)
P and η(12)

G is made with the simple
OLS approach. The resulting OLS estimates η̂(12)

P and η̂(12)
G can be further divided

by the terms of σ̂1σ̂2 and σ̂1σ̂2ĥ1ĥ2 (when ĥ2
k 6= 0 (k = 1, 2)) separately to yield the

bivariate LR-SD estimates of phenotypic and genetic correlations, expressed as

ρ̂
(12)
P = η̂

(12)
P
σ̂1σ̂2

, (4.16)

ρ̂
(12)
G = η̂

(12)
G

σ̂1σ̂2ĥ1ĥ2
, (4.17)

where σ̂k and ĥk (k = 1, 2) are the estimates of phenotypic standard deviation and
the square root of heritability obtained from the univariate LR-SD method.

4.2.3 Hypothesis Testing

The heritability measuring the genetic sources affecting a phenotype is generally of
more concern, and the genetic correlation describing the commonly shared genetic
causes between the paired phenotypes is also the parameter of interest. With regard
to Formula (4.8) for the computation of ERV, the ERV quantity has a non-zero value
when both genetic correlation and heritabilities are non-zero and vice versa. For each
pair of phenotypes, testing the null hypothesis H0 : ρ(12)

G = 0, h2
1 = 0, or h2

2 = 0 is
the equivalent of assessing the statement of ERV(12) = 0, which gives the null hy-
pothesis H0 : ERV(12) = 0 that needs to be examined during the significance testing.

Regarding the selection of test statistic, we firstly consider using the LRT statistic
by comparing the fit of the null model and that of the alternative model, as stated
in Section 3.4.3, with the expression of

T(12)
1 = −2×

[
`(ÊRV

(12)
0 |Y)− `(ÊRV

(12)
1 |Y)

]
,
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where ÊRV
(12)
0 and ÊRV

(12)
1 are estimated from the null and alternative models

respectively. However, this commonly used LRT statistic is computationally very
intensive for moderate to large sample sizes and nearly infeasible for the use of
permutation inference. Therefore, we consider to employ the ERV estimator:

T(12)
2 = ÊRV

(12)
,

as an alternative test statistic. The validity of this test statistic will be investigated
with simulations in the later section.

4.2.4 Permutation Framework

The exact sampling distribution of the chosen test statistic (either the LRT stat-
istic or ERV estimator) under the null hypothesis H0 : ERV(12) = 0 is unknown.
The permutation test provides a simple way to estimate the exact null distribu-
tion of these test statistics. When the null hypothesis is true, the between-subject
cross-phenotype covariance matrices for MZ and DZ twins are equivalent, and thus
exchangeable. By randomly shuffling the labels of MZ and DZ for those between-
subject cross-phenotype covariance matrices in the multivariate GLM model (4.1),
we generate a new variance-covariance matrix V within the permuted GLM model
that should look like the original one, assuming the null hypothesis is true. The
final step of our permutation scheme is to construct the empirical null distribution
and the ranking of the original value among all shuffled values of the test statistic
gives the permutation-based p-value that can be used to interpret the test statistic
and quantify the significance of the test.

4.2.5 Simulation-based Analysis

This section contributes to the simulation-based evaluation of the bivariate LR-SD
method in terms of estimation accuracy with different simulation settings. The
newly proposed test statistic of the ERV is also examined with simulations.

Simulation Setting

We start the Monte Carlo simulation evaluations by setting up the simulation set-
tings. Consider there are a pair of phenotypes with distinct phenotypic variances
of σ2

1 = 1 and σ2
2 = 100 and with different phenotypic averages generated from a

uniform distribution on the interval [0, 100], and assume that these two phenotypic
traits have identical magnitude of heritability. The selected settings of heritability
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and normalized variance components (A,C,E)T are shown in Table 4.1. The above
1D simulation results show that with the same amount of unique environmental
factor E the existence of common environmental factor C lowers the estimation ac-
curacy and decreases the statistical power, so we consider the (A,C,E)T settings
with the strongest effect size, i.e., the largest heritability, by setting C = 0 for each
parameter value of E. As mentioned earlier, the E effect is always existent and often
large in reality, hence three settings of E including E = 1

2 ,
3
4 , 1 are chosen. In Table

4.2, the genetic and phenotypic correlations are shown in pairs. The correlation coef-
ficient ranges from -1 to 1, so we set genetic correlation to be ρG = −1,−0.5, 0, 0.5, 1
to account for its variability. Because of Equation (4.7) and the constraint on cor-
relations (between -1 and 1), we assign ρP = −0.5, 0, 0.5 to phenotypic correlation.
There are entirely 3 samples considered of size n = 100, 200, 400, where each sample
includes twin data only, and MZ and DZ twin pairs are the same in number (e.g., the
sample of size n = 100 contains 25 MZ and 25 DZ twin pairs). In total, nRlz = 1000
realizations were performed, and N = 1000 permutations were implemented for each
realization.

Table 4.1: 3 parameter settings of heritability h2 and normalized variance compon-
ents (A,C,E)T.

h2 A C E

0 0 0 1
1/4 1/4 0 3/4
1/2 1/2 0 1/2

Table 4.2: The entire 13 parameter settings of genetic and phenotypic correlations
in pairs of (ρG, ρP).

ρG -1 -1 -0.5 -0.5 -0.5 0 0 0 0.5 0.5 0.5 1 1
ρP -0.5 0 -0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5 0 0.5

Evaluation Results

In this section, the simulation-based evaluation results for bivariate LR-SD are
shown in terms of estimation accuracy and statistical validity.
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Figure 4.1: The MSE comparison of bivariate LR-SD for the estimation of pheno-
typic correlation ρP for different heritability settings (shown in Table 4.1): h2 = 0
(‘b’: blue), h2 = 0.25 (‘g’: green) and h2 = 0.5 (‘r’: red). Comma ordered pairs on
x-axis correspond to the paired values of genetic correlation ρG and ρP, i.e., (ρG, ρP);
see Table 4.2 for exact parameter settings used.

Estimation Accuracy Figure 4.1 illustrates the MSE comparison of the estim-
ators for phenotypic correlation ρP using bivariate LR-SD for different parameter
settings. Compared with the true ρP magnitudes, the measures of MSE for these ρP
estimator are negligible. In Figure 4.2, different simulation settings are compared
in terms of the MSE values for the estimator for genetic correlation ρG obtained us-
ing bivariate LR-SD. It is shown that the realizations generated with comparatively
smaller heritability values have relatively larger MSE values, which implies that the
resulting ρG estimator is more biased or more variable for less heritable phenotypes.
The comparison of Figures 4.1 and 4.2 indicates that bivariate LR-SD can derive
more accurate ρP estimates than ρG estimates, which can be seen from Equations
(4.16) and (4.17) computing the estimators for ρP and ρG that the additional estim-
ation for two heritabilities using bivariate LR-SD can bring more bias or variation
and result in less correct estimator for ρG. As expected, Figures 4.1 and 4.2 both
depict that a larger sample size induces better estimation accuracy with smaller
MSE value.
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Figure 4.2: The MSE comparison of bivariate LR-SD for the estimation of genetic
correlation ρG for different heritability settings (shown in Table 4.1): h2 = 0 (‘b’:
blue), h2 = 0.25 (‘g’: green) and h2 = 0.5 (‘r’: red). Comma ordered pairs on x-axis
correspond to the paired values of ρG and phenotypic correlation ρP, i.e., (ρG, ρP);
see Table 4.2 for exact parameter settings used.
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Statistical Validity Figure 4.3 shows the permutation-based rejection rate, ex-
pressed as a percentage, for testing the null hypothesis H0 : ERV = 0 using the
test statistic of the ERV estimator for different parameter settings shown in Tables
4.1 and 4.2. The red dash-dotted lines in Figure 4.3 represent the lower and upper
bounds of the 95% binomial proportion confidence interval. The null hypothesis is
true when ERV = 0, or equivalently, when h2 = 0 or ρG = 0. In Figure 4.3, the
simulation settings with h2 = 0 are shown in the blue bars, and the settings with
ρG = 0 are shown in the middle with x-axis markers (0, ∗). For nearly all simulation
settings, the rate of rejecting the null hypothesis when it is actually true, i.e., the
estimated FPR, lies within or below the 95% binomial proportion confidence inter-
val, which reveals that the test is valid with the use of the ERV statistic. Other
simulation results also indicate that the ERV estimator has small bias and variance
with negligible MSE magnitude for all simulation settings, which encourages the use
of the ERV as the test statistic.

4.2.6 Real Data Analysis

Aside from fMRI data, the univariate and bivariate LR-SD approaches can also
be applied to any other type of neuroimaging data. In this section, we apply the
bivariate LR-SD method to the diffusion tensor imaging (DTI) data for the genetic
analysis. With the use of a recently developed diffusion MRI technology, DTI,
based on the diffusion anisotropy of water molecules, is the most commonly used
non-invasive technique studying the cerebral white matter structure and is sensitive
to fiber tract integrity and white matter microstructure. The sensitive and relatively
reliable measure of fractional anisotropy (FA), derived from DTI images, is often
used to describe the anisotropic degree of a diffusion process.

Data Acquisition

The Human Connectome Project (HCP), with the publicly and freely available data-
sets supplied for the studies of brain structure, function and connectivity, provides
data from various imaging modalities including structural MRI, fMRI and diffusion
MRI. The recent HCP 500 Subjects Release 1 includes the 3T MR imaging data from
523 healthy adults. Prior to the genetic inference, we extract the data from twins
out of these 523 subjects to form a sample of n = 178 subjects including nMZ = 98
MZ twins (49 pairs) and nDZ = 80 DZ twins (40 pairs) from 89 families. Among
these 178 subjects, there are 126 females and 52 males with an age range of 22–36

1http://www.humanconnectome.org/documentation/S500/
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Figure 4.3: The comparison of the rejection rate (in percent) for the null hypothesis
H0 : ERV = 0 at level α = 0.05 using the ERV as the test statistic for different her-
itability extents (shown in Table 4.1): h2 = 0 (‘b’: blue), h2 = 0.25 (‘g’: green) and
h2 = 0.5 (‘r’: red). Comma ordered pairs on x-axis correspond to the paired values
of ρG and ρP, i.e., (ρG, ρP); see Table 4.2 for exact parameter settings used. The red
dash-dotted lines show the lower and upper bounds of the 95% binomial proportion
confidence interval. The FPR for the null settings should be 0.05, but its estimates
can vary within the 95% binomial proportion confidence interval [0.0365, 0.0635] for
nRlz = 1000 simulations.
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(mean±SD : 29.8±2.9). With the introduction of the DTI image analysis process by
Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) 2, the raw
DTI scans were pre-processed and quality-controlled to achieve the regional data
for each subject. The FA images of 400 randomly selected healthy adults from 4
independently collected datasets, 100 from each, were used to create a common tem-
plate (Jahanshad et al., 2013). These FA images were aligned to the Johns Hopkins
University (JHU) DTI white matter atlas (Mori et al., 2008) using FSL 3. A target
image was created from these aligned images and skeletonized with tract-based spa-
tial statistics (TBSS) analysis (Smith et al., 2006), and then each HCP FA image
from the above-mentioned sample of n = 178 subjects can be projected onto the
template skeleton (Jahanshad et al., 2013). For each subject, totally 36 ROI’s were
parcellated from the ENIGMA template in ICBM space based on multi-subject JHU
white matter parcellation atlas (Mori et al., 2008), and mean FA for these ROI’s
was extracted as the regional phenotypic measure (Jahanshad et al., 2013). Both
univariate and bivariate LR-SD methods are employed for the estimation of genetic
factors including heritability and genetic correlation, the ERV test statistic is ad-
opted within the permutation framework to test the combined significance of the
genetic influences, and the FWE correction and FDR control of p-values are applied
to generate the FWE-corrected and FDR-controlled p-value images describing the
brain reginal connectivity.

Results

With the use of reginal mean FA values from those 36 ROI’s as the data from dif-
ferent phenotypic traits, we find non-zero heritability measures for all ROI’s with
a range of 0.04–0.85. Figures 4.4 and 4.5 illustrate the brain connectivity matrices
based on the FWE-corrected and FDR-controlled p-values for all ROI pairs respect-
ively. Among these 36 ROI’s, there are totally 36 × 35 = 1260 pairs of ROI’s (630
distinct) taken into consideration. The most significant FWE-corrected p-value is
0.001 with 3 significant ROI pairs, and the best attainable FDR is 0.014 with 199
ROI pairs found to be significant, which reveals that the FDR control possesses
more statistical power while the FWE correction detects more significant results.

2http://enigma.ini.usc.edu/protocols/dti-protocols/
3http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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Figure 4.4: The brain connectivity matrix in terms of the log transformed FWE-
corrected p-values (i.e., − log10(pFWE)) derived from 36 ROI’s and totally 36×35 =
1260 ROI pairs using their mean FA values as the regional measures. Each marker
on x and y axes corresponds to a ROI.
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Figure 4.5: The brain connectivity matrix in terms of the log transformed FDR-
controlled p-values (i.e., − log10(pFDR)) derived from 36 ROI’s and totally 36×35 =
1260 ROI pairs using their mean FA values as the regional measures. Each marker
on x and y axes corresponds to a ROI.
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4.3 Fast Multivariate Heritability Analysis

Heritability, the proportion of variability attributable to genetic sources, is a vital
quantitative genetic measure and, in particular, non-zero heritability is needed to
certify a trait as a “phenotype”. However heritability can also be used as a gen-
eral measure of biological validity, e.g., ranking different pre-processing techniques
by heritability of the resulting phenotypes. While such comparisons can be done
element-wise over a high-dimensional phenotype (e.g., by voxels or surface elements),
a whole-phenotype summary of element-wise multivariate heritability can simplify
the comparisons.

In this section, we investigate a simple measure of aggregate heritability that is
easy and extremely fast to compute and involves no ACE model fitting. We derive
analytical results that show this aggregate measure is closely related to the average
of element-wise heritability. In addition to validating our analytical results with
simulations, we illustrate this method on 22 different phenotypes based on the data
of 196 subjects from the publicly released Human Connectome Project (HCP) (Van
Essen et al., 2013), comparing the ranking of this fast aggregate method to the
slower traditional ACE-based estimates of average heritability.

4.3.1 Pair-wise Correlation and Aggregate Heritability

Assume that there are J elements in total in an fMRI data image from an ima-
ging twin study. For a specified high-dimensional phenotype, each data element
of this phenotype is treated as a single element-wise observable trait associated
with the univariate heritability inference, and thus we have entirely J element-wise
traits of this high-dimensional phenotype to be considered. As mentioned above,
Y(k) (k = 1, . . . , J) can denote the data vector of the element-wise trait k from
all subjects and the column data vector Y = (Y(1), . . . ,Y(J))T in the multivariate
GLM model (4.1) is comprised of the element-wise data vectors from all these J
elements.

We rearrange the data vector Y into a subject-by-element data matrix, where there
is one row for each subject and one column for each data element (e.g., voxel, surface
element, etc) with the notation of

Y = (Y(1), . . . ,Y(J)).
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Conventional heritability analyses work on a single univariate phenotypic trait, here
a single column. Our method then proceeds by computing the correlation coefficient
between rows, over phenotypic elements. That is, each twin pair (or subject pair)
generates one correlation coefficient r. If we write r̄MZ and r̄DZ as the averages
of MZ-pair and DZ-pair correlations respectively, then by analogy to Falconer’s
heritability estimate (3.8), we propose

AgHe = 2× (r̄MZ − r̄DZ) (4.18)

as the aggregate estimate of whole-phenotype heritability for this high-dimensional
phenotype and denote this aggregate heritability as “AgHe”.

4.3.2 Analytical Derivation of AgHe

As stated previously, the data normalization methods of mean-centering and vari-
ance normalization can be applied by calculating the scaled OLS residual for each
phenotype using Formula (4.9) before conducting the statistical analysis so as to
respectively correct for the possible misestimation due to failure to account for the
confounding covariates and phenotypic mean variation, and normalize the data to
unit variance to improve the computational stability with a fair comparison between
phenotypes. We again assume that all entries of the element-wise phenotypic data
vector Y(k) have zero mean after mean-centering and even have unit variance after
further variance-normalization; we neglect any correlation induced by mean center-
ing and variance normalization.

The computation of AgHe is equivalent to computing the pair-wise correlation. We
denote the pair-wise correlation for a pair of subjects i and i′ with type indices of
j and j′ to be rii′ , which is calculated as the correlation coefficient regarding all
element-wise phenotypic data between subjects i and i′ with the expression of

rii′ =
∑J
k=1(Y(k)

i,j − Ȳi,j)(Y(k)
i′,j′ − Ȳi′,j′)√∑J

k=1(Y(k)
i,j − Ȳi,j)2

√∑J
k=1(Y(k)

i′,j′ − Ȳi′,j′)2

=
∑J
k=1

∑J
k′=1(Y(k)

i,j −Y(k′)
i,j )(Y(k)

i′,j′ −Y(k′)
i′,j′)√∑J

k=1
∑J
k′=1(Y(k)

i,j −Y(k′)
i,j )2

√∑J
k=1

∑J
k′=1(Y(k)

i′,j′ −Y(k′)
i′,j′)2

.

Concerning 3 different groups of MZ twins, DZ twins and unrelated individuals
(UN), the average pair-wise correlation, denoted as r̄ regardless of the group type,
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for each group is then approximated and calculated by the formula below:

r̄ ≈
E
[∑J

k=1
∑J
k′=1(Y(k)

i,j −Y(k′)
i,j )(Y(k)

i′,j′ −Y(k′)
i′,j′)

]
√
E
[∑J

k=1
∑J
k′=1(Y(k)

i,j −Y(k′)
i,j )2

]√
E
[∑J

k=1
∑J
k′=1(Y(k)

i′,j′ −Y(k′)
i′,j′)2

]

≈
E
[∑J

k=1
∑J
k′=1(Y(k)

i,j −Y(k′)
i,j )(Y(k)

i′,j′ −Y(k′)
i′,j′)

]
E
[∑J

k=1
∑J
k′=1(Y(k)

i,j −Y(k′)
i,j )2

] ,

which is exact up to a routine Taylor approximation:

E
[B1
B2

]
≈ E [B1]

E [B2] (4.19)

for random variables B1 and B2. Suppose that f(B1,B2) = B1
B2

and set µB1 = E [B1]
and µB2 = E [B2]. According to the first-order multivariate Taylor series expansion
of f(·) about (B1,B2), a statistical approximation by dropping the remainder is

f(B1,B2) = f(µB1 , µB2) +
2∑
i=1

(Bi − µBi)f ′Bi
(µB1 , µB2) + Remainder

≈ f(µB1 , µB2) +
2∑
i=1

(Bi − µBi)f ′Bi
(µB1 , µB2)

where f ′Bi
denotes the first-order partial derivative with respect to Bi. Taking the

expectation of both sides to get E [f(B1,B2)] ≈ f(µB1 , µB2), i.e., Equation (4.19).

The utilization of Equations (4.10), (4.11), (4.12) and (4.13) describing the expect-
ations of within-subject cross-phenotype SD’s and between-subject cross-phenotype
SD’s for 3 different groups of subject pairs yields the simplification of the above
formula, and then the correlation averages for MZ twins (r̄MZ), DZ twins (r̄DZ) and
unrelated individuals (r̄UN) are derived with the expressions of

r̄MZ = wh2+ J
J−1wc

2−w{h2ρG}
1−wρP

, for MZ group

r̄DZ =
1
2wh

2+ J
J−1wc

2− 1
2w{h2ρG}

1−wρP
, for DZ group

r̄UN = 0, for UN group
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for mean-centered data, and

r̄MZ = h2+ J
J−1 c

2−{h2ρG}
1−ρP

, for MZ group

r̄DZ =
1
2h

2+ J
J−1 c

2− 1
2{h2ρG}

1−ρP
, for DZ group

r̄UN = 0, for UN group

for demeaned and variance-normalized data, where

h2 = 1
J

J∑
k=1

h2
k, c2 = 1

J

J∑
k=1

c2
k, σ2 = 1

J

J∑
k=1

σ2
k,

ρP = 2
J(J − 1)

∑
k>k′

ρ
(kk′)
P , {h2ρG} = 2

J(J − 1)
∑
k>k′

hkhk′ρ
(kk′)
G ,

wh2 = 1
J

J∑
k=1

(
σ2
r

/
σ2
)
h2
k, wc2 = 1

J

J∑
k=1

(
σ2
r

/
σ2
)
c2
k,

wρP = 2
J(J − 1)

∑
k>k′

σkσk′

σ2
ρ

(kk′)
P ,

w{h2ρG} = 2
J(J − 1)

∑
k>k′

σkσk′

σ2
hkhk′ρ

(kk′)
G .

These expressions show that the unrelated individuals have zero mean pair-wise cor-
relation after data normalization. As expected, the difference between MZ-pair and
DZ-pair mean correlations is associated with the genetic factors.

Therefore, the simplified analytical expressions of the AgHe formula (4.18) are de-
rived explicitly as

AgHe = wh2 − w{h2ρG}
1− wρP

after mean-centering, and

AgHe = h2 − {h2ρG}
1− ρP

after further variance normalization. After data transformation, the MZ-pair and
DZ-pair correlation averages differ by half the mean heritability summaries (variance-
weighted wh2 or unweighted h2 heritability averages) over phenotypic elements,
though shifted and scaled by w{h2ρG} and 1 − wρP for mean-centered data, or
{h2ρG} and 1 − ρP for demeaned and variance-normalized data. The validity of
these analytical results for AgHe is assessed with simulations later by comparing
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AgHe measure with the average heritability. As the data transformation method
of mean-centering only derives the AgHe formula that takes into account of the
element-wise variance variation by using the element-wise variances as the weights,
we consider comparing the AgHe measure to the variance-weighted heritability av-
erage in addition to the unweighted average.

4.3.3 Hypothesis Testing

If the element-wise multivariate heritability is zero overall, the aggregate heritabil-
ity must be 0 as well. A non-zero measure of AgHe indicates that there should be
some heritable elements. Hence we establish the null hypothesis H0 : AgHe = 0 for
multivariate hypothesis testing, which is equivalent to assessing the null hypothesis
H0 : r̄MZ = r̄DZ by comparing MZ and DZ groups in terms of their pair-wise correla-
tions. As the MZ and DZ twin pairs are mutually independent, a two-sample t-test
can be used to determine whether the means of MZ and DZ pair-wise correlations
differ significantly. The formula of this two-sample t-statistic is

t = r̄MZ − r̄DZ√
s2
MZ

( 1
2nMZ) + s2

DZ
( 1

2nDZ)

,

where s2
MZ and s2

DZ are sample variances on the basis of pair-wise correlations for MZ
and DZ groups respectively. The distribution of pair-wise correlation is unknown,
and thus the null distribution of this two-sample t-statistic can not be identified.
Since the normality assumption can not hold with this test statistic, we consider
adopting permutations to construct its empirical distribution and test the null hy-
pothesis, where the permutation approach often has better statistical power than
the parametric approaches.

4.3.4 Permutation and Bootstrapping Inferences

As stated in Section 2.5.2, the non-parametric permutation test exists for any test
statistic, regardless of whether or not its distribution is known, and can be used
for unbalanced designs. The observed data, here the pair-wise correlations, from
different twin pairs is labeled as MZ or DZ. Under the null hypothesis for this two-
sample testing, these labels are exchangeable, and the rearrangements of the MZ
and DZ labels yield permutations. For each permutation, the value of two-sample
t-statistic (t) is calculated using the permuted correlations. With the support of
permutations, the empirical null distribution of this two-sample t-statistic under
the null hypothesis is constructed and the corresponding permutation-based p-value
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is calculated in order to test if MZ and DZ groups are significantly different from
each other.

In addition to the permutation inference, the bootstrapping inference provides the
confidence interval, a supplement to determine rejecting the null hypothesis or not,
for mean correlation difference or AgHe for the comparison of MZ and DZ groups. As
detailed in Section 2.5.3, the procedure of bootstrapping resampling is to resample
twin pairs separately within MZ and DZ groups with replacement, and then the
data from the resampled MZ and DZ twin pairs form the bootstrap sample. This
resampling process is repeated several times until a sufficiently large number of
bootstrap replicates are obtained to yield the bootstrap distribution that can be
used for the construction of the confidence intervals. Here we use our proposed joint
bootstrap method to construct the bootstrapping confidence intervals for AgHe (see
Section 2.5.3).

4.3.5 Simulation-based Evaluations on Data Normalization

We now carry out Monte Carlo simulation to evaluate our analytical measure of
AgHe by comparing it to the heritability mean summaries of variance-weighted
and unweighted averages using the above-mentioned data normalization methods of
mean-centering only and mean-centering & variance-normalization separately.

Simulation Setting

Before conducting the simulations, different simulation settings should be configured
firstly. The considered sample is of medium size and assumed to be comprised of
nMZ = 50 MZ twins (25 pairs) and nDZ = 50 DZ twins (25 pairs), and n = 100 in
total. There are entirely 15 settings of the unknown parameters (A,C,E)T, which
are shown in Table 3.1. Consider J = 1000 element-wise traits with the heritability
occurrence of 50% over all these elements. The element-wise phenotypic variance is
assumed to vary by the element index from 1 to 1000, the element-wise phenotypic
averages are generated from an uniform distribution on the interval [0, 100], and the
phenotypic correlation is also set to vary with the element index ranging from 0.091
to 0.985 with zero genetic correlation for each pair of elements. Totally nRlz = 1000
simulations were performed for each setting.
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Results on Data Normalization

Figure 4.6 shows the simulation results, plotting the relative differences (or bias) of
AgHe associated with the variance-weighted (top) and unweighted (middle) heritab-
ility mean summaries, and the standard deviation for the AgHe estimator (bottom).
The standard deviation comparison of AgHe with mean-centering and with further
variance normalization in the bottom subfigure shows that these two data normal-
ization methods return fairly similar standard deviation for AgHe with the differ-
ence of 0.003–0.01. In the top and middle subfigures, the demeaned and variance-
normalized data always obtains smaller magnitudes of the bias than the demeaned
data during the comparisons between AgHe and the two heritability mean sum-
maries. While mean-centering & variance-normalization still experiences some bias,
these simulation results indicate that the data normalization approach including
both mean-centering and variance normalization should be more acceptable than
mean-centering only for computing the AgHe estimate to take advantage of the
relatively smaller bias between AgHe and heritability averages although the mean-
centered data can also provide a good approximation of the heritability mean sum-
maries using AgHe.

4.3.6 Real Data Application

We will demonstrate the ability of this correlation mean difference approach to
rank various phenotypes. Using analyses described in the pipelines paper (Glasser
et al., 2013), the imaging data of brain structure, function and connectivity were
pre-processed in different ways. The proposed aggregate heritability method is used
to rank the heritability of totally 22 phenotypes. As a comparison, we use an
ACE model fit (Chen et al., 2013) on each of these phenotypes, and then compute
the variance-weighted and unweighted mean measures concerning all element-wise
heritabilities. We also use permutation and bootstrapping inferences to get p-values
and confidence intervals for the aggregate and mean heritability measures.

Data Acquisition

As mentioned above, the HCP project acquired the structural, functional and dif-
fusion MRI data for the inference on brain structure, function and connectivity
from a conventional customized Siemens Skyra 3T scanner with high spatial and
temporal resolutions and differing distortions, where different pre-processing meth-
ods are required to be carried out to achieve optimal results for the later analysis
(Glasser et al., 2013). The specially designed minimal pre-processing pipelines, de-
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Figure 4.6: The analytical result of applying mean-centering only (‘b’: blue) is
compared with that derived using mean-centering & variance-normalization (‘y’:
yellow). The bias between AgHe and heritability mean summaries of the variance-
weighted (wh2) and unweighted (h2) measures are shown in the top and middle of
the figure respectively. The subfigure on the bottom shows the standard deviation
of the AgHe measure.
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scribed in the HCP pipelines paper (Glasser et al., 2013), were developed to combine
and analyze those HCP datasets obtained from multiple MRI neuroimaging mod-
alities together and finally offer the standardized HCP pre-processed data to the
community users. These pre-processing methods were applied to the HCP sample
including n = 196 healthy adults from 105 families, where there exist 32 MZ and 26
DZ twins (i.e., 16 and 13 pairs) and 138 non-twin siblings, and finally resulted in
various phenotypic measures (Van Essen et al., 2013). Two stages of inter-subject
alignment using the multimodal surface matching (MSM) method (Robinson et al.,
2013) were considered to be executed, where stage 1, denoted as “MSM 1”, uses the
sulcus map to align folding patterns that are consistent across subjects, and stage 2,
denoted as “MSM 2”, aligns the areal features including the myelin map and resting
state networks (RSNs) while ensuring that the average cortical areal size, shape,
and position reflect that of the typical subject.

With the use of area ratios and displacements, the areal features were measured and
analyzed on the spherical mesh by comparing the local cortical surface area after
folding-based registration with that after additional areal-feature-based registration.
The surface area ratio is a ratio of surface area of tiles on the sphere using MSM 1
to that using both MSM 1 and MSM 2 (written as “MSM 1+2”), and the displace-
ment is the spatial displacement across the surface of the sphere between MSM 1
and MSM 1+2 alignments. Other structural features were also analyzed including
sulcus, myelin, cortical thickness and cortical midthickness coordinates, all after
areal-feature-based alignment. Here, sulcus is a folding measure produced by the
FreeSurfer pipeline detailed in the HCP pipelines paper (Glasser et al., 2013), myelin
maps are as produced in the HCP pipelines paper based on T1-weighted (denoted
as “T1w”) and T2-weighted (denoted as “T2w”) structural scans using the ratio of
T1w/T2w, cortical thickness with the surface curvature regressed out is considered
to correct for folding so as to reduce the effects of folding on thickness, and cortical
midthickness coordinates are the xyz positions of the individual subjects’ midthick-
ness vertices after resampling to a standard mesh using MSM alignment (Glasser
et al., 2013).

The brain functional connectivity can be derived by simple correlation with mean
gray timecourse regressed out (MGTR) or partial correlation (PC). There are two
ways of generating individual subject time series, dual regression (DR) and eigen
regression (ER). For resting fMRI (rfMRI), the group average resting state PCA
series (Smith et al., 2014) was decomposed into 100 ICA components and regressed
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into individual subject resting state time series. After removing the mean gray
matter signal, time courses for each spatial component were correlated to generate
parcellated functional connectomes (100 × 100). In the task analyses, the ICA
components based on ICA decomposition were regressed into the task spatial maps,
the individual subjects’ task fMRI (tfMRI) contrast activation z-statistic maps, to
produce parcellated task maps with two dimensionalities of 100 and 200, where all
7 tasks and totally 86 HCP task contrasts were used.

Results

Tables 4.3, 4.4 and 4.5 report the estimates, 95% bootstrapping confidence inter-
vals with 1000 bootstrap replicates and permutation-based p-values derived using
1000 permutations of heritability mean summaries and AgHe for the resulting 6
HCP structural phenotypic measures, 12 HCP phenotypes related to functional con-
nectivity and measured with rfMRI, and 4 HCP task-related phenotypes measured
using tfMRI for all tasks respectively. Comparing the two heritability summaries
we find the variance-weighted average wh2 is generally higher than the unweighted
mean h2, suggesting that the elements with more variability over subjects are more
heritable. Concerning these 22 HCP phenotypes including brain structure, function
and connectivity, we find evidence for heritability using those three heritability sum-
mary measures in all phenotypes except a high-dimensional measure of functional
connectivity that was only significant for AgHe, and a structural measure of myelin
that was only significant using the unweighted mean. The AgHe measure closely
follows the results of unweighted and variance-weighted averages, and thus is com-
parable to those unweighted and variance-weighted heritability mean summaries,
supporting its utility as a quick screening heritability estimate.

In the upper part of Figure 4.7, the aggregate measure of heritability is compared to
both variance-weighted (right) and unweighted (left) means of traditional heritabil-
ity estimates in ranking the above-mentioned 22 phenotypes. There is a monotonic
relationship found between AgHe and these heritability mean summaries in terms
of the estimates. We also find the relationship between AgHe and variance-weighted
mean is stronger than that between AgHe and unweighted mean. In the lower part
of Figure 4.7, both heritability mean summaries are found to obtain strong signi-
ficance for most phenotypes, so does the AgHe measure. Notably, there is good
concordance in terms of the p-values between mean summaries and AgHe.

The comparison between mean summaries and AgHe in Tables 4.3, 4.4 and 4.5
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and Figure 4.7 implies that this extremely fast aggregate measure of heritability
is highly similar to the traditional but more computationally intensive mean her-
itability summaries obtained by fitting ACE model. This simple correlation mean
difference approach provides a simple omnibus test for multivariate heritability infer-
ence with a simple summary measure of AgHe that can be treated as a fast estimate
of the whole-brain heritability.

4.4 Summary of the Chapter

In this chapter, we have generalized the univariate LR-SD method to the bivari-
ate case for estimating genetic and phenotypic correlations, and we illustrate this
bivariate method with a real data application. Although the estimation accuracy
for bivariate LR-SD is not exactly as anticipated in simulations, the negligible MSE
and controlled FPR for the ERV estimator imply it as an adequate test statistic.
Moreover, we also have investigated a simple and rapid correlation mean differ-
ence approach for multivariate heritability analysis to assess the genetic differences
between MZ and DZ twins. There is a close relationship found between the resulting
aggregate heritability and the heritability mean summaries, suggesting AgHe to be
a fast screening measure of the whole-phenotype heritability for a high-dimensional
phenotype.
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Figure 4.7: The estimate (upper) and p-value (lower) comparisons between AgHe
and the variance-weighted (wh2) and unweighted (h2) mean summaries. The uni-
formly distributed jitter with the distribution of U(0.8, 1.2) was used to allow the
visualization of the many p-values near 10−3.
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Table 4.3: The estimates, permutation-based p-values derived using 1000 permuta-
tions and 95% CIs with 1000 bootstrap replicates for the unweighted (h2) and
variance-weighted (wh2) heritability mean summaries and AgHe for the 6 HCP
structural phenotypic measures.

Estimate 95% CI P-value

Surface Area Ratio
h2 0.181 (0.161, 0.200) 0.001
wh2 0.210 (0.183, 0.233) 0.001
AgHe 0.278 (0.179, 0.366) 0.001

Spatial Displacement
h2 0.347 (0.291, 0.374) 0.001
wh2 0.381 (0.317, 0.411) 0.001
AgHe 0.399 (0.236, 0.562) 0.001

Sulcus (FreeSurfer)
h2 0.164 (0.145, 0.188) 0.001
wh2 0.157 (0.140, 0.177) 0.001
AgHe 0.248 (0.185, 0.307) 0.001

Myelin (T1w/T2w)
h2 0.096 (0.078, 0.121) 0.009
wh2 0.089 (0.064, 0.127) 0.309
AgHe -0.020 (-0.223, 0.191) 0.573

Folding-corrected Cortical Thickness
h2 0.091 (0.076, 0.117) 0.042
wh2 0.093 (0.078, 0.119) 0.043
AgHe 0.066 (0.027, 0.105) 0.002

3D Cortical Midthickness Coordinates
h2 0.194 (0.171, 0.221) 0.001
wh2 0.199 (0.176, 0.223) 0.001
AgHe 0.249 (0.136, 0.359) 0.001
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Table 4.4: The estimates, permutation-based p-values derived using 1000 permuta-
tions and 95% CIs with 1000 bootstrap replicates for the unweighted (h2) and
variance-weighted (wh2) heritability mean summaries and AgHe for the 12 HCP
phenotypes related to functional connectivity. (to be continued on the next page)

Estimate 95% CI P-value

rfMRI (MGTR, DR, dim: 100, MSM 1+2)
h2 0.353 (0.273, 0.397) 0.001
wh2 0.375 (0.289, 0.423) 0.001
AgHe 0.367 (0.148, 0.587) 0.004

rfMRI (MGTR, DR, dim: 200, MSM 1+2)
h2 0.296 (0.234, 0.335) 0.001
wh2 0.325 (0.255, 0.369) 0.001
AgHe 0.350 (0.167, 0.533) 0.002

rfMRI (PC (ridgep = 1), DR, dim: 100, MSM 1+2)
h2 0.259 (0.211, 0.286) 0.001
wh2 0.290 (0.237, 0.318) 0.001
AgHe 0.350 (0.219, 0.483) 0.001

rfMRI (PC (ridgep = 1), DR, dim: 200, MSM 1+2)
h2 0.186 (0.161, 0.212) 0.003
wh2 0.232 (0.198, 0.257) 0.001
AgHe 0.295 (0.184, 0.394) 0.001

rfMRI (PC (icov), DR, dim: 100, MSM 1+2)
h2 0.128 (0.114, 0.142) 0.001
wh2 0.141 (0.128, 0.154) 0.001
AgHe 0.175 (0.124, 0.227) 0.001

rfMRI (PC (icov), DR, dim: 200, MSM 1+2)
h2 0.086 (0.075, 0.107) 0.001
wh2 0.095 (0.084, 0.114) 0.001
AgHe 0.115 (0.078, 0.151) 0.001
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Estimate 95% CI P-value

rfMRI (PC (ridgep = 1), ER, dim: 100, MSM 1+2)
h2 0.206 (0.160, 0.245) 0.042
wh2 0.215 (0.164, 0.256) 0.045
AgHe 0.231 (0.075, 0.387) 0.005

rfMRI (PC (ridgep = 1), ER, dim: 200, MSM 1+2)
h2 0.162 (0.132, 0.196) 0.239
wh2 0.191 (0.154, 0.228) 0.126
AgHe 0.219 (0.101, 0.340) 0.002

rfMRI (MGTR, ER, dim: 100, MSM 1+2)
h2 0.241 (0.187, 0.279) 0.008
wh2 0.244 (0.187, 0.287) 0.009
AgHe 0.203 (0.004, 0.398) 0.016

rfMRI (MGTR, ER, dim: 200, MSM 1+2)
h2 0.208 (0.156, 0.258) 0.029
wh2 0.226 (0.167, 0.281) 0.018
AgHe 0.225 (0.049, 0.402) 0.009

rfMRI (PC (ridgep = 1), DR, dim: 100, MSM 1)
h2 0.147 (0.128, 0.167) 0.007
wh2 0.207 (0.174, 0.231) 0.002
AgHe 0.260 (0.119, 0.421) 0.003

rfMRI (PC (ridgep = 1), DR, dim: 200, MSM 1)
h2 0.188 (0.163, 0.211) 0.001
wh2 0.213 (0.184, 0.233) 0.001
AgHe 0.280 (0.187, 0.370) 0.001
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Table 4.5: The estimates, permutation-based p-values derived using 1000 permuta-
tions and 95% CIs with 1000 bootstrap replicates for the unweighted (h2) and
variance-weighted (wh2) heritability mean summaries and AgHe for the 4 task-
related HCP phenotypes.

Estimate 95% CI P-value

Parcellated tfMRI for all tasks (dim: 100, MSM 1+2)
h2 0.154 (0.132, 0.181) 0.018
wh2 0.196 (0.160, 0.234) 0.015
AgHe 0.240 (0.076, 0.429) 0.001

Parcellated tfMRI for all tasks (dim: 200, MSM 1+2)
h2 0.139 (0.120, 0.161) 0.023
wh2 0.188 (0.156, 0.229) 0.009
AgHe 0.243 (0.104, 0.396) 0.001

Parcellated tfMRI for all tasks (dim: 100, MSM 1)
h2 0.164 (0.142, 0.188) 0.006
wh2 0.216 (0.177, 0.241) 0.002
AgHe 0.252 (0.092, 0.420) 0.002

Parcellated tfMRI for all tasks (dim: 200, MSM 1)
h2 0.147 (0.128, 0.167) 0.007
wh2 0.207 (0.174, 0.231) 0.002
AgHe 0.260 (0.119, 0.421) 0.003
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Chapter 5

Conclusion and Future Work

This chapter begins with summarising our work described in Chapter 3 and Chapter
4. We then focus on the discussion of the potential future research direction.

5.1 Conclusion and Discussion

In this thesis, we developed a series of approaches for the inference on the additive
genetic factors including heritability and genetic correlation, which have been and
are currently being used in multiple projects.

In Chapter 3, we proposed a Frequentist ReML by modifying the conventional ReML
estimation approach with the use of logarithm parameterization, reparameterization,
Fisher scoring algorithm and line search, and two linear regression methods new to
the neuroimaging field by constructing the mean structure of the linear regression
models with squared differences of paired observations and estimating the herit-
ability with LR-SD and LR-SD ReML. A permutation-based heritability inference
approach by embedding the LR-SD method in a permutation framework was also
developed for both voxel- and cluster-wise inferences.

This permutation inference allows us to perform more exact heritability inference at
each voxel to control the family-wise error rate, and also to consider the alternate
cluster-wise imaging statistics, such as cluster size and cluster mass, and the whole-
image summary statistics. Our use of this fast, accurate and non-iterative LR-SD
method (free of any convergence issues) makes these spatially informed statistics
more accessible. For equivalent family-wise error rates, the cluster-wise approach
was found to have higher sensitivity, and thus more powerful than the voxel-wise
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method in power evaluations, which demonstrates the importance of such spatial
statistics and the need for permutation inference to take advantage of these cluster
statistics. With only few weak assumptions, permutation inference is a feasible
alternative to the parametric approaches, and is even preferable in small sample
problems or when the stronger assumptions of the parametric approaches cannot be
met (Nichols and Holmes, 2001).

In Chapter 4, our newly proposed univariate LR-SD method is generalized to the
bivariate case, where the bivariate linear regression models are built by the expect-
ations of the difference between cross-phenotype squared differences, and combining
the univariate and bivariate LR-SD methods form the estimation of the correlation
parameters. A fast multivariate heritability inference is also established with the
use of pair-wise correlation mean difference approach and two-sample t-test, where
the aggregate measure of heritability is investigated as a fast screening estimate of
the whole-phenotype heritability for a high-dimensional phenotype.

Although the estimation accuracy for the bivariate LR-SD method is not that satis-
fying as expected, the simulation results for the ERV estimator reveals its property
of insignificant MSE magnitude with the false positive error rate under control,
suggesting the suitability of this chosen test statistic by reducing the computational
complexity. The use of this fast ERV test statistic allows the speedy implementation
of permutation test. Concerning all the element-wise traits, the correlation mean
difference approach compares MZ and DZ twins for the investigation of the additive
genetic influences that lead to the difference between MZ and DZ mean correlations.
A non-zero aggregate estimate of heritability can be an excellent indication of the
existence of heritable elements, and a zero aggregate measure implies that there are
no heritable elements over the brain.

5.2 Future Perspectives

Although the permutation-based heritability inference has increased the statistical
power with the use of cluster-wise approach, the power of this non-parametric test
is still low in an absolute sense, less than 80%. The feature that the adjacent voxels
in the brain are tend to be structurally and functionally more homologous can be
utilized by considering the spatially modeling approaches to gather the information
from the neighboring regions and improve the sensitivity of the test.
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Neuroimaging data is typified by spatial smoothness, both in the signal and noise.
Correlation between neighboring voxels’ random errors is due to a number of ef-
fects: imperfect imaging devices, where the point-spread-function extends beyond
the voxel boundaries; spatial transformations, like head motion correction or inter-
subject warping, where interpolation induces spatial correlation; and unmodeled
individual differences that possess spatial structure will also induce spatially correl-
ated errors (Poldrack et al., 2011). Spatially extended signal is expected due to the
modular structure of the brain (functional specialization) (Penny et al., 2007). As
most users find improved empirical results with some amount of spatial smoothing
in pre-processing to average out the white noise, spatial smoothing has become a
ubiquitous feature of neuroimaging data analysis. The analogical spatial regular-
ization through smoothing of the voxel-wise statistic images can also assist in the
statistical analysis to improve the validity and sensitivity of our tests, which will be
discussed in the future.

Our presented work in the thesis was based on twin design using the traditional
ACE model, however, the statistical power for different experimental designs were
examined and the family design including twins and one or two additional non-twin
siblings, as opposed to the classical twin design, substantially increases the statistical
power (Posthuma and Boomsma, 2000). Therefore, our next task is the extension
and generalization of the above-mentioned approaches for the extended family design
with various compositions of relatives having different degrees of relatedness that
need to be adapted to.
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