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Abstract 

 

Vul et al., “Puzzlingly High Correlations in fMRI Studies of Emotion, 

Personality, and Social Cognition” make a broad case that current practice in 

neuroimaging methodology is deficient.  They go so far as to demand that 

authors retract or restate results, which we find wrongly casts suspicion on the 

confirmatory inference methods that form the foundation of neuroimaging 

statistics.  We contend the authors’ argument is overstated and that their work 

can be distilled down to two points already familiar to the neuroimaging 

community: That the multiple testing problem must be accounted for, and that 

reporting of methods and results should be improved.  We also illuminate their 

concerns with standard statistical concepts, like the distinction between 

estimation and inference, and between confirmatory and post hoc inferences, 

which makes their findings less puzzling. 
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We are happy that the authors have generated such a stimulating discussion 

over fundamental statistical issues in neuroimaging. However, the issues 

raised are well-known to brain imaging researchers and the paper could be 

distilled to two points that have already received much attention in the 

literature.  The first one is that brain imaging has a massive Multiple Testing 

Problem which must be accounted for in order to have trustworthy inferences, 

and the presence of this problem requires careful distinction between 

corrected and uncorrected inferences.  Second, papers in neuroimaging have 

methods descriptions which are confusing or incomplete, which is a disservice 

to scientific discourse especially as neuroimaging reaches into new applied 

areas. 

 

Finding solutions to the Multiple Testing Problem (MTP) was an active area of 

research during the past two decades.  We now have consensus methods 

that are widely accepted and used (see, e.g. Chapters 18-21 of Friston, 2006, 

or Chapter 14 of Jezzard et al, 2001).  The two types of commonly used 

inference methods are those that control the familywise error rate (FWE; 

Nichols & Hayasaka, 2003) versus those that control the false discovery rate 

(FDR; Genovese et al., 2002).  Bonferroni and Random Field Theory 

thresholds are two methods that control FWE, the chance of one or more 

false positives.  A statistic image that is thresholded with a valid 5% FWE 

threshold is guaranteed to have no false positives at all with 95% confidence.  

FDR is a more lenient measure of false positives, and a valid 5% FDR 

threshold will allow as many as 5% of the suprathreshold voxels to be false 

positives on average.  Both FWE and FDR methods can be applied voxel-
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wise, as a threshold on a statistic image, or cluster-wise, as a threshold on the 

size of clusters after applying an arbitrary cluster-forming threshold. 

 

Whether FWE or FDR, voxel-wise or cluster-wise, corrected inferences must 

be used to ensure that results are not attributable to chance.  Such corrected 

inferences are known as “confirmatory” inference, a test of a pre-specified null 

hypothesis with calibrated false positive risk.  This is in distinction to 

exploratory or “post hoc” inference, where no attempt is made to control false 

positive risk.  Reporting and interpreting the voxels or clusters that survive a 

corrected threshold is a valid confirmatory inference and the foundation of 

brain imaging methodology.  Complete reporting of these results usually 

consists of a corrected P and raw t (equivalently r) value, and in no way does 

the unveiling of the t value invalidate this inference.  

 

The authors suggest that that the raw t (equivalently r) scores that survive a 

corrected threshold are "impossible"; this is incorrect because they are simply 

local extremal values that should be reported for what they are, post hoc 

measures of significance uncorrected for multiple testing.  Crucially, as the 

raw scores are uncorrected measures, they are incomparable with a 

behavioral correlation that did not arise out of a search over 100,000 tests.   

 

This incompatibility issue is also related to how the authors misinterpret the 

reliability result (Nunnally, 1970), applying it to sample correlations when it is 

statement about population correlations.  There is in fact substantial variation 

in a sample correlation about its true population value, with the approximate 
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standard error of r being 1/√n.  Thus a sample correlation based on 25 

subjects has an approximate 95% confidence interval of ± 0.4, and indicates 

that, in this setting, an r of 0.9 is entirely consistent with a ρ of 0.7 and is 

indeed “possible”.1 

 

The second essential point of the paper is that publications in neuroimaging 

have methods descriptions which are confusing or incomplete.  While this is a 

point of embarrassment for the field, it is a point that has been addressed in 

several publications (Poldrack et al, 2007; Carter et al, 2008; Ridgway et al, 

2008).  If there is any misdeed committed by the "red" papers, perhaps it is 

that they failed to fully label the inferences as post hoc.  That extremal-

selected post hoc tests give rise to greater correlations than confirmatory tests 

(Figure 5 in Vul et al) is self-evident and not worthy of the tenor of the note.  In 

particular, we argue that, while authors have the responsibility to clearly and 

completely describe their methods and results, readers have the responsibility 

to understand the technology used and how to correctly interpret the results it 

generates.  For example, in the field of genetics, whole-genome association 

analyses search over 100’s of 1,000’s of tests for genotype-phenotype 

correlations and publications routinely include plots of uncorrected P-values 

(see, e.g., Fig. 4 in (The Wellcome Case Control Consortium, 2007)). Yet we 

are unaware of any movement to suppress these plots from publication, 

presumably because genetic researchers understand the difference between 

these massive analyses and candidate Single Nucleotide Polymorphism 

analyses where no multiplicity is involved. 
                                                 
1 More accurate confidence intervals computed with Monte Carlo or Fisher’s Z transformation 
will be shorter than ±0.4, but still make the point of substantial sampling variability about the 
population value. 
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We must also take issue with the seemingly most compelling argument of the 

paper, based on Figure 4 and the weather-stock market correlation example.  

The problem with these examples is that they are based entirely on a null-

hypothesis argument, i.e., the total noise case.  However, if the papers 

examined use corrected thresholds, then the suprathreshold voxels will be 

mostly or entirely true positives. 

 

As reviewed above, a 0.05 voxel-wise FWE threshold guarantees no more 

than a 0.05 chance that any null voxels will survive the threshold.  In this 

case, Figure 4(a) is totally irrelevant (with 95% confidence) and the 

distribution of suprathreshold correlations is purely due to true positives.  If, 

instead, the papers cited use a 0.05 FDR threshold, the suprathreshold voxels 

will be a mixture of true and false positives, but the fraction of false positive 

voxels will be no more than 5% on average. 

 

Finally, we find that the focus on correlation itself is problematic, as the 

correlation coefficient entangles estimation of effect magnitude and inference 

on a non-zero effect.  A much more informative approach is to separately 

report significance and effect magnitude.  That is, report significance with a 

corrected P-value and report effect magnitude (still post hoc, of course) with a 

unit change in social behavioral score per unit percent BOLD change (as 

recommended in Poldrack et al., 2007).  The behavioral scores have known 

scales and properties, and the percent BOLD change has an approximate 

interpretation of percent change in blood flow (Moonen et al, 2000).  
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Reporting such measures will provide more interpretable and comparable 

measures for the reader.   

 

The authors seem to be arguing that the field of neuroimaging should turn 

away from inference on where an effect is localized, and focus instead solely 

on estimation of effect magnitude assuming a known location (Saxe et al., 

2006).  This is a significant shift in perspective that justifies ample and 

perhaps strident scientific discourse but not bluster that suggests standard 

inferential practice is fraudulent. 

 

We would like to thank the authors for an engaging article that raises issues 

that apply to every neuroimaging study.  However we maintain that the 

community would have been better served if the alarmist rhetoric had been 

replaced by a measured discussion which made connections to standard 

statistical practice, distinguishing between estimation and inference, and 

between confirmatory and post hoc inferences, and had simply acknowledged 

the incomparability of reported post hoc imaging correlations with other 

correlations in the psychology literature. 
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