
Generalised Stochastic Blockmodels and their

Applications in the Analysis of Brain Networks

by

Dragana Mile Pavlović
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xi



Abstract

Recently, there has been a great interest in methods that can decompose brain net-
works into clusters with similar connection patterns. However, most of the currently
used clustering methods in neuroimaging are based on the stringent assumption that
the cluster structure is modular, that is, the nodes are densely connected within
clusters, but sparsely connected between clusters. Furthermore, multi-subject net-
work data is typically fit by several subject-by-subject analyses, which are limited
by the fact that there is no obvious way to combine the results for group comparis-
ons, or on a group-averaged network analysis, which does not reflect the variability
between subjects. In the first part of this thesis, we consider the analysis of a single
binary-valued brain network using the Stochastic Blockmodel (Daudin et al., 2008)
and compare it to the widely used clustering methods, Louvain and Spectral al-
gorithms. For this, we use the Caenorhabditis elegans (C. elegans) worm nervous
system as a model organism whose wealth of prior biological knowledge can be
used to validate the functional relevance of network decompositions. We show that
the ‘cores-in-modules’ decomposition of the worm brain network estimated by the
Stochastic Blockmodel is more compatible with prior biological knowledge about
the C. elegans than the purely modular decompositions found by the Louvain and
Spectral algorithms. In the second part of this thesis, we propose three multi-subject
extensions of Daudin et al.’s Stochastic Blockmodel that can estimate a common
cluster structure across subjects. Two of these (non-trivial) models use subject-
specific covariates to model variation in connection rates in the data. The first and
trivial model assumes no variability between subjects, the second model accounts
for a global variability in connections between subjects, and the third model ac-
counts for local variability in connections between subjects that can di↵er across
individual within/between-cluster connectivity elements. In the third part of this
thesis, we propose a mixed-e↵ect multi-subject model which can account for the
repeated-measures aspects of multi-subject network data by including a random in-
tercept. For the second and third part of the thesis, we use intensive Monte Carlo
simulations to investigate the accuracy of the estimated parameters as well as the
validity of inference procedures. Furthermore, we illustrate the proposed models on
a resting state fMRI dataset with two groups of subjects: healthy volunteers and
individuals diagnosed with schizophrenia.
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CHAPTER 1

Introduction

The past thirty years have seen increasing interest in the systems-level understanding

of structures as diverse as the global economy (Dicken et al., 2002), ecosystems

(Ulanowicz, 2004), living cells (Ravasz et al., 2002), power grids (Albert et al., 2004)

and more. To obtain deeper insights into the operational mechanisms governing

these systems, the scientific focus has gradually moved away from the analysis of

their isolated components to the ways in which these components interact to perform

the functions that characterise the system as a whole. In this manner, a wide range

of systems can all be studied as networks, defined through their elements (nodes)

and the connections (edges) that link them. A system’s functional properties can

then be studied in terms of the connection structure that is associated with its

network.

In the context of the brain, the same approach can be used to study how

simple neuronal elements (e.g., neurons) are organised into circuits to process in-

formation. This allows us to gain greater insights than the study of a single and

isolated element would normally provide. For example, individual neurons can en-

gage in complex physiological responses that are triggered by interactions between

a larger number of neurons locked in networks and, thus, the knowledge of such net-

works may provide a better understanding of brain activity (Sporns, 2010). Indeed,

characterising brain activity in terms of networks has opened up the neuroimaging

community to new research avenues and opportunities to make enquiries about how

a coordinated activity between various neuronal elements gives rise to a specific be-

haviour. In neuroscience, this has marked a shift of scientific focus from a classical

brain mapping (or ‘functional segregation’) approach to a more modern connectom-

ics (or ‘functional integration’) approach.
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In general, classical neuroscience describes the human brain as an organ

whose many parts specialise in various functions by actively engaging in local pro-

cesses. In the conventional sense, such a view of the brain’s infrastructure is known

as ‘functional segregation’. The concept of functional segregation was an important

milestone in classical neuroscience because it has provided a framework in which

it was possible to classify parts of the brain by only considering if they acted as

independent mechanisms for completing a certain cognitive function. However, al-

though this approach has proved to be a successful theoretical framework for de-

scribing regional functions of the human brain, it has been shown to be inadequate

for explaining higher cognitive processes like visual recognition, social cognition,

emotions or others (see, e.g., Van Den Heuvel and Sporns, 2013, for a review). In-

deed, such cognitive processes are not necessarily linked to a single anatomical brain

region, but typically to several brain regions, demonstrating that the brain, for these

functions, actively engages in processes at multiple spatial locations (Tononi et al.,

1998). Thus, in order to study such large scale aspects of the brain’s functional

organisation, modern neuroscience has adopted a view of ‘functional integration’,

in which the brain is defined as a complex network of neuronal elements (nodes)

whose connections (edges) facilitate di↵erent functional processes. This alternative

view of the brain helps to represent two important functional aspects of the brain.

First, long distance connections between di↵erent brain regions facilitate complex

functions. Second, some of these brain regions and their circuits may be involved

in several functions and, thus, act as important focal points in the brain. These

two aspects clearly demonstrate the advantage of functional integration compared

to functional segregation and explain the growing interest of representing the brain

as a network.

Nevertheless, brain networks are expected to have a complex topology which

can adapt to a variety of cognitive functions and, thus, their analysis is generally non-

trivial. In recent years, however, di↵erent empirical studies (Bullmore and Sporns,

2009; Sporns, 2010; Bullmore and Bassett, 2011; Chen et al., 2006; Towlson et al.,

2013), conducted on both animals and humans, have provided growing evidence

that the organisational principles governing brain networks conform to a common

architectural standard. This suggests that brain networks can be decomposed into

groups of nodes which share similar connectivity profiles with regards to both their

internal (within-group) and external (between-group) connections. Thus, instead of

trying to analyse a brain network directly, we can try to decompose it into groups of

nodes with similar properties (i.e. blocks), which, in turn, yield a more interpretable

view of the network. This compressed view of a network is generally referred to as

a cluster or block structure.

However, the classification of nodes into blocks is generally unknown and,

2



thus, we require methods or models which can estimate this latent structure. So

far, most network studies have used deterministic methods which seek for a de-

composition that maximises a goodness of fit measure called modularity (Newman,

2006). In contrast, in this thesis, we consider stochastic network models which use

likelihood-based methods to estimate the network’s block structure. One example of

such network models is the Stochastic Blockmodel of Snijders and Nowicki (Snijders

and Nowicki, 1997). This model uses a framework of finite mixture models to expli-

citly account for di↵erent sources of variation in the distribution of edges which give

rise to the network’s cluster structure. In particular, Snijders and Nowicki (1997)

investigated di↵erent optimisation strategies, including the Expectation Maximisa-

tion (EM) and Markov Chain Monte Carlo (MCMC) algorithms, which can be used

to estimate the latent node assignments and model’s parameters. Their results

showcased some computational challenges encountered in the optimisation of the

model likelihood and pointed out that these optimisations techniques are appro-

priate only for small networks (e.g., < 100 nodes). More recently, Daudin, Picard

and Robin (Daudin et al., 2008) revisited the Stochastic Blockmodel of Snijders and

Nowicki, for which they considered a ‘variational approximation’ as an optimisa-

tion strategy. These authors also suggested the use of the Integrated Classification

Likelihood (ICL) criterion (Biernacki et al., 1998) as a way to estimate the optimal

number of blocks. Their work also touched upon a plethora of interesting questions

related to general issues in network clustering. For example, they showed (a) that

their model can be used to detect a wider range of di↵erent types of clustering

structures, including modular, disassortative and star-patterned structures, (b) how

the network’s empirical degree distribution can be approximated with a mixture of

Poisson densities and (c) how the model parameters can be used to approximate

the empirical clustering coe�cient proposed by Newman et al. (2002). Throughout

this thesis, we will explicitly use the SBM to note the Stochastic Blockmodel of

Snijders and Nowicki (Snijders and Nowicki, 1997) with implementation proposed

by Daudin, Picard and Robin (Daudin et al., 2008).

In this work, we make a number of contributions to the network analysis of

brain data.

1. Motivated by a lack of comparative studies in the literature, we use the binary

and undirected brain network of the C. elegans worm1 to benchmark the

SBM against popular and widely used deterministic clustering algorithms,

such as the Fast Louvain and Spectral algorithms. In a detailed assessment,

we show that the ‘cores-in-modules’ decomposition estimated by the SBM is

more biologically plausible than the purely modular decompositions defined

1C.elegans is a simple model organism with a large body of results related to its anatomy and
behaviour.
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deterministically (Pavlović et al., 2014).

2. Regardless of the clustering methods or models, most of the existing multi-

subject work in human neuroimaging studies is based on a subject-by-subject

or a group-averaged network analysis. The main limitation of per-subject

models is that there is no obvious way to combine the cluster results for group

comparisons, and of group-averaged models that they do not reflect the vari-

ability between subjects. In Chapter 4, we propose three extensions of the

classical SBM. To our knowledge, two of these (non-trivial) models are the

only multi-subject clustering approaches which can capture between subject

variability and, at the same time, estimate a common network decomposition

(cluster structure).

3. Our proposed methods use a regression framework and, thus, allow inference

on group di↵erences and covariate e↵ects. We are unaware of any compar-

able statistical analysis in the literature; in contrast, the usual approach is to

submit network summary metrics to univariate statistical tests.

4. We use the Firth Maximum Likelihood Estimate (MLE) for good perform-

ance with small numbers of subjects, and use punishing (low number of nodes

n, highly imbalanced block sizes) simulations to evaluate our methods. The

methods in Chapter 4 found good performance with 10 or more subjects, thus,

demonstrating the utility for the typical analyses with small samples.

5. We propose a mixed e↵ects multi-subject model which uses a random intercept

for each subject’s block. The advantage of this model is that it can account for

within subject correlation. This correlation may be present if the covariates

don’t completely explain the between-subject variation in connection rates,

or if multiple networks per subject are used. Again, we are unaware of any

comparable analysis capability in published methods.

This dissertation is organised as follows. In Chapter 2, we review some back-

ground information related to the analysis of functional connectivity. In particular,

we describe how functional connectivity can be measured using functional Magnetic

Resonance Imaging (fMRI) and how its pre-processed data can be used to construct

binary and undirected networks. In the remaining part of Chapter 2, we review the

existing clustering models and methods that are relevant for this thesis. In Chapter

3, we present the results of the SBM fit to the C. elegans data and compare it against

the fits of the Fast Louvain and Spectral algorithms. In Chapter 4, we describe three

multi-subjects SBMs and we discuss their optimisation strategies and their inference

procedures. We use intensive Monte Carlo simulations to investigate the accuracy

of the estimated parameters, as well as the validity of inference procedures based on
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the Ordinary and Firth MLEs. Furthermore, we illustrate the multi-subject SBM

with heterogeneous e↵ects on a resting state fMRI dataset with two groups of sub-

jects: healthy volunteers (Controls) and individuals diagnosed with schizophrenia

(Patients). In Chapter 5, we describe the multi-subject SBM with heterogeneous

fixed and per-subject random e↵ects. We use Monte Carlo simulations to investigate

the accuracy of the estimated parameters and illustrate the model on a resting state

fMRI data sets considered in Chapter 4. In the final chapter (Chapter 6), we give

conclusions and directions of future work.
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CHAPTER 2

Background

One of the major sources of brain’s complexity can be attributed to the intricate

patterns of connectivity which facilitate complex physiological and cognitive pro-

cesses between various neuronal elements. For brains at higher evolutionary stages,

such patterns of connectivity can be segregated into three di↵erent scales of con-

nectivity, a microscale level (links are formed at the levels of neurons), a mesoscale

level (links are formed at the levels of neuronal populations), and a macroscale

level (links are formed at the levels of brain regions). At each scale level, it is also

possible to make further classifications because the connectivity measures can be

derived from anatomical observations or from observations related to physiological

processes that somewhat indirectly measure an ongoing functional activity. In that

regard, connectivity can be distinguished along three major classes, referred to as

structural, functional and e↵ective connectivity. These three types of connectivity

are described next.

Structural connectivity generally denotes a network of anatomical connections

between neuronal elements. In the case of the human brain, structural connections

are mediated by the part of brain known as white matter. White matter is mostly

made of myelinated axons1 that make connections between neuron cells and, thus,

allow communications between di↵erent regions of the brain. A bundle of white

matter fibres typically contains between 103 and 105 compressed axons which tend

to follow a common trajectory. Structural human brain networks are generally es-

timated using Di↵usion Tensor Imaging (DTI) data and they are typically weighted

and undirected because the directionality of axonal projections cannot, at present,

1
An axon is a projection of a nerve cell, encased in a sheet of lipid called myelin, which improves

the transmission of electric impulses.
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be determined (Hagmann et al., 2007; Zalesky and Fornito, 2009; Iturria-Medina

et al., 2007).

Functional connectivity, according to Friston et al. (1993), is defined as the

temporal correlations in functional measurements between anatomically separated

brain regions. In this context, functional measurements generally entail time series

data that can be collected from a variety of neuroimaging techniques, including

Electroencephalography (EEG), Magnetoencephalography (MEG) and functional

Magnetic Resonance Imaging (fMRI), within either a framework of task or resting

state studies. Functional connectivity is represented by correlations between time

series and, as such, does not bear information about directionality or causality. It

may be represented by a binary or weighted network, but it is always undirected.

E↵ective connectivity, according to Friston et al. (1994), is defined as a net-

work of causes which prompts one neuronal system to induce an e↵ect in another.

E↵ective connectivity is generally estimated from time series data (e.g., EEG, MEG,

fMRI), either from task or resting state experiments. In particular, this approach

necessitates a generative statistical model (Costa et al., 2015) which estimates the

direction of edges by taking into account the time courses at multiple nodes.

Although e↵ective connectivity holds a promise of new insights into the or-

ganisational principles of brain networks, it is important to acknowledge that the

majority of brain networks studies are carried out on functional connectivity data

sets, and hence we will mainly focus on this type of connectivity in this thesis. In

the continuation of this chapter, we give a general overview of the data generating

pipeline which begins with the acquisitions and preprocessing of fMRI images and

finishes with the construction of binary and undirected functional brain networks.

We then review some popular methods for network clustering, focusing especially

on the class of statistical models known as the Stochastic Blockmodels (SBMs).

2.1 Measuring Functional Connectivity with fMRI

In this section, we review functional Magnetic Resonance Imaging (fMRI), currently

the most popular non-invasive neuroimaging modality for estimating functional con-

nectivity in the human brain. We begin by briefly detailing the fundamentals of

fMRI and then discuss some of the common preprocessing steps used on its data.

Finally, we describe how fMRI data is used to estimate brain networks.

2.1.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is based on the magnetic properties of certain

atomic species that have a magnetic moment. Specifically, hydrogen atoms, pre-

valent in the body through water (H
2

O), have a magnetic moment and respond to
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the presence of a magnetic field. MRI uses a very strong but static magnetic field

(the bulk of the machine) and weaker but dynamic magnetic fields (created by thin

coils surrounding the subject). Careful manipulation of the dynamic magnetic fields

allows the creation of images which reveal the properties of tissue. MRI can create

images sensitive to di↵erent features of brain tissue, and in particular can produce

detailed images of brain anatomy. Such images are the mainstay of clinical MRI

use, and are referred to as anatomical or structural images, to distinguish them from

‘functional’ images. In Figure 2.1, we contrast respectively the static and dynamic

nature of structural and functional MRI images.

Figure 2.1: Comparison between a structural and a functional MRI image.
Top left, a structural MRI image. Top right, a functional MRI image at a partic-
ular time. Bottom left, thresholded statistical image with the functional image as
background. Bottom right, functional MRI signal at the selected voxel located in
the supplementary motor area. The structural image is static while the functional
image is dynamic.
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2.1.2 Functional Magnetic Resonance Imaging (fMRI)

Functional Magnetic Resonance imaging or fMRI is an indirect measure of brain

activity. It is based on the local changes in concentrations of oxygenated and deoxy-

genated haemoglobin in the brain. In particular, when neuron cells are active, they

fire electrical impulses which lead to an increase in their demand for oxygen, after

which there is an increase in blood flow. A signal is generated by the di↵erent

magnetic properties associated with oxygenated/deoxygenated haemoglobin: oxy-

genated blood has a negative magnetic susceptibility (diamagnetic) and deoxygen-

ated blood has a positive magnetic susceptibility (paramagnetic). As the bulk of

the brain tissue is diamagnetic, the presence of paramagnetic deoxygenated blood

creates an inhomogeneity that changes the MRI intensity. To indicate this physiolo-

gical dependence, the fMRI signal is generally known as the Blood-Oxygen-Level

Dependent (BOLD) signal (Ogawa et al., 1990).

2.1.3 Preprocessing

Raw fMRI data take the form of a time series of three-dimensional images or, equival-

ently, a times series at each image voxel2. Before useful information can be extracted

from the raw data, several preprocessing steps are needed to eliminate sources of

immense nuisance variation that would otherwise swamp the subtle BOLD signal.

In the rest of this section, we briefly review standard pre-processing steps, includ-

ing slice timing correction, spatial realignment, spatial normalisation and spatial

smoothing. We provide only a cursory review of each area and provide references

for further details.

Slice Timing Correction

The acquisition of each 3D fMRI image is generally carried out as a sequence of

individual 2D slice-scans rather than one single 3D snapshot of the brain at a given

time point. Thus, for each time point, it usually takes up to two seconds (t = 2) to

completely sample the brain. As a results of this, some misalignments between the

individual acquisition times of individual scans are present. This e↵ect is generally

alleviated with an algorithm that shifts each scan relative to the acquisition time of

the initial scan. See Henson et al. (1999) for further details.

Spatial Realignment

When lying in the MRI scanner, it is very di�cult for a subject to stay perfectly still

and head motion is likely to occur. Yet any head motion contributes to misalign-

2
A voxel is the smallest graphical unit upon which a three-dimensional image is built. By analogy

with a two-dimensional image, a voxel is a three-dimensional generalisation of a pixel.
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ments of the images over time. This type of motion is known as the bulk-motion

and it can be induced by di↵erent factors. For example, a subject can move more as

a result of fatigue or as a result of simple actions like swallowing or blinking. Bulk-

motion is typically corrected with a rigid body realignment procedure (Ashburner

and Friston, 2007), which assumes that the head motion can be described using

translation and rotation about three axes. The motion relative to a reference scan

(e.g., the first scan) is estimated and a spatial transformation applied to correct the

motion.

Spatial Normalisation

In a multi-subject study, each subject’s brain must be transformed to a common

space or to an atlas space. This is called ‘spatial normalisation’ and its goal is

to remove natural anatomical di↵erences between individual brains (e.g., size and

shape). Spatial normalisation proceeds by finding a transformation (linear or non-

linear) that minimises some measure of di↵erence between the individual images

and the image of reference (Friston et al., 1995). The transformation is generally

estimated on the structural images (which have fine anatomical detail) and then

applied to the functional images (which have poor anatomical detail).

Spatial Smoothing

In fMRI preprocessing, spatial smoothing consists of convolving each image with

a three-dimensional Gaussian kernel. In this process, high frequency information

is removed from the images while reducing variance. This trade-o↵ is generally

acceptable as the spatial scale of expected BOLD e↵ects is generally larger than the

individual voxels. Spatial smoothing after spatial normalisation also discounts any

residual misregistrations. Finally, some researchers use spatial smoothing in order

to make the data more compliant with the assumptions of the statistical analysis.

Additional Steps

Once the standard preprocessing steps are completed, some confounding e↵ects due

to physiological noise (including cardiac, respiratory or head motion activity) may

still exist in the data. One of the most e↵ective ways of dealing with this is to regress

such information out of the time series (Varoquaux and Craddock, 2013). For head

motion, this can be done by regressing out the parameters obtained from the rigid

body realignment (i.e. the six time series of the translations and rotations). The

e↵ects of cardiac and respiratory activity are, however, generally harder to control

for and, hence, these components are not regressed out directly, but instead they
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are accounted for by regressing out the mean signal measured in white matter3 and

in cerebrospinal fluid4 (Varoquaux and Craddock, 2013).

In addition, some researchers also apply a temporal high-pass filtering. The

high-pass filtering keeps the signal with a frequency greater than a certain cuto↵

frequency which usually corresponds to the lowest frequency of interest (0.1Hz). This

accounts for the notable low-frequency ‘drift’ e↵ects that occur in fMRI data. In

addition to the high-pass filtering, some authors (e.g., Lynall et al., 2010; Bullmore

et al., 2003; Bassett et al., 2006) use a discrete wavelet transform of the time series

data, which decomposes the data over a set of frequency scales. One or more of these

scales is then used as the signal of interest while the remaining scales are assumed

to capture mainly confounding signals or noise variance.

2.1.4 Defining Connectivity with fMRI

Once the fMRI data is acquired and preprocessed, the estimation and construction

of a functional network is carried out next. This mainly entails two tasks: the

formulation of the nodes and the estimation of the functional connections (or edges)

between the nodes.

For the first task, we could consider each voxel of the preprocessed fMRI

data as a node. However, as the number of voxels typically varies in the order

of 200,000, we would have a very large network and, consequently, a very limited

number of methodological choices for its analysis. To keep the data in a more

manageable format, it is customary to aggregate the voxels into regions of interests

(ROIs) which define the nodes of the brain network. This can be generally achieved

by the means of brain atlases or data driven approaches.

Brain atlases are typically based on brain anatomy, either from a single

subject like the Automatic Anatomic Labelling (AAL) (Tzourio-Mazoyer et al.,

2002) and the Talairach Tournoux (TT) atlases, or from a group of subjects like

the Harvard-Oxford (HO) (Smith et al., 2004) atlas. A limitation of these atlases is

that they are based on the brain structure seen in anatomical MRI images while the

connectivity of interest is based on brain function revealed by the BOLD signal. To

bypass these inconsistencies, brain atlases can alternatively be based on functional

data alone. Thus, using a parcellation method on the BOLD data, it is possible to

estimate contiguous regions of maximal homogeneity (Craddock et al., 2012; Thirion

et al., 2006; Yeo et al., 2011) which define ROIs. Examples of two such atlases are

the Craddock 200 (CC200) and the Craddock 400 (CC400) (Craddock et al., 2012).

Another important issue to consider when selecting atlases is their number

3
White matter is a part of the brain which consists mostly of axonal projections from grey

matter cells.
4
Cerebrospinal fluid is a clear body fluid found in the centre of the brain.

11



of ROIs. The HO atlas has fewer than 100 regions and, therefore, it is reasonable

to expect that some of its ROIs may not be representative of a single function but

of several. As shown by Smith et al. (2011) such overly-large ROIs may lead to

incorrect network estimates. In contrast, this issue is circumvented in the CC200

and CC400 atlases whose larger number of ROIs tend to provide a more accurate

representation of brain functions than the ROIs from an anatomical atlas (see Figure

2.2 for images of the HO and CC200 atlas).

Figure 2.2: Brain parcellation using di↵erent atlases. First row, the anatom-
ical image showing the Sagittal (y, z), Coronal (x, z) and Axial (x, y) view of the
standard MNI brain template. Second row, the whole brain parcellation using the
Harvard-Oxford atlas with 69 cortical and subcortical regions. Third row, the whole
brain parcellation using a data driven approach (Craddock et al., 2012) with 400
cortical and subcortical ROIs.
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Once the brain is parcellated into anatomically -or functionally- defined ROIs

these regions are then considered as the nodes of the brain network. Each node is

represented by a mean time series, that is, the mean over the voxels in each ROI for

each time point. If there are n ROIs, we compute the Pearson correlations r
ij

for

each ROI pair, 1  i 6= j  n, and transformed them via Fisher’s formula (Fisher,

1915)

z
ij

=
1

2
log


1 + r

ij

1� r
ij

�
. (2.1)

Under the null hypothesis that the population correlation is zero, Z
ij

approximat-

ively follows a Normal distribution with zero mean and variance 1/(N � 3), where

N is the number of time points in the time series. However, if the time series were

previously filtered, the variance estimate needs to be adjusted for the loss of degrees

of freedom induced by the filtering. A relatively recent result of Davey et al. (2013)

suggests to use an adjusted variance estimate that is equal to 1/(2t(f
h

� f
l

)N),

where t is the sampling time for the acquisition (e.g., t = 2 seconds) and f
h

� f
l

is

the di↵erence between the high cut-o↵ frequency (f
h

) and the low cut-o↵ frequency

(f
l

) of the filter used.

As noted in Section 2.1.3, it is also possible to use a discrete wavelet trans-

formation on the regional mean time series, and hence represent the data in terms

of di↵erent frequency scales. According to Achard and Bullmore (2007), the motiv-

ation for the use of wavelets is twofold. First, some prior practical evidence suggests

that resting state fMRI time series often have non-stationary features, such as a

slowly decaying positive autocorrelation, which may a↵ect the estimation of simple

cross-correlations between time series. Contrary to this, wavelet-based estimators

are generally able to adapt to potential non-stationary features in the time series

and, hence, seems to be more appropriate when estimating the dependance between

time series (Bullmore et al., 2003). Second, wavelet-based connectivity analysis al-

lows researchers to focus on the frequencies less than 0.1Hz, which are known to be

subtended by the most salient functional connectivities.

Similarly to the example of Pearson correlations, with wavelet analysis, we

can compute correlations between each ROI pair and we can use Fisher’s transform

formula (Eq. (2.1)) but with the caveat that N represents the total number of

wavelet coe�cients in the frequency band rather than the original number of time

series points. Nevertheless, in both cases, z
ij

can be used to test for the presence or

absence of an edge between each node. Since positive dependence is the predominant

and expected type of dependence, a one-sided test is typically used. The raw z
ij

data can directly be used to construct a weighted network, or they can be binarised,

yielding a binary network. For the latter, a n⇥n binary connection matrix is formed
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based on significant (1) or non-significant (0) tests at each edge.

When constructing binary connection matrices, one of the most important

decisions to make is how to set the critical significance threshold. In the literature,

it is common to set this threshold in a data-dependent fashion and select a value

that produces a given proportion (e.g., 10%) of significant edges (e.g., Mørup et al.,

2010; Zalesky et al., 2012; Van Wijk et al., 2010; Ginestet et al., 2011). Alternatively,

a multiple comparisons based threshold can usually be obtained by using either a

Bonferroni (e.g., Cao et al., 2014) or an False Discovery Rate method (e.g., Achard

et al., 2006).

2.2 Formulation and Properties of a Brain Network

As discussed in Section 2.1.4, a network is defined in terms of its nodes and edges.

In a mathematical sense, a network is denoted as G = G(V,E), where V is a set

of n nodes and E is a set of m edges. The connectivity structure can be coded

as an n ⇥ n adjacency (or connectivity) matrix x = ((x
ij

))
1i,jn

, whose element

x
ij

quantifies a relationship between the nodes V
i

and V
j

, i, j = 1, . . . , n. In this

thesis, we consider networks with no self connected nodes, that is, x
ii

= 0 for all

i = j. Such networks can be directed or undirected, and weighted or binary. For

example, a network based on inter ROI correlations can be said to be weighted and

undirected, but after thresholding, it is binary and undirected.

For the simplicity of discussion, hereafter, we will only consider binary and

undirected networks, represented by a n⇥n connectivity matrix x such that x
ij

= 1

if there is an edge between nodes V
i

and V
j

and x
ij

= 0 otherwise. The network is

considered to be undirected, that is, x
ij

= x
ji

.

In the literature, there are many ways in which a given network can be sum-

marised, and these summary metrics are generically referred to as network statistics.

In this section, we review some of the most crucial network statistics used in the

analysis of brain networks, including degree, degree sequence, clustering coe�cient

and cluster structure (for a full review, see Rubinov and Sporns, 2010). The simplest

way in which we can summarise each node V
i

is to consider the number of edges

which terminate at that particular node. This summary is known as the degree of

a node ⇢(·) and it is a rough indicator of the way a particular node is embedded in

a network. Thus, the degree of node V
i

is defined as

⇢(V
i

) =
nX

j=1

x
ij

. (2.2)

The degree sequence of a network is the set of all observed degrees in this network.

It is a global description of a network and it is generally not sensitive to mild
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perturbations of edge structure in a network. For instance, it is always possible to

construct two slightly di↵erent networks which have the same degree sequence. This

window of variation often serves as a basis for randomisation strategies whose end

goal is to find the distribution of some other network summary statistic (Maslov

et al., 2004; Maslov and Sneppen, 2002).

Another interesting property of brain networks is the heterogeneity of edges,

which suggests that the edges tend to be more concentrated in some areas of the

network than in others. This can be quantified with the clustering coe�cient C.

Newman et al. (2002) defines C as the prevalence of fully connected triplets of nodes

among the set of triplets that have at least two connections,

C =
3#4
#_ =

P
n

i=1

P
n

j=1

P
n

k=1

x
ij

x
jk

x
ik

2
P

n

i=1

P
n

j=1

P
n

k<j

x
ij

x
ik

. (2.3)

A much more di�cult task is to find a complete segmentation of network’s

nodes into clusters. This is known as a cluster structure. Determining an optimal

cluster structure in a given network is a procedure which generally entails a good

working definition of the cluster structure, the ability to score individual fits, the

ability to determine the optimal number of clusters Q and, finally, it entails having

a fast optimisation algorithm which can work for networks with a relatively large

number of nodes.

In a broad sense, clustering approaches can be classified into two groups:

deterministic approaches based on heuristic objective functions and model-based

approaches that relate the observable data to unobservable parameters of interest

with a statistical model. In sections 2.3 and 2.4, we review the principle represent-

atives of each group.

2.3 Deterministic Network Clustering Algorithms

The problem of network clustering has been actively investigated in a variety of aca-

demic fields, including computer science, statistical physics (Newman, 2003; New-

man and Girvan, 2004) and data mining (Wei et al., 2006; Beverly and Sollins, 2008;

Moghaddam et al., 2010). This research has generated a large body of clustering al-

gorithms that can be broadly categorised as ‘deterministic’ because no randomness

is involved in the formation of the observed networks.

In his extensive exposition of the topic, Fortunato (2010) classifies the clus-

tering algorithms according to how they define the cluster structure in a network.

He notes that the most popular approach is to assume that a network is a set of

‘fairly independent clusters, each of which plays a similar role like, e.g., the tis-

sues or the organs in the human body’. According to this view, the clusters are

15



selected to match the criteria of maximising internal (or within-cluster) connection

count and minimising external (or between-cluster) connection count. Each such

network decomposition is evaluated with a quality function, whose most frequently

used version is modularity (Newman and Girvan, 2004).

The idea behind this concept of modularity is that the clusters are found

by a comparison between the observed number of connections in the clusters and

the number of connections one would expect to find if the nodes were connected at

random. This randomised version of the original network, which acts as a reference

point in the modularity function, is called a null model and is typically tailored to

preserve some attractive features of the original network like the total number of

edges or the degree distribution (Luczak, 1989; Molloy and Reed, 1995; Pattison and

Robins, 2007). The modularity score takes the form of the di↵erence between the

edge count (0 or 1) and its expected value under the null model considered, summed

over all intra-cluster edges and normalised:

f
mod

=
1

2m

nX

i=1

nX

j=1

(x
ij

� E
0

[X
ij

])�(c
i

, c
j

), (2.4)

where E
0

[X
ij

] is the expected value of an edge under the null model considered, c
i

and c
j

denote the clusters of nodes V
i

and V
j

, respectively, and �(c
i

, c
j

) = 1 if V
i

and V
j

are located in the same cluster, 0 otherwise.

The standard null model of modularity conserves a network’s observed degree

sequence by generating half-edges5, so that each node in the null model has as many

half-edges as its corresponding degree in the original network. Thus, the probability

to randomly select a half-edge for node V
i

is expressed as the ratio of its degree

⇢(V
i

) and the total sum of all degrees in the network. Noting that the total sum

of all degrees in a network corresponds to twice the number of edges (2m), this

probability is then ⇢(V
i

)/2m. Furthermore, the nodes in the standard null model of

modularity are independent and, hence, the probability that two nodes V
i

and V
j

make a full edge is just the product of their individual probabilities
⇢(Vi)⇢(Vj)

4m

2 . As

given in Fortunato (2010) and Newman (2010), the expected value of an edge in this

model (E
0

[X
ij

]) is
⇢(Vi)⇢(Vj)

2m

. With this, we can formulate the modularity function

as

f
mod

=
1

2m

nX

i=1

nX

j=1

✓
x
ij

� ⇢(V
i

)⇢(V
j

)

2m

◆
�(c

i

, c
j

). (2.5)

In the remainder of this section, we review two modularity based algorithms,

the Spectral and Fast Louvain algorithms. We choose these two algorithms because

5
A half-edge is an edge with only one end. Thus, a full edge is composed of two such half-edges.
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of their widespread use in the literature and because of their ability to determine

an optimal number of clusters. The latter is an especially appealing feature of these

two algorithms compared to many alternative algorithms that require a prior guess

of the number of clusters.

2.3.1 Spectral Algorithm

Newman (2006) proposed an optimisation procedure of Eq. (2.5) which is based on

a spectral decomposition approach. Considering first just the case of 2 clusters, let s

to be an indicator vector for nodes assignment, with s
i

= 1 if the node V
i

is located

in the first cluster and s
i

= �1 if the node is located in the second cluster. The

modularity function can then be written in a matrix form

f
mod

=
1

4m

nX

i=1

nX

j=1

✓
x
ij

� ⇢(V
i

)⇢(V
j

)

2m

◆
(s

i

s
j

+ 1) (setting, x
ij

� ⇢(V
i

)⇢(V
j

)

2m
= D

ij

),

=
1

4m

nX

i=1

nX

j=1

D
ij

s
i

s
j

,

=
1

4m
s

>
Ds. (2.6)

Moreover, the vector s can be written as a linear combination of the normalised

eigenvectors u
i

associated with the matrixD such that s =
P

n

i=1

a
i

u

i

and a
i

= u

>
i

s.

Using this along with the fact that �
i

is the eigenvalue of D corresponding to the

eigenvector u
i

, we get

f
mod

=
1

4m

✓
nX

i=1

a
i

u

>
i

◆
D

✓
nX

i=1

a
j

u

j

◆

=
1

4m

nX

i=1

a
i

nX

j=1

a
j

u

>
i

Du

j

, as u

>
i

D = �
i

u

>
i

,

=
1

4m

nX

i=1

a
i

nX

j=1

a
j

�
i

u

>
i

u

j

, this is non-zero when i = j,

=
1

4m

nX

i=1

a2
i

�
i

=
1

4m

nX

i=1

�
u

>
i

s

�
2

�
i

. (2.7)

Thus, the idea is to look for the largest positive eigenvalue of D, and then group

the nodes according to the elements of u
i

.

The extension of the algorithm to more than two clusters considers the ad-

ditional contribution to the modularity after dividing a cluster g with n
g

nodes into
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two clusters

�f
mod

=
1

2m


1

2

X

i,j2g
D

ij

(s
i

s
j

+ 1)�
X

i,j2g
D

ij

�

=
1

2m


1

2

X

i,j2g
D

ij

s
i

s
j

� 1

2

X

i,j2g
D

ij

�

=
1

4m

 X

i,j2g
D

ij

s
i

s
j

�
X

i,j2g
D

ij

�

=
1

4m

X

i,j2g


D

ij

� �
ij

X

k2g
D

ik

�
s
i

s
j

=
1

4m
s

>
D

(g)

s, (2.8)

where for the last step, we note that, using the Kronecker delta notation �
ij

, we can

write X

i,j2g
D

ij

=
X

i2g
�
ii

X

k2g
D

ik

s2
i

=
X

i,j2g
�
ij

X

k2g
D

ik

s
i

s
j

,

andD

(g) is an n
g

⇥n
g

matrix whose elements are given by D
(g)

ij

= D
ij

��
ij

P
k2g Dik

.

The algorithm stops when there are no more positive eigenvalues.

2.3.2 Fast Louvain Algorithm

The Fast Louvain algorithm (Blondel et al., 2008) optimises a more general version

of modularity which is also appropriate for a weighted undirected network. To

distinguish it from an ordinary binary undirected network data, we use the notation

w = ((w
ij

))
1i,jn

to indicate the corresponding weighted adjacency matrix. Note

that a weighted network may also have self connected nodes, in which case the

convention of this algorithm is to treat such edges with twice their weights. For

example, if a node V
i

is connected to itself and this connection has a weight 1, then

by convention w
ii

= 2 ⇥ 1 = 2. Similarly to the binary network case, the degree of

node V
i

is ⇢w(V
i

) =
P

n

j=1

w
ij

and W is the total sum of weights of all edges. In

such a network, the weighted modularity is given as

fw

mod

=
1

2W

nX

i=1

nX

j=1

(w
ij

� ⇢w(V
i

)⇢w(V
j

)

2W
)�(c

i

, c
j

). (2.9)

The Fast Louvain algorithm optimises the weighted modularity in two stages that

are repeated iteratively. The algorithm is initialised with the number of clusters

equal to the number of nodes, that is, each node is assigned to its own cluster. In

the first stage, for each node V
i

, the algorithm considers each of its neighbours6 and

6
Two nodes are said to be neighbours or adjacent to each other if they have a common edge.
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computes the gain of modularity that would have been obtained if the node V
i

was

placed in the same cluster as its neighbour V
j

. The node V
i

is assigned to the cluster

for which this gain is the largest or, in the case of no positive gain, the node stays in

its initial cluster. This process is applied sequentially, cycling through every node

until no individual move can improve the modularity at which point the first stage

stops.

In the second stage, the algorithm builds a new weighted network whose

nodes are identified as the clusters found in the first stage. The weight between every

node pair of this simplified network is obtained by summing the connection weights

between their corresponding clusters and the weight of every node is obtained by

counting twice the sum of the weights of its corresponding intra-cluster connections.

This gives a simplified weighted network that is used as the initialisation for the next

pass of the first stage. These two stages are repeated until the maximal weighted

modularity is attained.

2.4 Stochastic Blockmodels

In the domain of social sciences, network analysis has long been a subject of active

research. Some of the first work in network analysis is linked to the work of Moreno

(1953), who used a graphical representation of the social connections among indi-

viduals, which he called a sociogram. This idea was further mathematically formu-

lated by his successors and, in particular, by Luce (1950), who used an adjacency

matrix to represent social networks.

The next wave of research came from the work of Lorrain and White (1971),

who introduced the concept of structural equivalence, by which two nodes are said

to be structurally equivalent if they relate to other nodes in the network in the

same way. Moreover, Lorrain and White (1971) referred to the collection of nodes

sharing the same equivalence structure as an equivalence class or a block. This idea

profoundly influenced many researchers, who tried to find optimal ways in which

nodes can be clustered into blocks, and, in the sociometric literature, this problem

became known as blockmodelling.

However, the evolution of blockmodelling into stochastic blockmodeling is

inseparable from the probabilistic network ideas considered by Erdős and Rényi

(Erdős, 1947; Erdős and Rényi, 1959). In particular, Erdős and Rényi studied special

types of random networks whose connections were independently and identically

generated according to some global network probability (i.e. the Erdős-Rényi (ER)

model). This implied that the observed network data can be modelled as a product of

independent Bernoulli trials which shared a common probability rate. The ERmodel

cannot be directly applied to social networks as the assumption that every node in
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the network has approximately the same number of neighbours is not characteristic

of observed social networks.

To overcome the issues of the simple ER model, Holland and Leinhardt pro-

posed the p
1

model (Holland and Leinhardt, 1981), which introduced some depend-

ences in the overall distribution of edges by the reparametrisation of the ER model

in terms of dyads (i.e. two way node relationships). However, this model was shown

to be a poor fit to an already known block structure induced by a classification of

individuals according to their gender (Wang and Wong, 1987). To compensate for

this, Holland et al. (1983) proposed a stochastic blockmodel which establishes the

idea of stochastic equivalence, that is to say, that the probability distribution of a

network is invariant under permutations of nodes within a block. Thus, the over-

all distribution of edges can be expressed in terms of block level parameters which

quantify the probabilities of connections between the blocks and within the blocks.

However, the classification of nodes into blocks is generally unknown and,

thus, we require models which can estimate this latent structure. An appealing way

to achieve this is to use Stochastic Blockmodels which are based on mixture models

and use likelihood methods for the estimation of the model parameters. In this

section, we first review the classical Stochastic Blockmodel (SBM) initially proposed

by Snijders and Nowicki (1997). Then, we describe the variational optimisation

and the model selection criterion, called Integrated Classification Likelihood (ICL;

Biernacki et al., 1998), considered by Daudin et al. (2008) for the SBM. Finally,

we review two extensions of the SBM: (1) the extension proposed by Mariadassou

et al. (2010) who posed a generalised linear model with an edge-based covariate to

model the cluster structure of a single network and (2) the extension proposed by

(Zanghi et al., 2010) who instead considered node-based covariates to model the

cluster structure of a single network data.

Before going further, let us fix some notation. Hereafter, we employ the usual

statistical convention that capital Roman letters denote random variables and lower

case letters denote their observed realisations. To distinguish between scalar and

non-scalar values, we employ light and bold face fonts, respectively. As an example,

a non-scalar random variable is denoted as X and its realisation is denoted as x.

Furthermore, if X is a discrete random variable, we use three equivalent notations

for its probability mass function or its discrete density f
X

(x) ⌘ f(x) ⌘ P(X = x).

When a density depends on fixed parameters, we write them after a semicolon, as

in f(x;↵); a density conditional on a random variable is written using a vertical

bar, e.g., f(x|z).
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2.4.1 The Stochastic Blockmodel (SBM)

In this section, we consider an undirected and binary network with n nodes whose

observed n⇥ n connectivity matrix x is symmetric (see Section 2.2). The classical

Stochastic Blockmodel (SBM) uses a framework of finite mixture models to explicitly

account for the variation in the distribution of edges, which give rise to the network

cluster structure (for a general review, see Everitt and Hand, 1981). In order to

describe the model, let us first assume that the number of blocks Q is fixed, and

that the individual blocks are labeled with the indices q, l = 1, . . . , Q. Note, however,

that we will later discuss how to estimate Q.

The classification of nodes into Q blocks is represented by a n ⇥ Q matrix

of binary latent random variables Z. In this matrix, the individual row vectors

Z

i

= (Z
i1

, . . . , Z
iQ

) denote the block assignment of each node in a network. Thus, if

the node V
i

is assigned to the block q, Z
iq

is 1 and 0 otherwise. An individual node

can only be a member of one block and, thus,
P

Q

q=1

z
iq

= 1. Marginally, the latent

random variables Z are assumed to be independent and to follow a Categorical

distribution,

Z

i

⇠ Categorical(Q,↵), (2.10)

with individual probabilities of success ↵ = (↵
1

, . . . ,↵
Q

) such that
P

Q

q=1

↵
q

= 1.

The probability mass function of Z is then

f(z;↵) =
QY

q=1

nY

i=1

↵
ziq
q

. (2.11)

The SBM specifies that, given the block assignments of the nodes, the ele-

ments of X are conditionally independent Bernoulli random variables whose rates

are given by their corresponding elements in an association matrix ⇡ = ((⇡
ql

))
1q,lQ

.

In other words, if a node V
i

belongs to block q and a node V
j

belongs to block l,

then

X
ij

|Z
iq

= 1, Z
jl

= 1 ⇠ Bernoulli(⇡
ql

). (2.12)

The conditional distribution of the connectivity matrix given the block assignments

is thus

f(x|z;⇡) =
nY

i=1

nY

j<i

QY

q=1

QY

l=1

�
⇡
xij

ql

(1� ⇡
ql

)1�xij
�
ziqzjl . (2.13)

When dealing with mixture models, it is common to make a distinction between the

complete dataset (x, z) and the incomplete data set (x). The likelihood of the SBM

is stated as the incomplete data problem. The complete data likelihood is

log f(x, z;⇡,↵) = log f(x|z;⇡) + log f(z;↵)
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=
1

2

nX

i=1

nX

j 6=i

QX

q=1

QX

l=1

z
iq

z
jl

log
⇥
⇡
xij

ql

(1� ⇡
ql

)1�xij
⇤

+
nX

i=1

QX

q=1

z
iq

log↵
q

, (2.14)

and its marginal likelihood or equivalently the incomplete data likelihood f(x;⇡,↵)

has the same parameters as the complete data likelihood. Ideally, we would like to

base the estimation on f(x;⇡,↵) but its implicit computation is generally challen-

ging due to the fact that for each Q, we have Qn possible node assignments. For

this reason, Daudin et al. (2008) suggested the use of a variational approximation,

which is reviewed next.

Estimation with Variational Approximation

In order to describe the variational approach, we first explicitly derive a lower bound

for the incomplete data, represented by the marginal density f(x;⇡,↵). Denoting

a sample space of Z as S, we can derive the following inequality

log f(x;⇡,↵) = log

X

z2S
f(x, z;⇡,↵)

�

= log

X

z2S
f(x, z;⇡,↵)

f⇤(z; ⌧ )

f⇤(z; ⌧ )

�

= log


E
✓
f(x,Z;⇡,↵)

f⇤(Z; ⌧ )

◆�

� E
✓
log


f(x,Z;⇡,↵)

f⇤(Z; ⌧ )

�◆
(by Jensen’s inequality)

= E
✓
log[f(x,Z;⇡,↵)]

◆
� E

✓
log[f⇤(Z; ⌧ )]

◆
. (2.15)

In particular, the lower bound in Eq. (2.15) is closely related to the Kullback-

Leibler (KL) divergence of f⇤(z; ⌧ ) to f(z|x;⇡,↵), where ⌧ is a set of variational

parameters, as

KL


f⇤(z; ⌧ )

����

����f(z|x;⇡,↵)
�
= log f(x;⇡,↵)

�

E
✓
log[f(x,Z;⇡,↵)]

◆
� E

✓
log[f⇤(Z; ⌧ )]

◆�
. (2.16)

Rearranging the last equation, we write the lower bound Eq. (2.15) as

log f(x;⇡,↵)�KL


f⇤(z; ⌧ )

����

����f(z|x;⇡,↵)
�
. (2.17)

22



This shows that the lower bound in Eq. (2.15) is precisely attained when the KL

divergence is zero, that is, when f⇤(z; ⌧ ) coincides with f(z|x;⇡,↵). As we can-

not explicitly calculate log f(x;⇡,↵) due to the intractability of f(z|x;⇡,↵), we
find a family of densities with variational parameter ⌧ f⇤(z; ⌧ ) to approximate

log f(x;⇡,↵) by its lower bound,

log f(x;⇡,↵)�KL


f⇤(z; ⌧ )

����

����f(z|x;⇡,↵)
�

� E
✓
log[f(x,Z;⇡,↵)]

◆
� E

✓
log[f⇤(Z; ⌧ )]

◆
. (2.18)

Although the lower bound depends on expectations, it is still easier to work with

it directly than with log f(x;⇡,↵). Indeed, since the random variables in Z are

independent, the expectations of their products, as we will show later, can be fac-

torised. This suggests that we can maximise log f(x;⇡,↵) (or more precisely the

likelihood) without its calculation and, consequently, estimate ⌧ and other paramet-

ers of interest. Note, that the accuracy of the variational approximation is of course

dependant of our choice of f⇤(z; ⌧ ) and the true log likelihood. Since the random

variables Z are independent, a class of densities f⇤(z; ⌧ ) is generally referred to as

mean-field or fully-factored densities. To indicate the role of ⌧ , the lower bound is

formally denoted as

J (f⇤(z; ⌧ );⇡,↵) = E
✓
log[f(x,Z;⇡,↵)]

◆
� E

✓
log[f⇤(Z; ⌧ )]

◆
. (2.19)

In particular, the natural option for f⇤(z; ⌧ ) is a Categorical distribution with block-

specific probabilities, independently for each node:

f⇤(z; ⌧ ) =
nY

i=1

QY

q=1

⌧
ziq

iq

, (2.20)

where
P

Q

q=1

⌧
iq

= 1. Note that this gives the probability of node V
i

belonging

to block q as E(Z
iq

) = ⌧
iq

and that E(Z
iq

Z
jl

) = ⌧
iq

⌧
jl

. Thus, the lower bound

J (f⇤(z; ⌧ );⇡,↵) can be written as

J (f⇤(z; ⌧ );⇡,↵) =
1

2

nX

i=1

nX

j 6=i

QX

q=1

QX

l=1

⌧
iq

⌧
jl

log
⇥
⇡
xij

ql

(1� ⇡
ql

)1�xij
⇤

+
nX

i=1

QX

q=1

⌧
iq

log↵
q

�
nX

i=1

QX

q=1

⌧
iq

log ⌧
iq

, (2.21)

and the full details of this derivation are given in Appendix A.1.

The point estimates for the model parameters ⌧ , ⇡ and ↵ are obtained by
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maximising J (f⇤(z; ⌧ );⇡,↵) with respect to each of the parameters, and we get

⌧̂
iq

/ ↵̂
q

nY

i 6=j

QY

l=1


⇡̂
xij

ql

(1� ⇡̂
ql

)1�xij

�
⌧̂jl

, (2.22)

⇡̂
ql

=

P
n

i 6=j

⌧̂
iq

⌧̂
jl

x
ijP

n

i 6=j

⌧̂
iq

⌧̂
jl

, (2.23)

↵̂
q

=
1

n

nX

i=1

⌧̂
iq

. (2.24)

Finally, for each node, the largest variational parameter estimate in ⌧̂
i

= (⌧̂
i1

, . . . , ⌧̂
1Q

)

determines the classification vector estimate z

i

= (z
i1

, . . . , z
iQ

), such that

ẑ
iq

=

(
1 if q = argmax

q

0 ⌧̂
iq

0

0 otherwise.
(2.25)

Estimation of Optimal Number of Blocks

In a general context, the number of components in a mixture model can be estim-

ated using the Bayesian Information criterion (BIC; Leroux and Puterman, 1992).

However, there is some controversy about its accuracy when it is used in the con-

text of clustering. On one side, the studies of Fraley and Raftery (1998), Dasgupta

and Raftery (1998), Steele and Raftery (2009) and Gormley and Murphy (2011) are

inclined to recommend the BIC for clustering as it gives good results in practice,

while, on the other side, the studies of Biernacki and Govaert (1997), Biernacki

et al. (1998) and Tantrum et al. (2003) are more cautious to use the BIC in the

clustering context. The last group of authors stress that the key modelling principle

in clustering is that the mixture components are distinct representatives of cluster

structures in the data, meaning that each such cluster should be approximated by

a single mixture density component. However, if one of these clusters is not well

suited for a single mixture component and is therefore modelled by several compon-

ents, the correspondence between clusters and mixture components will no longer be

distinct. As a result, the estimated number of mixture components will always be

higher than the true number of clusters. To address the latter issue, Biernacki et al.

(1998) proposed the Integrated Classification Likelihood (ICL) criterion, which is

more attuned with the clustering goals of mixture models by favouring models that

have well separated clusters. In other words, the ICL penalises model complexity

more severely.

Noting a model with Q blocks as M
Q

, the starting point of the ICL derivation

is the integrated classification likelihood f(x, z|m
Q

) which considers the evidence of

the clustering in the data. Provided that the priors for the model parameters can be
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factored as p(⇡,↵|m
Q

) = p(⇡|m
Q

)p(↵|m
Q

), the integrated classification likelihood

(see Appendix A.2) can be written as

log f(x, z|m
Q

) = log f(x|z,m
Q

) + log f(z|m
Q

). (2.26)

In particular, Biernacki et al. (1998) suggested the BIC as an approximation for

log f(x|z,m
Q

). Hence,

log f(x|z,m
Q

) ⇡ log f(x|z,m
Q

, ⇡̂)� 1

2

Q(Q+ 1)

2
log


n(n� 1)

2

�
, (2.27)

where Q(Q+1)

2

denotes the total number of parameters in ⇡ and n(n�1)

2

denotes the

total number of data points in x. However, the BIC approximation is not valid

for the term log f(z|m
Q

) since the elements of ↵ can be on the boundary of the

parameter space. This happens in scenarios when a mixture model has too many

components and the elements of ↵may shrink to zero. Nevertheless, log f(z|m
Q

) can

be calculated directly by assuming a Dirichlet prior D(�, . . . , �) for ↵ (Diebolt and

Robert, 1994) and a Je↵reys non-informative distribution D(1/2, . . . , 1/2) (Robert,

2001). Biernacki et al. (1998) showed (see Appendix A.3) that

log f(z|m
Q

) = log�

✓
Q

2

◆
� log[Q�

✓
1

2

◆
]

+
QX

q=1

log[�

✓
n
q

+
1

2

◆
]� log[�

✓
n+

Q

2

◆
], (2.28)

where �(·) is the gamma function and n
q

=
P

n

i=1

z
iq

, the estimated number of nodes

in block q. Furthermore, under the assumption that n and n
q

take large values,

Daudin et al. (2008) used Stirling’s approximation of Eq. (2.28) (see Appendix A.4)

to get

log f(z|m
Q

) ⇡ log f(z|m
Q

, ↵̂)� Q� 1

2
log[n]. (2.29)

Finally, combining the results in Eq. (2.27) and (2.29), and replacing z by its es-

timate ẑ, yields the ICL criterion

ICL(m
Q

) = log f(x, ẑ|m
Q

, ⇡̂, ↵̂)� 1

2

Q(Q+ 1)

2
log


n(n� 1)

2

�

� Q� 1

2
log[n]. (2.30)
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Degree Distribution and Clustering Coe�cient

A basic property of the SBM is that the degree distributions are well approximated

by a mixture of Poisson distributions. To show this, we treat the degree of node

V
i

as a random variable, which is defined as ⇢(V
i

) =
P

n

j=1

X
ij

. The degree value

of ⇢(V
i

) increases only when a new edge is added and the probability of such edge

depends on the block assignment of node V
i

. Hence, for a node V
i

in a block q, the

updating probability P(X
ij

= 1|Z
iq

= 1) is given as

P(X
ij

= 1|Z
iq

= 1) =
QX

l=1

P(X
ij

= 1|Z
iq

= 1, Z
jl

= 1)P(Z
jl

= 1)

=
QX

l=1

⇡
ql

↵
l

= ⇡
q

, (2.31)

a weighted average of the internal and external connection rates associated with

the block q. Since, ((X
ij

))
1i 6=jn

are conditionally independent given the blocks of

nodes V
i

and V
j

, this implies that

⇢(V
i

)|Z
iq

= 1 ⇠ Binomial(n� 1,⇡
q

). (2.32)

For large counts, a Binomial density can be approximated by a Poisson density with

rate equal to the number of trials times the probability of success. This indicates

that

⇢(V
i

)|Z
iq

= 1 ⇠ Poisson(�
q

), where �
q

= (n� 1)⇡
q

, (2.33)

P(⇢(V
i

) = k) =
QX

q=1

↵
q

e��q�k
q

k!
. (2.34)

In addition to approximating the empirical degree distribution, Daudin et al. (2008)

also showed how the fitted SBM can be used to estimate Newman’s clustering coef-

ficient (see Eq. (2.3)). This estimate is given as

Ĉ =

P
Q

q,l,s

↵̂
q

↵̂
l

↵̂
s

⇡̂
ql

⇡̂
qs

⇡̂
ls

P
Q

q,l,s

↵̂
q

↵̂
l

↵̂
s

⇡̂
ql

⇡̂
qs

. (2.35)

Further details about this estimate can be found in Appendix A.5.

2.4.2 The Stochastic Blockmodel of Mariadassou, Robin and Vacher

Mariadassou et al. (2010) proposed an extension of the SBM which is applicable to

weighted network data where each edge carries a covariate value. As a motivating

example, the authors considered the phylogenetic relatedness between tree species.

26



In this undirected network, the nodes represent di↵erent tree species and the edges

represent the number of their common fungal species. Such weighted edges are

clearly discrete (i.e. the edges carry positive integer weights). In addition, each edge

carry a single covariate value d
ij

which indicates, on a discrete scale from 0 to 5, the

position of each tree pair in a classification tree (i.e. taxonomy). For example, two

trees may either be of the same: species (0), genus (1), family (2), order (3), class

(4) or phylum (5). Here, the conventional wisdom is that the more taxonomically

closer the trees are, the more likely it is that they share common fungal species.

Thus, this covariate is expected to be an informative factor in the estimation of the

cluster structure.

To model this type of networks, the authors followed the same specification

of nodes as in the SBM (see Eq. (2.11)) but in addition they assume that the

distribution of edges is Poisson. In particular, they also considered three types of

relationships between the covariate of interest and the block structure, yielding three

di↵erent models. The first model is a Poisson mixture (PM):

X
ij

|Z
iq

= 1, Z
jl

= 1 ⇠ Poisson(�
ql

), (2.36)

where ((�
ql

))
1q,lQ

= � is the mean number of common fungal species. This model

is trivial as it has no covariate. The second model is a Poisson regression mixture

with homogeneous e↵ects (PRMH):

X
ij

|Z
iq

= 1, Z
jl

= 1 ⇠ Poisson(�
ql

e�dij ), (2.37)

where � represents the global network regression coe�cient. In this model, the

covariate is assumed to have a global e↵ect on the network’s edges. The third model

is a Poisson regression mixture with inhomogeneous e↵ects (PRMI):

X
ij

|Z
iq

= 1, Z
jl

= 1 ⇠ Poisson(�
ql

e�qldij ), (2.38)

where �
ql

represents the regression coe�cient associated with block (q, l). In this

model, the covariate is assumed to directly interact with each element of the block

structure.

The estimation strategy of these models follows the same approach as in

the SBM and the model selection is performed with the ICL criterion. Note that

the authors only allowed one covariate per model, and did not provide any guidance

about the estimation of the regression coe�cients and how this can be combined with

a variational estimation. Finally, although the authors discussed the PRMH in detail

through di↵erent simulation scenarios and real data application, the behaviour of

the PRMI was not investigated in the original work, neither in the real data analysis
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nor in the simulations.

2.4.3 The Stochastic Blockmodel of Zanghi, Volant and Ambroise

Zanghi et al. (2010) proposed an extension of the SBM which is applicable to a binary

undirected network data but with the addition of feature values on the nodes. The

idea of this model is to incorporate nodal features as an additional clustering factor,

so that the nodes are not only grouped to homogenise their connection profiles within

blocks but also their nodal features. This model retains the complete structure of

the SBM described in Section 2.4.1, but introduces nodal features as a n⇥P matrix

of random variables Y such that the features pertaining to a node V
i

are distributed

according to a Multivariate Normal density,

Y

i

|Z
iq

= 1 ⇠ MVN(µ
q

,⌃
q

), (2.39)

where µ

q

= (µ
q1

, . . . , µ
qP

) is the vector of population means related to block (q, q)

and the variance ⌃
q

is a P ⇥ P diagonal matrix related to block (q, q). There are

a number of typographical errors and inconsistencies in this work that we have

resolved (see Appendix A.6). Using Monte Carlo evaluations, they demonstrated

how the model could successfully estimate blocks even when there is no obvious

cluster structure in the distribution of edges. In such circumstances, the model can

switch gears and use the nodal features as the primary clustering source.

2.5 Evaluation Methods

In this section, we review some tools that can be used to compare clustering methods

or models with a particular focus on how we can measure the accuracy of their

clustering estimates. A first way to achieve this is to compare the estimated partition

(i.e. the complete segmentation of the network into a set of clusters) with already

known partitions of the nodes (e.g., known biological classifications). A measure of

similarity of two partitions is the Adjusted Rand Index (ARI; Handl et al., 2005;

Hubert and Arabie, 1985). This measure is a modification of the Rand Index (RI;

Rand, 1971), expressed as the fraction of node pairs that are consistent: a node pair

is consistent between two partitions if either (i) the node pair is within the same

cluster in both partitions, or (ii) the node pair is split between two clusters in both

partitions. The interpretation of the RI depends on the number of groups (Morey

and Agresti, 1984) whereas the ARI is adjusted for chance agreement and number

of clusters (Hubert and Arabie, 1985). The ARI is defined as

ARI =
RI� E(RI)

max(RI)� E(RI) , (2.40)
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where the expectation is computed assuming a hypergeometric distribution of the

counts of consistent vertex pairs. The ARI scores range from 0 to 1 and indicate

the proportion of overlap; for example, if two partitions have an ARI score of 0.6,

this means that 60% of their node pairs are classified in the same groups.

A second approach is to assess the quality of an estimated partition with

respect to quantitative biological features. To be a useful evaluation, these features

should of course not be used in the estimation of the clusters. For this assessment,

we can use the Intra-class Correlation Coe�cient (ICC). The ICC measures the

variance that a partition explains in a continuous variable. As per best practice,

we estimate the ICC with a mixed e↵ects model (Dobson, 2001). For a node-wise

feature, if we denote Y
qi

as the measure on the V
i

-th node in the q-th group, the

mixed e↵ects model is

Y
qi

= µ+ a
q

+ ✏
qi

, (2.41)

where a
q

is the random e↵ect of the q-th group, ✏
qi

is the random error term and

µ is the population mean. The random terms a
q

and ✏
qi

are mutually independent

and each are independently and identically distributed normal random variables:

a
q

⇠ N (0,�2
a

) and ✏
qi

⇠ N (0,�2
✏

). The ICC is defined as the proportion of total

variance explained by the between group variance,

ICC =
Var(a

q

)

Var(Y
qi

)
=

�2
a

�2
a

+ �2
✏

. (2.42)

In other words, the ICC tells us how homogeneous the biological feature is within

the partitions of a proposed network decomposition. Note that, here, we defined

the ICC for node-wise measures, but it can be also defined for edge-wise measures.

While edge-wise measures may violate the independence assumption of the mixed

e↵ect model, the ICC will still be a useful metric to compare the biological validity

of di↵erent partitions.
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CHAPTER 3

Stochastic Blockmodelling of the Modules and Core of the

Caenorhabditis elegans Brain Network

Caenorhabditis elegans (C. elegans) is a tiny roundworm that has become a vital

tool in biological research due to its many favourable properties, including relatively

short life cycle, constant number of cells, largely invariant neuronal structures across

di↵erent worms as well as biological mechanisms that are similar to many other

animal species, including humans (Hope, 1999). The C. elegans worm is lacking

vision and hearing but, nevertheless, it is still capable of sensing the environment

trough its receptors which respond to chemical, thermal and tactile stimulations.

Its behaviour ranges from simple activities, including locomotion or swimming, to

more complex activities such as reproduction and even some rudimentary forms of

social behaviour (Sporns, 2010). It also has the capacity to adapt and learn, where

the latter is related to the ability to change its food search habits as a response

to changes in its surrounding environment. In comparison to many other animal

species, the nervous system of C. elegans is much smaller and less complex, and, as

such, it can serve as a reductionist model from which ultimately complex questions

related to memory, intelligence, emotions and cognition in the human brain can be

researched (Kim, 2008).

Despite the relative simplicity of the C. elegans nervous system, it is still

di�cult to give detailed insights into the way its synaptic connections facilitate

functions and how this gives rise to the animal’s behaviour. A relatively recent per-

spective on this problem draws from the theory of networks to examine topological

organisations of nervous systems in di↵erent animal species. With this approach, it

has been demonstrated that other species, such as jellyfish, exhibit a fairly regular

network topology which is generally characterised by an overall lack of long distance
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connections and the presence of a lattice structure (Watanabe et al., 2009). How-

ever, as pointed out by Kaiser and Varier (2011), this organisation is unlikely to be

a characteristic of functionally specialised nervous systems and, in the case of C. el-

egans as well as other more complicated nervous systems, an alternative topological

structure is expected to yield a more plausible fit.

For more than a decade now, neuroscientists and biologists have hypothesised

that highly specialised brain networks are organised in terms of a modular structure

which is defined as a subset of nodes, called modules, each of which consists of

highly intra-connected nodes which are sparsely inter-connected to nodes in other

modules. According to Meunier et al. (2010), modular organisation is expected to

be topologically advantageous due to its adaptivity and robustness along with the

evolvability of its network function. On these lines, modular organisations have

been reported in many di↵erent species, including C. elegans, macaque and human

brains (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010; Pan et al., 2010;

Sporns et al., 2004; Hilgetag et al., 2000; Achard et al., 2006; Bassett and Bullmore,

2009) and this structure has been formally verified with the use of the deterministic

clustering algorithms described in Section 2.3.

However, one significant weakness of these studies is that they have not

considered any other possible topological structure in the networks. Therefore, if

some kind of clustering exists in the data and a researcher simply applies a modular

algorithm, it does not come as a great surprise that that the resulting decomposition

is modular. To compensate for this methodological weakness, other studies turned

their attention to the identification of a rich club. Van den Heuvel and Sporns

(2011) describe a rich club as a ‘tendency of high-degree nodes to be more densely

connected among themselves than nodes of a lower degree’. They stress that a rich

club plays a key role in the functional integration of di↵erent parts of the network,

but they fail to o↵er any explanation as to why such an important topology is not

reflected by specific modules and, in particular, why these nodes are blended in with

other less important nodes in the network.

To formally investigate these research gaps, we focus on the network of C.

elegans which has been reported to have a rich club (Towlson et al., 2013) but also

a modular structure (Pan et al., 2010). Using the Stochastic Blockmodel (SBM)

discussed in Section 2.4.1, we demonstrate its advantages, including its ability to

detect a range of cluster structures that are not necessarily modular, to approxim-

ate empirical degree distributions and to estimate a clustering coe�cient. Using

the wealth of information about the neurons of C. elegans, we compare the SBM

decomposition against the modular decompositions estimated by the popular Spec-

tral and Fast Louvain algorithms. The goodness of fit of each decomposition is

assessed according to how much variability within the biological features has been
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explained by each fit. We show that the ‘cores-in-modules’ decomposition of the

worm brain network estimated by the SBM is more compatible with prior biological

knowledge about the C. elegans nervous system than the purely modular decom-

positions defined deterministically. We also show that the SBM can be used both

to generate stochastic realisations (simulations) of the biological connectome, and

to compress a network into a small number of super-nodes and their connectivity.

The outline of this chapter is as follows. To keep this material self contained,

we start by the detail descriptions of the C. elegans network and its external bio-

logical information associated with the neurons in the network, and we establish

the standard system of nomenclature for the labelling of the neurons. The next

section discusses some practical aspects of the analysis related to di↵erent software

and computational challenges. The next two sections present the results, which

detail the estimated structure of the C. elegans brain network found by the SBM

and compare it to the ones obtained by the Spectral and Fast Louvain algorithms.

The final part considers the generative properties of the SBM with respect to the

network’s degree distribution and clustering coe�cient.

3.1 Data

The phylum of Nematoda, also known as nematodes, represents a group of smooth

skinned and unsegmented round worms. They consist of more than 25,000 di↵erent

species (Zhang, 2013) which can be found in diverse habitats either as free-living

or parasitic. Caenorhabditis elegans (C. elegans) is a small, free-living, terrestrial

nematode which, in the conditions of generous food supply, tends to grow up to a

length of 1.3 mm and with a diameter of up to 0.08 mm.

In its most common hermaphrodite form, every C. elegans has 302 neurons

in their nervous system, which can be dichotomised into the pharyngeal nervous

system, containing 20 neurons, and the somatic nervous system, containing 282

neurons. Each neuron has its own particular combination of characteristics related

to morphology, connectivity and position which allows them to be classified into

118 distinct classes that vary in sizes from 1 to 13 neurons. Finally, the 118 classes

of neurons are grouped into 10 ganglia, (White et al., 1986). This diverse class

structure is very interesting, particularly when contrasted to the mammalian cere-

bellum, a ‘mini brain’ primarily responsible for motor coordination and learning,

which contains only 5 classes of neurons.

The neurons of C. elegans are labelled according to a uniform system of

nomenclature where the labels consists of upper case letters with the last entry that

can be a number of up to two digits. Further symmetries descriptors are added

to the labels to ease the within-class interpretation of the nodes. Thus, D or V
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stands for dorsal or ventral1 and L or R stands for left or right. For example, IL1

is a class of neurons whose members are: IL1DL, IL1DR, IL1L, IL1R, IL1VL and

IL1VR. However, when neurons are not part of a set of symmetrical cells, than

the third label entry is numerical and describes the anterior or posterior location

relative to the other members of the same class. For example, VA03 is the third VA

motoneuron.

The neuronal network of the adult nematode C. elegans was first described

in the publication by White et al. (1986) and was recently revised by Chen et al.

(2006) and Varshney et al. (2011). It expresses the regime of connections between the

animal’s 282 somatic neurons and classifies them with respect to their type and dir-

ection (http://www.wormatlas.org/neuronalwiring.html, accessed on the 15th

June 2013).

In our analysis, we consider a subset of this data where three disconnected

neurons (VC06, CANL and CANR) are excluded from the set and we take all con-

nections to be undirected. Furthermore, while the connections are distinguished

in terms of their type (chemical synapses, gap junctions and neuromuscular junc-

tions), we treat all connections as binary, that is, we assign the value 1 if some type

of connection exist and 0 otherwise. This yields a 279⇥ 279 binary and symmetric

adjacency matrix with 2287 edges that defines the C. elegans network.

For an external evaluation of the cluster estimates, we use categorical and

quantitative characteristics of the neurons (node-wise features) and quantitative char-

acteristics of the edges (edge-wise features) as summarised in Table 3.1. There is a

Name Type Node-wise Edge-wise

Ganglion Classification (10 groups) Categorical
p

-
Neuron Type (4 groups) Categorical

p
-

Neuron Class (103 groups) Categorical
p

-
Locomotion Circuit (84 nodes) Categorical

p
-

Anatomical Location Quantitative
p

-
Anatomical Distance Quantitative -

p
Birth Time Quantitative

p
-

Birth Time Di↵erence Quantitative -
p

Lineage Distance Quantitative -
p

Table 3.1: Prior biological features of the C. elegans network.

large body of knowledge on the individual neurons producing node-wise features. For

example, we use the classification of neurons into ten anatomically defined ganglia

(‘Ganglion classification’), the classification of neurons by their circuitry (‘Neuron

type’) defined by four groups (sensory, motor, interneurons and polymodal neurons),

1
Dorsal refers to the direction towards the top of the worm, ventral refers to the bottom, or

ground-facing part.

33



as well as topological and synaptic division of neurons (‘Neuron class’) defined by 103

groups (Varshney et al., 2011; Altun and Hall, 2005). We also consider the ventral

nerve cord motor neurons involved in locomotion, egg-laying and possibly avoid-

ance (broadly labelled as ‘Locomotion circuit’ in Table 3.1) which was described by

Haspel et al. (2010) using the connection data from Wood et al. (1987), Von Stetina

et al. (2006), Altun ZF (2009), and Chen et al. (2006). Explicitly, this circuit is

composed of 84 neurons, of which 74 are motor neurons (excluding VC06) and they

comprise eight neuron classes. Four of these classes are connected to ventral muscles

(VA, VD,VB and VC) while the other four classes are connected to dorsal muscles

(AS, DA, DD and DB). The remaining 10 neurons are interneurons (AVA, AVD and

AVE; AVB and PVC) promoting the backward and forward motion. Although the

connection data used in our analysis do not include neuromuscular connections, the

circuit presented by Haspel et al. (2010) provides some invaluable insights that are

beneficial to the evaluation and comparison of the results obtained in our analysis.

The remaining set of the node-wise features includes the ‘Anatomical Location’ (lon-

gitudinal and sectional positions) of the cell body (soma) and the ‘Birth Time’ of

each neuron (http://www.biological-networks.org/?page_id=25, accessed on

the 15th June 2013; Varier and Kaiser, 2011).

The edge-wise features include the ‘Anatomical Distance’ (Euclidean distance

between each neuron pair), the ‘Birth Time Di↵erence’ (for each neuron pair, we

take an absolute di↵erence in their birth times) and the ‘ Lineage Distance’ (for each

neuron pair, this is the sum of total divisions to the most recent common ancestor

cell; Brenner, 1974).

3.2 Practical Considerations

Cluster estimation methods are notoriously sensitive to the initial starting conditions

(see e.g., Mukherjee and Hill, 2011). Each method begins with some sort of random

initialisation that typically leads to a local optimum of the objective function (i.e.

ICL or modularity). Thus, for all three methods considered, we use multiple random

restarts of the algorithm and take the solution that provides the greatest value of

the objective function. In particular, we fitted the SBM with the R package Mixer

(Daudin et al., 2008; Latouche et al., 2008; Zanghi et al., 2008a,b). The mixer func-

tion specifies default values for the maximum number of iterations, and we found

improved performance by increasing these (nbiter=80 up from 10, fpnbiter=40 up

from 5). We found that 1, 000 random restarts was su�cient to visit the optimal solu-

tion multiple times, but, to be exhaustive, we also considered up to 100, 000 random

restarts. The Fast Louvain and Spectral algorithms were fitted using the Matlab

Brain Connectivity Toolbox (http://www.brain-connectivity-toolbox.net/, ac-
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cessed on the 15th June 2013; Rubinov and Sporns, 2010). For the Fast Louvain

algorithm, we used the function modularity louvain und using 20, 000 restarts.

For the Spectral algorithm, we used the function modularity und. This function is

initiated on a randomly permuted adjacency matrix and although, in theory, all per-

mutations of the adjacency matrix should provide the same result, some numerical

discrepancies may occur during the spectral decomposition, subsequently leading to

slightly di↵erent modularity fits. Specifically, the variability in the fits is driven by

numerical errors in the estimation of the elements of eigenvectors u

i

(Eq. (2.7)),

which can erroneously change the sign of its element. For example, if the true value

of an element of u
i

is 5⇥10�20 and the error is �1⇥10�19, the estimated value would

be �5⇥10�20. Indeed, this has an immediate impact on the classification vector s

(Eq. (2.7)) which will classify the corresponding node in the wrong group. To be

exhaustive, we have therefore used 20, 000 restarts.

Also, we report the computational times obtained on a 2.7 GHz quad-core

Intel Core i7 linux host with 16 GB. The SBM, with the default parameters setting

(i.e. nbiter=10, fpnbiter=5) and the range Q 2 {2, . . . , 50}, took 186 seconds while

the Louvain and Spectral algorithms took 0.07 and 0.62 seconds, respectively. Both

the SBM and Louvain methods required multiple restarts to find the optimal model,

while restarts for the Spectral algorithm were only needed due to numerical errors.

For the SBM, on average, 1, 000 restarts were needed to visit the optimal model

12 times (see Figure 3.1) while, for the Louvain algorithm, over the total of 20, 000

restarts, the optimal model was visited only once (see Figure 3.2). To measure the

similarity between a partition (i.e. the complete segmentation of a network into a

set of groups) and some known biological classifications, we use the Adjusted Rand

Index (ARI; see Section 2.5). The ARI scores were obtained using the function

adjustedRandIndex in R software (Fraley and Raftery, 2006, 2002) and, for the

ICC (see Section 2.5), we use the R function lmer Bates et al. (2012) that employs a

Restricted Maximum Likelihood procedure (Harville, 1977) to obtain the parameter

estimates.

3.3 Results

We first detail the estimated cluster structure of the C. elegans brain network found

by the SBM, and then we proceed to compare these results with the ones obtained

by the Fast Louvain and Spectral algorithms. The final part considers the gener-

ative properties of the SBM with respect to the network’s degree distribution and

clustering coe�cient.
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Figure 3.1: Model selection for SBM. Histogram of the maximal ICL scores taken
over 100, 000 restarts and given in terms of the number of blocks in the corresponding
fitted model. The number of blocks within the models that maximised the ICL scores
ranged from 8 to 13. The top ICL range (above �7218) was attained by the models
with 9, 10 and 11 blocks. Out of these, the model with 9 blocks achieved the overall
maximal ICL score of �7184.5 and this identical partition was repeated 1167 times.

3.3.1 Stochastic Blockmodel Estimate of the C. elegans Cluster

Structure

The optimal SBM fit of the C. elegans brain network consists of 9 blocks, each of

which is listed in Figure 3.3. In addition, the anatomical locations of neurons in

each block are given in Figure 3.4.

Broadly speaking, we found that approximately 70% of the neurons in Block 1

are head sensory neurons involved in chemo/thermotaxis or chemo/thermosensation

which modulate body movement. About 20% of the neurons in Block 2 are also head

36



0

1000

2000

0.37 0.38 0.39 0.40 0.41
Modularity

co
un
t

Models
3
4
5
6
7

Figure 3.2: Selection of the optimal number of modules for the Louvain
algorithm. Histogram of modularity scores taken over 20, 000 restarts and given
in terms of the number of modules in the corresponding model. The maximal
modularity score 0.411 (rounded to 3 decimals) was achieved by models with 5
modules and this was repeated 94 times. Note that the models with 5 modules
were mutually di↵erent and that the best fit (i.e. the fit that achieves the global
maximum of the modularity score) occured only once.

sensory neurons but involved in more direct, reflex like and deterministic e↵ects on

body movements such as escape or avoidance behaviour. Almost 60% of the remain-

ing neurons in Block 2 are ring interneurons (ADA, AIB, AVK, RIA, RIB, RIC,

RIG, RIS, RMG, URX), about half of which have unknown functions. Note that we

characterised this block as ‘escape/avoidance’ even though its function or perhaps

functional homogeneity is not entirely clear. Next, more than half of the neurons in

Block 3 (55%) consists of mid-body and posterior ventral cord motor neurons while

almost all of the remaining neurons are posteriorly located sensory neurons (PDE,
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PHA, PHB, PHC, PLM, PVD, PVM), known to have quite a direct e↵ect on motor

neurons (e.g., PHA and PHB control the extent of reversals in chemo-repulsion). We

have labeled this group ‘motor (posterior)’, but we will revisit the possible causes

for their inclusion. Similarly, close to 90% of neurons in Block 4 are made up of

anteriorly located ventral cord motor neurons (AS, DA, DB, VA, VB, VD) and it

is therefore labeled as ‘motor (anterior)’ group. The next two Blocks (5 & 6) are

among the smallest in size, each with only 6 neurons. In particular, 4 neurons in

Block 5 are command interneurons for (backward) locomotion (AVD, AVE), while

the remaining 2 neurons are DVA (mechanosensory integration) and PVR (unknown

function); whereas all 6 neurons in Block 6 are locomotion command interneurons.

Next, Block 7 is mostly (about 65%) composed of neurons with unknown functions.

However, as 15% of the neurons seem to be involved in egg-laying and defecation,

we have labeled Block 7 as ‘unknown/egg-laying/defecation’ group. The largest

number of neurons is found in Block 8 which appears to be predominantly (about

60%) composed of head motor neurons and nose touch mechanoreceptors (mainly

located in the head) as well as numerous ring motor neurons. Many of these neurons

are involved in both local search behaviour (RIV, SMDD, SMDV) and avoidance

or aversive head withdrawal (ALN, IL1D, IL1V, OLQD, OLQV, RMD). We labeled

this block as ‘nose-touch/head motor’, but it may be interesting to further invest-

igate whether this block could be subdivided into more specialised subunits. The

remaining Block 9 is composed entirely (100%) of anterior ventral cord motor neur-

ons of class DB, DD, VB, VC and VD - as previously discussed, Block 4 contains the

remaining of anterior ventral cord motor neurons of type AS, DA, DB, VA, VB, VD.

Overall, these observations indicate that the SBM partition highlights functionally

meaningful features of the system’s topological organization. In Figure 3.5 (a),

we show the optimal SBM fit as a reorganised adjacency matrix. Note that the

SBM fit demonstrates the dense connections between - as well as within - certain

groups. This is in stark contrast to traditional deterministic methods that seek to

find modules with dense intra-modular connectivity and sparse connections between

modules. Instead, the SBM classifies neurons into separate groups according to their

individual connectivity profile to other groups, regardless of where connectivity hap-

pens to be dense. For example, Block 6 (AVA, AVB, PVC) comprises neurons with

maximal interconnections (i.e. clique), which are also fairly densely connected to

the rest of the network. Note that Blocks 5 (AVE, AVD) and 6 (AVA, AVB, PVC)

are separate groups because of di↵ering internal connection rates (i.e. ⇡
55

= 40%

vs. ⇡
66

= 100%) and external connection rates (e.g., ⇡
54

= 30% vs. ⇡
64

= 45%).

Also, while Blocks 1 (chemo/thermosensation or chemo/thermotaxsis) and 2 (es-

cape/avoidance) seems to have similar internal and external block connections, they

di↵er by the fact that Block 1 has virtually no connections with Block 8 (nose touch
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Figure 3.3: Classification of neurons for each Block of the SBM fit. The
corresponding neuron labels are colour coordinated according to their ganglion type.

mechanoreceptors and head motor neurons) while Block 2 is densely connected to

Block 8.

A concomitant advantage of the SBM approach to cluster estimation is its

ability to provide a compressed view of the original C. elegans network. As shown in

Figure 3.6, this compressed view serves as a summary of the network’s topology and

reveals diverse patterns of connectivity between the blocks. Here, some blocks, such

as Blocks 1, 6 and 8, appear to fit the standard definition of a ‘module’ with high

internal connectivity and sparse external connectivity. However, other structures

which are characterised by strong communications between blocks are also present

in the network; for example, Blocks 5 & 6 and Blocks 6 & 7, which may suggest that

these are involved in the same functional circuit. In particular, Block 6 (command

interneurons) - previously identified as a clique - maintains relatively strong ties
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Figure 3.4: Anatomical locations of neurons (cell body) according to the
SBM fit. Each block is shown on an approximate template, obtained from http:

//www.wormatlas.org/, last accessed on the 9th October 2013.

with Blocks 3 and 4 (motor neurons) whose internal connections are sparse. This

structure is known as the ‘core-periphery’ and has been shown to be a functionally

significant organisational structure in various real-world networks such, as social

networks or power grids (Borgatti and Everett, 2000; Ravasz and Barabási, 2003).

For further qualitative evaluation of the SBM cluster estimate, we use the

Locomotion circuit as described in the accompanying text of Table 3.1. Figure

3.7 (a) shows a simplified diagram of this circuit (originally presented by Haspel

et al., 2010) with the neuron block membership indicated by colour. The SBM

isolated the command interneurons into Blocks 5 and 6 while Blocks 4, 3 and 9 are

fairly uniformly spread over all motor neurons. The distinction between these three

blocks of motor neurons appears to be, at least partially, anatomically motivated,
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Figure 3.5: Reorganised adjacency matrices for each approach. The groups
are ordered arbitrarily; within each group, the neuron labels are sorted in alphabet-
ical order. (a) The SBM fit demonstrates the dense connections between - as well as
within - certain blocks. This is in stark contrast to traditional deterministic meth-
ods (b) and (c), that seek to find modules with dense intra-modular connectivity
and sparse connections between modules. In addition, the SBM fit defines blocks
according to their internal and external connections. Thus, although Block 1 and
2 have similar within block connections, they are split because of their di↵erent
connectivity with Block 8.

with the neurons in Block 3 being more posterior while the neurons in Blocks 4 and

9 are mainly found in the mid-section and anterior parts of the animal. Another

noteworthy point is that the neurons VC04 and VC05, both implicated in egg-

laying, are assigned separately to Blocks 4 and 7. The principal justification of this
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Figure 3.6: Compressed view of the C. elegans network, in terms of
between/within block connection probability rates of the SBM fit. The re-
lative size of each circle indicates the number of neurons in that block. The number
inside the circle is the within-block connection probability in percent. The relative
thickness of each line indicates the between-group connection strength, while the
number on the edge gives the connection probability in percent (those less than
7 % are omitted). Each block is broadly characterised by its most representat-
ive function. Note how Blocks 1, 2 and 9 are ‘modules’ with internal connectivity
greater than external connectivity, while other structures are characterised by strong
inter-block connectivity (e.g., Blocks 5 & 6 and Blocks 6 & 7). In addition, Block 6
(command interneurons) maintains relatively strong ties with Blocks 3 and 4 (motor
neurons) whose internal connections are sparse, an example of core-periphery.

separation can be traced back to the network data used in this analysis where, for

example, VC04 maintains connections to the locomotion neurons AVB and AVH

while VC05 does not, and, moreover, VC05 maintains connections to the egg-laying

neurons AVFL, AVFR, HSNR and PVT (Block 7) while VC04 does not. Given such

di↵erences in connection profiles between these two neurons, it is not surprising that

they are separated. Relating to this, it is also worth mentioning that our network

data excludes neuromuscular connections to the vulval muscles, made by both VC04

and VC05, which are the primary reason why these neurons are implicated in egg-

laying behaviour.
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(c) Spectral

Figure 3.7: C. elegans locomotion network and estimated cluster struc-
ture for each approach. Each subfigure shows the 74 Motor neurons (shown in
rectangles) that support the animal’s motion, which are divided into eight distinct
groups. Four of these groups are connected to the ventral muscles (neuron labels:
VA, VD, VB and VC; VC06 is omitted in our analysis), while the remaining four
groups are connected to the dorsal muscles (neuron labels starting AS, DA, DD and
DB). The remaining neurons (command neurons; shown in circles) belong to the
category of interneurons; some are primarily required for promoting forward move-
ments (labels starting PVC and AVB) while others promote backward movements
(labels starting AVA, AVD and AVE). The colour of each neuron indicates the group
membership from a particular method’s partition. The SBM fit (a) isolates the com-
mand neurons in Blocks 5 & 6 and distinguishes the posterior (Block 3) from the
more anterior motor neurons (Blocks 4 & 9).

3.3.2 Comparative Assessment of the C. elegans Cluster Structure

Estimates between the Stochastic Blockmodel and the Fast

Louvain and Spectral Algorithms

The Spectral and Fast Louvain algorithms decompose the C. elegans network into

4 and 5 modules with maximal modularity scores of 0.402 and 0.411, respectively

(Eq. (2.7) and (2.5)), indicating that both algorithms detect a prominent modular

structure. As shown in the adjacency matrices in Figure 3.5 (b) and (c), both

the Spectral and Louvain algorithms produced partitions with strong within-group

connections and relatively sparse inter-group connections, as expected by definition.
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In order to compare the cluster structures obtained via all three methods,

we plot an alluvial diagram (see Figure 3.8 (a) and (b)) showing each block of the

SBM (on the left) and how these merge and split in order to make up the modules

of the Louvain and Spectral partition. Strands of the alluvial diagram are coloured

according to the block decomposition of the SBM. The first thing to note when

(a)

(b)

Figure 3.8: Correspondence between the SBM fit and the estimates of
Louvain (a) and Spectral (b) algorithms. The strands of the alluvial diagram
show each block of the SBM fit (on the left) and how these merge and split to form
the modules of the Louvain and Spectral algorithms (on the right). The functional
labels for the SBM blocks are as follows. Block 1 (chemosensation/ thermosensa-
tion), Block 7 (unknown/egg-laying/defecation), Block 8 (nose touch/head/motor),
Block 2 (escape/avoidance), Block 3 (motor posterior), Block 9 (motor anterior),
Block 4 (motor anterior), Block 5 (command) and Block 6 (command).
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observing this diagram is that the blocks obtained with the SBM often roughly cor-

respond to modules obtained via the other methods, with the Louvain and Spectral

algorithm merging progressively more blocks into fewer modules. Secondly, we note

that Blocks 3, 4, 5, 6 and 9 (mainly ventral cord motor neurons and interneurons

controlling locomotion) are fairly well separated from Blocks 1, 2, 7 and 8 by all

algorithms, so we will discuss these two subsets separately below.

Most of the nodes in Block 1 (chemo/thermo sensation) are also classed

together by the other two algorithms, although they are also merged with some

nodes from Blocks 2 (escape/avoidance) and 7 (mainly unknown function) in Module

1 of the Louvain algorithm. In contrast, the nodes in Block 2 are fairly dispersed

in the Louvain algorithm (equally distributed between Modules 1, 2 and 3), while

they are split between Module 1 and 4 (mainly amphid neurons) by the Spectral

algorithm. As noted earlier, the neurons in Blocks 1 (chemo/thermo sensation) and

2 (escape/avoidance) are also tightly interconnected and they only fall as separate

blocks because of their di↵erential connectivity to nodes in Block 8 (nose-touch/head

motor). The functional relevance of this finding is yet unclear but this pattern is

biologically plausible and is a particularly striking aspect of the SBM result (as

shown in Figure 3.5 (a)). We also note that, while Block 8 seems to lump together

many of the non-sensory neurons in the head, these neurons are also all grouped

together by both the Spectral (Module 1) and the Louvain algorithm (Module 3).

Nevertheless, it may be interesting to further investigate whether this block could be

subdivided into more specialised subunits. One such approach could be to include in

the analysis virtual nodes for various external cues (chemical attractants, olfactory

cues, temperature, touch, osmolarity, etc) or to include virtual nodes for various

muscle groups controlled by the motor neurons, as this information has recently

been shown to be useful in understanding the connectivity of motor neurons in the

Locomotor system (Haspel and O’Donovan, 2011).

Looking at Block 7, we note that it corresponds quite well to Module 3 in

the Spectral algorithm, but it is split between all modules (and mainly Modules

1 and 4) in the Louvain algorithm. From Figure 3.5 (a), it is clear that Block 7

has a very specific connectivity pattern. We therefore predict that this is likely

to correspond to a biologically relevant functional grouping. This is particularly

interesting because many of the neurons in this block have unknown functions and

because these neurons are not anatomically co-located. Thus, in investigating the

functional relevance of this block, it will be important to consider its particularly

strong relationships to Blocks 2 and 6.

Now, turning our attention to Blocks 3, 4, 5, 6 and 9, we note the following

observations. Block 4 is made up almost entirely of anteriorly located ventral cord

motor neurons (AS, DA, DB, VA, VB, VD) while Block 9 is composed entirely of
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anterior ventral cord motor neurons (DB, DD, VB, VC and VD). These two blocks

are merged by both the Spectral and Louvain algorithms and, looking at Figure 3.5

(a), their separation into two di↵erent blocks does not seem to be a strong feature

of the SBM method either. It seems to be based by a di↵erential connectivity to

Block 7, but the e↵ect is not very strong.

As previously mentioned, Block 3 is composed mostly of mid-body and pos-

terior ventral cord motor neurons and almost all of the remaining neurons are pos-

teriorly located sensory neurons (PDE, PHA, PHB, PHC, PLM, PVD, PVM). Al-

most all neurons in this block (including the posteriorly located sensory neurons

listed) are also grouped together in Module 4 of the Louvain algorithm and almost

all of them are in Module 2 of the Spectral algorithm. We however note that, in the

Spectral (but not Louvain) partition, these neurons are also grouped together with

the anterior ventral cord motor neurons of Blocks 4 and 9. While the roughly ana-

tomical split between ventral cord motor neurons in the SBM and Louvain method

may not lead to new biological insights, it is certainly driven by a strong lack of

connectivity between Blocks 4 (anterior) and 3 (posterior) which is a true feature

of the data. It is worth noting that the connectivity data for C. elegans are known

to be partial or missing for 39 of 302 neurons, including 21 of the 75 locomotor

motoneurons (Haspel and O’Donovan, 2011) and the data for the posterior parts of

the nerve cords are especially sparse and uncertain. It is therefore unclear whether

this split between Blocks 3, 4 and 9 contains biological information or whether a

more complete mapping of connections in the posterior part of the ventral cord

would alter these results. Note, for example, that the split does not correspond to

a division between neurons involved in forward and backward locomotion (Haspel

et al., 2010).

Finally, Blocks 5 and 6 are also merged with ventral cord motor neurons

from Block 3 in both the Louvain and Spectral algorithms. This is driven by the

dense inter-connectivity between these nodes, however, the separation of Blocks 5

and 6 from the rest of the networks is one of the key features of the SBM decompos-

ition. Indeed, these blocks correspond almost exactly to a rich-club (core-periphery

structure) whose functional importance has recently been confirmed (Towlson et al.,

2013).

It is also worth noting that compressed views of the network - see the SBM fit

in Figure 3.6 - are not available for the Fast Louvain and Spectral algorithms since

these, by definition, decompose the network into modules with minimal connectivity

between them.

Figure 3.7 (b) and (c) show the Locomotion circuit and the partitions found

by the Spectral and Fast Louvain algorithms. In contrast to the SBM model, both of

these algorithms failed to distinguish the command neurons from the motorneurons.
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In the case of the Spectral algorithm, some of the command neurons like AVEL

and AVER are isolated but the rest are mixed with the motorneurons. This e↵ect

may be explained by the rigid definition of ‘cluster structure’ that is common to

both algorithms. As we can observe, this particular a priori assumption does not

allow the network’s topology to dictate the form of the cluster structure, resulting

in functionally less meaningful decompositions. Similar observations can be made

about the neurons VC04 and VC05, which are merged by both algorithms despite

their di↵erent connectivity profiles, inherent to the data. As we saw previously,

these neurons are split in the SBM partition.

Further quantifications of the solutions in terms of the separation of L/R

(left/right symmetric) neurons of the same class are presented in Table 3.2. Here,

we note that, out of 92 L/R neuron pairs contained in this data set, the SBM and

Spectral algorithm partitions assigned 85 such neuron pairs in the same groups and

misclassified 7 pairs while the Louvain partitions misclassified 5 pairs. In general,

ALM and SAAD are separated by all methods, while other misclassified neurons

appear to be distinct.

SBM Spectral Louvain

AIMR AIML Block (1,7) ALMR ALML Module (1,3) RMGR RMGL Module (1,3)
BDUL BDUR Block (1,7) RMGL RMGR Module (1,4) SMBVL SMBVR Module (1,2)
HSNL HSNR Block (1,7) PLNR PLNL Module (1,4) ADER ADEL Module (2,3)
SADDL SADDR Block (1,2) RMGL RMGR Module (1,4) ALMR ALML Module (3,4)
ALML ALMR Block (2,8) SAADR SAADL Module (1,4) SDQR SDQL Module (3,4)
FLPL FLPR Block (2,8) AVDL AVDR Module (2,3)
RICL RICR Block (2,8) SABVR SABVL Module (2,3)

Table 3.2: Bilateral pairs of neurons split by each method. The neurons are
listed according to their group assignment.

Although the clustered neurons in the SBM partition appear to be function-

ally related, this overall partition does not closely correspond to the anatomical

partition of neurons in 10 groups called ganglions (see Figure 3.3). As shown in

Figures 3.9 and 3.10 this is also true for the Spectral and Louvain partitions. How-

ever, to more formally assess the level of similarity between each of the estimated

and known biological partitions (i.e. ganglion, neuron classes and neuron types), we

use the ARI scores. As shown in Figure 3.11 (a), we observe that the ARI scores

are small and no greater than 0.26 for all 3 comparisons, with the ganglion based

partition being matched by the SBM and Spectral algorithm with 0.25 ARI units,

while the Louvain algorithm scores slightly lower. Regarding the partition with

103 classes of neurons, the SBM partition exhibits a relatively low ARI scores, but

slightly higher ARI score than those of the Louvain and Spectral algorithms. For

the ARI scores by neuron type, the Spectral cluster structure estimate seems to
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Figure 3.9: Membership structure of the neurons in the Spectral fit. Neur-
ons are coloured coded according to their ganglion type.

be slightly more compatible than the other two fits, which tend to assign di↵erent

neuron types to the same groups. These findings suggest that in general all three

solutions are fairly di↵erent from the known biological partitions.

However, it has to be noted that, although the ARI score can quantify the

level of similarity between partitions of interest, it cannot infer (i.e. assign a p�value)

on whether one partition has a significantly better fit than another partition. This

is statistically challenging as the solutions (fits) are sourced from the three di↵erent

methods and, therefore, simple validation strategies like the one presented in Pan

et al. (2010) would not be appropriate. Nevertheless, using the ICC (Eq. (2.42)),

we can compare qualitatively all three estimates. For this, Figure 3.11 (b) shows

the ICC performance of the estimated partitions with respect to six quantitative

biological features. The hypothesis here is that neurons that are implicated in the
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Figure 3.10: Membership structure of the neurons in the Louvain fit. Neur-
ons are coloured to match their ganglion type.

same function or behaviour might be similar in terms of these quantitative features,

so biologically meaningful cluster structures should be composed of groups that are

relatively homogeneous in terms of these metrics. We note that the six quantitative

biological features were selected due to their availability, but not all are expected

to be equally useful or revealing. For example, although one might expect the

lineage distance (LD) to be relevant, in fact neurons of the same class (typically

involved in the same function) develop around the same time and usually have no

immediate common precursors. This is reflected in low ICC scores for all three

methods for lineage distance. The birth time (or BTD) is therefore expected to be

more representative of function, and this is confirmed by higher ICC scores across

all methods, with the SBM showing particularly good performance. Similarly, the

anatomical location (especially in the longitudinal direction) is expected to cluster
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Figure 3.11: Comparisons in terms of prior biological features. (a) ARI
scores computed between three known biological classifications - Ganglion, Neuron
classes (103 groups) and Neuron type (sensory, motor, interneuron and polymodal)
- and the fits of each method. Collectively, the ARI scores are small and no greater
than 0.26 for all three methods, suggesting that all three solutions are fairly di↵erent
from the known biological partitions. (b) ICC scores for the Longitudinal anatomical
location (ALL), Sectional anatomical location (ALS), Anatomical distance (AD),
Birth time (BT), Birth time di↵erence (BTD) and Lineage distance (LD). The ICC
results indicate that the SBM partition explains more biological variance than either
of the other two methods. Compared to each other, the ICC scores of the Spectral
and Louvain fits are largely similar.

functionally related neurons close together. This is because neuronal placement

tends to minimise wiring (Alexander-Bloch et al. (2013)) and neurons involved in

the same function therefore benefit by being close together both for e�cient inter-

connections between these neurons and because they are likely to be receiving similar

(localised) external cues or controlling similar (localised) muscle groups. Again, the

SBM shows superior ICC for all the distance related metrics.

Overall, the SBM partition provides the best ICC scores on all six biological

features. For example, the SBM partition explains over 50 % of the variance for

the sectional anatomical location (ALS) while the other two methods explain only

about half as much variability. Also, we note that neither the Louvain or Spectral

measures dominate one another on the basis of the ICC scores.
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3.3.3 Generative Modelling of the C. elegans Brain Network with

Stochastic Blockmodel

In addition to estimating the cluster structure of a network, the SBM also provides a

generative model of the C. elegans nervous system which provides estimates of other

network characteristics such as the empirical clustering coe�cient (Eq. (2.3)) and

degree distribution. Figure 3.12 shows the observed and fitted degree distribution,

demonstrating that the SBM provides a faithful approximation of the empirical

degree distribution. The fit is based on a Poisson mixture (Eq. (2.34)), and Table 3.3

gives the estimated Poisson means (�̂) and weights (↵̂). Notably, Block 6 (command

neurons) has the greatest connectivity with an average degree of 74.23.
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(a) Histogram of observed degrees and fit.
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(b) 1-CDF plot of observed degrees and fit on log
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Figure 3.12: Observed and SBM-based fit of the degree distribution. (a)
Histogram of the empirical distribution with the SBM fit. (b) Complementary
cumulative distribution function (CDF) (i.e. 1-CDF) of the degrees and SBM fit on
the log-log scale. The SBM-fitted distribution captures the large-scale features of
the degree distribution extremely well, as well as most of the fine-scale features.

Block 1 2 3 4 5 6 7 8 9

↵̂ 0.15 0.11 0.17 0.12 0.02 0.02 0.09 0.26 0.05

�̂ 12.69 25.48 8.46 10.54 48.53 74.23 22.16 13.26 17.59

Table 3.3: Poisson mixture parameters �̂ and mixture weights ↵̂ in the
SBM.

The model-based clustering coe�cient from the SBM is Ĉ = 0.154, which
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is somewhat less than the empirical clustering coe�cient C = 0.213. The likely

explanation for this di↵erence is that the SBM specifies each edge as an independent

Bernoulli trial (edges are formed with a given probability, independently from one

another), which may underestimate the actual rate at which the triangles occur (two

neurons connected to the same neighbour are also likely to connect to each other).

To assess this, we conducted a small simulation, creating 100 adjacency matrices that

followed the SBM assumptions, using the C. elegans estimated parameters ↵̂ and ⇡̂

as the baseline truth. Based on these 100 realisations, the two clustering coe�cients

were quite similar, with Ĉ = 0.152 (standard deviation 0.005) and C = 0.154

(standard deviation 0.004), verifying that Ĉ is a reasonable estimate of C when the

SBM assumptions are satisfied.

3.4 Discussion

Our results highlight the advantages in the use of the SBM over the deterministic

clustering algorithms. The SBM decomposed the network into an interpretable set

of 9 blocks, comprising 2 small blocks that correspond to the command interneurons

(cores), and 7 larger blocks that approximately correspond to the modules defined by

the deterministic algorithms. Contrary to the general expectations and conclusions

of the previous literature (Meunier et al., 2010; Bullmore and Sporns, 2009; Rubinov

and Sporns, 2010; Pan et al., 2010; Sporns et al., 2004; Hilgetag et al., 2000; Achard

et al., 2006; Bassett and Bullmore, 2009), our analysis showed that the ‘cores-in-

modules’ decomposition of the worm brain network estimated by the SBM was more

compatible with prior biological knowledge about the C. elegans nervous system

than the purely modular decompositions defined deterministically. Furthermore,

the ‘cores-in-modules’ fit topologically captured both aspects of brain’s functional

hierarchy, as the modular part reflects functional segregation, while the densely

connected core clearly reflects functional integration. Considering also the work of

Towlson et al. (2013) which points to the command interneurons of the C. elegans

nervous system as a topological rich club, it seems that the SBM decomposition

has been able to capture both modular and ‘core-periphery’ aspects (Borgatti and

Everett, 2000; Holme, 2005) of the topological organization of the network. This

conceptual scope, which can reconcile modular and ‘core-periphery’ views of cluster

structure, is a clear advantage of the SBM compared to deterministic algorithms

which are limited to an exclusive selection of one form over the other.

The block decomposition of the SBM was also more successful at accounting

for prior biological data than the Spectral and Louvain algorithms. Using the ICC

metric to quantify the percentage of variance in a biological variable that is explained

by any cluster structure, we found that the SBM decomposition accounted for more
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than 50% of the variance for the anatomical location of the neurons, and more than

20% of the variance for the anatomical distance of connections between neurons and

neuronal birth times. Also, the SBM explained a greater proportion of the variance

in all biological variables than either of the deterministic algorithms. Although, in

a more general context, our analysis has demonstrated that the cluster structure

can indeed serve as the optimal summary statistic, it is essential that the chosen

approach is rich enough to detect a wide range of di↵erent cluster structures. In

that aspect, the SBM has showed to be reliable and free from the assumptions about

a particular type of cluster structure, which is not the case with other deterministic

clustering methods. This aspect is especially valuable in the analysis of human data

in which the ground truth is generally unknown and, therefore, it is very di�cult to

benchmark the resulting cluster estimates.

In addition to its advantages as an estimator, the SBM also has technical

advantages as a generative model (to simulate the network) and as a network com-

pression basis to shrink the scale of a system. For example, we showed that the

SBM generated a good fit of the degree distribution and clustering coe�cient of the

C. elegans network. We also illustrated how the SBM could be used to compress a

network into a set of super nodes, allowing a clearer view of the topology with fewer

connections. In this sense, the SBM provides a compression of a network similar to

power network analysis methods (Royer et al., 2008), but it relaxes the condition

for grouping nodes together, which allows for a more e�cient and realistic network

compression.

We have found some shortcomings of the SBM. For example, the mismatch

between the empirical and model based clustering coe�cients suggests that the

stochastic model does not exactly match the data generating mechanism represen-

ted by the C. elegans nervous system. The SBM can be extended by seeing it as a

mixture Exponential Random Graph Model (ERGM) (Vu et al., 2012) where, con-

ditional on the assignment, the ERGM summary statistics are the edge counts in

each of the Q(Q+1)/2 unique block pairs. Additional summary statistics can then

be considered; for example, the triangle counts in each group pair. However, this

will create a more complicated likelihood and necessitate new and yet more involved

estimation procedures.

Nevertheless, the general practical advantage of the SBM is that it leaves

room for other distributional characterisations of edges which appear to be more

in agreement with the network’s specific type. Thus, for example, if this approach

is used for the analysis of the weighted C. elegans network (i.e. with edge weights

corresponding to the total number of synaptic connections between a neuron pair),

then the assumption that the edges are following a Binomial distribution would

be more appropriate. Furthermore, given that our study have used only a simple
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unweighted C. elegans network, it is interesting to compare our results to the 6

modules decomposition of the weighted C. elegans network reported by Pan et al.

(2010) who used a modified version of the Spectral algorithm. The corresponding

extended results of this comparison (Figure 3.13) show that the SBM decomposition,

again, explained more variance in the prior biological information, with the exception

of the lineage distance where the SBM explained 1.5% less than the 6 modules

decomposition (Figure 3.13).

Lastly, we found that the SBM computational times are reasonable and

depend on the range of blocks, the values of the internal parameters (nbiter,

fpnbiter) and, also, the size of the network. It has been reported in Daudin

et al. (2008) that this approach can handle networks with several thousands of ver-

tices, which is particularly impressive given the challenging likelihood optimisation.

However, the problem of finding the global maximum is heavily dependent on the

initialisation and, hence, we require restarts in order to carefully search the state

space. While we used a cautious approach of running a large number of restarts

(100, 000), we found that 1,000 was su�cient to reliably identify the optimal model.
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Figure 3.13: ICC scores of the partitions obtained with the SBM, Louvain
and Spectral algorithms on the unweighted C. elegans network and the
6 modules partition reported by Pan et al. (2010), who used a modified
Spectral algorithm to analyse a weighted C. elegans network. The ICC
scores are measured over the range of biological features such as: ALL (Anatomical
location longitudinal), ALS (Anatomical location sectional), AD (Anatomical dis-
tance), BT (Birth time), BTD (Birth time di↵erence), LD (Lineage distance). The
SBM partition obtains the highest ICC scores, apart from the Lineage Distance,
where the 6 module decomposition explained more variance. Also, it is interesting
to observe the level of similarity between the results of the two Spectral algorithms,
where the inclusion of the full weighted network seems to show a clear improvement
of the ICC scores on the ALS and LD, but not on the other biological features.
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CHAPTER 4

Generalised Linear Stochastic Blockmodelling and Inference in

Multi-subject Networks

In the analysis of human brain connectivity data, one of the most significant current

discussions is how to make comparisons between the brains in a state of health and

pathology. On these lines, Van Den Heuvel and Pol (2010) highlighted that such

comparative network studies could make valuable contributions to the understand-

ing of mind disorders like schizophrenia, for which it has been long hypothesised

that it is a disease characterised by a lack of connections between brain regions,

especially those regions which overlap with the Default Mode Network. In addition

to this, numerous other studies (Weinberger et al., 2001; Ellison-Wright et al., 2008;

Kubickia et al., 2007; Kubicki et al., 2005) reported altered white matter integrity in

schizophrenic patients, particularly in the cingulum tract which is known to mediate

connections between the components of the Default Mode Network. These findings

were also corroborated by Bassett et al. (2008), whose large multi-subject study

(involving 259 healthy subjects and 203 patients with schizophrenia) suggested nu-

merous between-group di↵erences in local clustering properties, including cingulate

and insular cortex. Other authors (Liang et al., 2006; Liu et al., 2008; Micheloyannis

et al., 2006) also suggested that functional disconnectivity in schizophrenia can be

reflected in topological alterations of functional brain networks, which is one of the

reasons why clustering approaches could be of potential value. However, despite the

high necessity for such comparative network studies, up until now, there has not

been much progress in extending single network clustering models to multi-subject

network models. The reasons for this can be found in a set of challenges brought in

by the multi-subject nature of the data, including:
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(i) The need to estimate a common network decomposition over subjects while

accounting for between-subject variability in connectivity rates.

(ii) How to use such a network decomposition to infer di↵erences between popu-

lations (e.g., patients vs. controls) or e↵ects of covariates.

In this chapter, we address these questions by developing a Stochastic Blockmodel

for multi-subject binary network data. Our approach is inspired by the extensions

of Mariadassou et al. (2010) (see Section 2.4.2) who showed how an edge-based cov-

ariate can be used to estimate the cluster structure in a single network whose edges

are assumed to follow a mixture of Poisson densities. While those authors discussed

other types of distributions as well as potential examples of such network data, it is

important to stress out that their model is appropriate only for a single network and

situations where a particular edge-based covariate is a significant clustering factor.

The level of importance of such covariates is not investigated through a formal hy-

pothesis test but, instead, it is gauged by the complexity of the cluster structure

before and after the inclusion of a covariate in the model. This is justified by the

fact that the cluster structure is estimated on the residuals from an underlying

generalised linear model and, thus, if the addition of a particular edge-based covari-

ate leads to a less complex cluster structure (e.g., larger block sizes and a smaller

number of blocks), then this is taken as an indicator of the covariate significance.

It is also interesting to take note of the fact that in both their real data analyses

and simulation experiments, the authors only investigated the ‘homogenous e↵ect’

version of their model (see Eq. (2.37)) and, while the ‘heterogenous e↵ect’ model

(see Eq. (2.38)) was formally defined, the behaviour of this model and the domains

of its applications were not investigated neither in the real data analysis nor in the

simulations.

In contrast to the type of network data considered in Mariadassou et al.

(2010), our applications are concerned with multi-subject data, in which each of K

subjects in a fMRI study has its own binary and undirected network (see Sections

2.1.3 and 2.1.4). Thus, direct applications of any version of the SBM discussed in

Sections 2.4.1 and 2.4.2 would open up two possible choices for the analysis. The

first option, allowing the most inter-subject variability, would be to fit an SBM

model on each subject in the study. However, this approach would be cumbersome

as each subject could have a di↵erent cluster structure and, therefore, there would be

no clear way for making comparisons between the fitted cluster structure estimates.

The second option would be to average the data across all subjects and then fit an

SBM on a representative binary and undirected network. However, this approach

would tend to overlook the variability between subjects and, in addition, it would

be still di�cult to include and compare di↵erent groups of subjects.
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To strike a balance between these two approaches, we consider several ex-

tensions of the SBM that are built upon the assumption that the cluster struc-

ture is common to all subjects in the study and the variability in connection rates

between subjects is modelled through subject-specific covariates in a logistic regres-

sion model. It is worth highlighting that our approach does not focus on edge-based

covariates like the models in Mariadassou et al. (2010) but on subject-specific co-

variates, making these models a separate and a novel class. Depending on the

type of interaction between the subject-specific covariates and the cluster structure

in the data, we propose three multi-subject extensions of the SBM: the Binomial

SBM (Bin-SBM), the Homogeneous SBM (Hom-SBM) and the Heterogenous SBM

(Het-SBM), where the last two models are a combination of an SBM and a logistic

regression model for binary network data. Our approach allows the inclusion of sub-

ject specific covariates (e.g., age, gender, patient/control) to model the variability of

connectivity between subjects while estimating the common cluster structure in the

multi-subject networks. In order to understand the conceptual di↵erences between

these models, we introduce three simple running examples, each of which is featur-

ing three binary and undirected networks with 90 nodes which are decomposed into

three blocks and the assignment of nodes is common across all subjects, whose ages

are 20, 40 and 90 years.

As shown in Figure 4.1 (a), the Bin-SBM does not use the subject’s age to

model the variability in their individual cluster structures. Although there are some

minor di↵erences in the concentration of edges across the subjects, this variability is

only modelled by the variance in that particular block. For example, the intensity

of connections in the block (2, 3) is varying across the subjects according to its

binomial variance. For the Hom-SBM, the e↵ect of age is decreasing across the

entire cluster structure for all subjects (see Figure 4.1 (b)) and, consequently, the

variability of the cluster structure is tuned to tolerate minor variations across the

subjects. In contrast, the Het-SBM allows the e↵ect of age in each block to decrease

or increase the connectivity independently and, because of this, we can see di↵erent

types of decompositions across the subjects (see Figure 4.1 (c)). For example, the

first subject has a modular structure, while the third subject exhibits a structure

which is generally known as ‘disassortative mixing’ (Hu and Wang, 2009).

In general, depending on the multi-subject model and the goals of the study,

the covariates can be regarded as nuisance or we can conduct hypothesis tests on the

estimated regression coe�cients. For example, we may be interested in estimating

a cluster structure while controlling for di↵erent groups of subjects or other factors

which are not necessarily study objectives, and, in other situations, we may be

only interested in a group analysis or in determining the significance of a particular

covariate.
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(a) Binomial SBM (Bin-SBM)

(b) Homogeneous SBM (Hom-SBM)

(c) Heterogenous SBM (Het-SBM)

Figure 4.1: Conceptual di↵erences between three multi-subject models.
Each subject’s network is given as a reorganised adjacency matrix comprised of
three blocks, labelled numerically (1-3) on both x and y axis. (a) The Binomial
SBM (Bin-SBM) does not use the subject’s age to model the variability between
the three subjects. (b) In the Homogenous SBM (Hom-SBM), the e↵ect of age is
seen as an overall decrease of connectivity with increasing age. The direction of the
covariate e↵ect is the same across all blocks and all subjects. (c) In the Heterogenous
SBM (Het-SBM), the e↵ect of age is seen as an increase or decrease of connectivity
in each block. For example, the connectivity in Block (1, 1) is decreasing across
subjects and, in Block (1, 2), the connectivity is increasing across the subjects.

The general estimation framework of the multi-subject models follows the

structure of the classical SBM described in Section 2.4.1, including the variational
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estimation and model selection with the ICL criterion. In addition to this, in the

Hom-SBM, the estimation of the regression coe�cients is based on a classical max-

imum likelihood procedure with the exception of the intercepts for which we use

Firth type estimates (Firth, 1993; Heinze and Schemper, 2002) in order to correct

for small-sample bias. As we will see later in more details in Section 4.1.2 the Firth

type estimates are only applied to the block level parameters (i.e. the intercepts

in the Hom-SBM) and, for the slope parameters (i.e. the global network paramet-

ers), we use Ordinary Maximum Likelihood Estimates (MLEs). In contrast to this,

in the case of the Het-SBM, we only use Firth type estimates as all its regression

parameters are entirely block dependent.

The remainder of this chapter is organised as follows. First, we describe the

three multi-subject Stochastic Blockmodels (Bin-SBM, Hom-SBM and Het-SBM),

along with their estimation and inference strategies. Then, we describe the Monte

Carlo simulations that are used to assess the quality of the parameter estimates. For

this, we also make comparisons between the estimates based on the Ordinary and

Firth MLEs. After this, we describe the multi-subject resting state fMRI dataset

to which we fit the Het-SBM, and we conclude with a discussion and future work.

4.1 Multi-subject Stochastic Blockmodels

In this section, we use a binary random variable X
ijk

to denote the presence/absence

of the k-th subject’s edge between the nodes V
i

and V
j

. For each of K subjects

(k = 1, . . . ,K) we use X

k

= ((X
ijk

))
1i 6=jn

to denote its n ⇥ n random and

symmetric adjacency matrix and, we use X to denote the set of independent random

matrices such that X = {X
1

, . . . ,X
K

}. The individual random networks X

k

are

assumed to be simple, i.e. without self-connected nodes, and undirected. To be

consistent with the general notation introduced in Section 2.4, the realisations of

these random variables are written in lower cases.

Since the goal of each model is to estimate a common cluster structure among

K subjects, the assumptions on the nodes are similar to those already discussed in

Section 2.4.1. For the sake of completeness, we will briefly restate these assumptions.

In particular, the set of nodes is assumed to be allocated into one of Q unknown

(latent) blocks and, thus, for a node V
i

, there exists a 1 ⇥ Q dimensional random

vector Z
i

= (Z
i1

, . . . , Z
iQ

) whose element Z
iq

takes value 1 if V
i

is in the q-th group

and 0 otherwise. Finally, we assume that these assumptions hold for each subject.

Formally, the random variables in the n⇥Qmatrix Z are assumed to be independent

and to follow a Categorical distribution with Q possible outcomes,

Z

i

⇠ Categorical(Q,↵), (4.1)
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with individual probabilities of success ↵ = (↵
1

, . . . ,↵
Q

) such that
P

Q

q=1

↵
q

= 1.

Hence, the probability mass function of Z can be noted as

f(z;↵) =
QY

q=1

nY

i=1

↵
ziq
q

. (4.2)

4.1.1 The Binomial Stochastic Blockmodel (Bin-SBM)

In this model, we assume that all subjects have the same expected edge frequencies

(see Figure 4.1 (a)). Consequently, for the k-th subject, the edges are assumed to

follow a Bernoulli distribution

X
ijk

|Z
iq

= 1, Z
jl

= 1 ⇠ Bernoulli(⇡
ql

), (4.3)

where ⇡
ql

is the connectivity rate, expressing the probability that the nodes in block

(q, l) are connected. As the connectivity rates are taken to be constant across the

subjects, the random variable X
ij

=
P

K

k

X
ijk

follows a Binomial distribution,

X
ij

|Z
iq

= 1, Z
jl

= 1 ⇠ Binomial(K,⇡
ql

). (4.4)

In the context of the Bin-SBM, X = ((X
ij

))
1i 6=j,n

. Observe that this trivial

model is equivalent to a single network model with binomially distributed edges

whose values indicate the total number of observed edges across K subjects. The

latter model has already been considered in Mariadassou et al. (2010), but, for the

sake of completeness, we give below the details of its estimation and model selection

procedure.

Estimation and Model Selection

The optimisation strategy follows the variational approximation already given in

Section 2.4.1. The model parameters are estimated by maximising the variational

bound

J (f⇤(z; ⌧ );⇡,↵) = E
⇥
log f(x,Z;⇡,↵)

⇤� E
⇥
log f⇤(Z; ⌧ )
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q=1

⌧
iq

log[↵
q

]�
nX

i=1

QX

q=1

⌧
iq

log[⌧
iq

], (4.5)

with respect to the variational parameters ⌧ and the model parameters ↵ and ⇡,

subject to the constrains
P

Q

q=1

⌧
iq

= 1 and
P

Q

q=1

↵
q

= 1. After maximisation, the
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optimal variational parameter ⌧̂ and the optimal model parameters ↵̂ and ⇡̂ satisfy

the fixed point relations

⌧̂
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/ ↵̂
q

nY

j 6=i
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l=1

[⇡̂
xij

ql

(1� ⇡̂
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)K�xij ]⌧̂jl , (4.6)
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iq

, (4.7)
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jl

x
ij

K
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j 6=i
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iq

⌧̂
jl

. (4.8)

As before, the estimates of the classification vector ẑ
i

are found by

ẑ
iq

=

8
<

:
1 if q = argmax

q

0 ⌧̂
iq

0

0 otherwise.
(2.25 revisited)

In order to estimate the optimal number of blocks, we use the ICL criterion described

in Section 2.4.1, given as

ICL(m
Q

) = log f(x, ẑ|m
Q

, ⇡̂, ↵̂)� 1

2

Q(Q+ 1)

2
log


n(n� 1)

2

�

� Q� 1

2
log[n]. (4.9)

Hence, the optimal number of blocks (Q) in a fitted model is found by selecting the

model which maximises the ICL score.

4.1.2 The Homogeneous Stochastic Blockmodel (Hom-SBM)

In this model, the variability between subjects is assumed to be a global feature of the

observed networks (see Figure 4.1 (b)). Thus, conditional on the node assignments,

the edges are assumed to follow a Bernoulli distribution, whose rates of connection

depend on the subject covariates via a logistic regression model

X
ijk

|Z
iq

= 1, Z
jl

= 1 ⇠ Bernoulli(⇡
qlk

), (4.10)

log

✓
⇡
qlk

1� ⇡
qlk

◆
= ✓

ql

+ d

>
k

�, (4.11)

where ✓
ql

is the intercept of the block (q, l), d>
k

is a 1 ⇥ P dimensional vector of

covariates associated with the k-th subject and � is the P ⇥ 1 vector of regression

parameters.
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Estimation and Model Selection

In this model, we use the variational optimisation strategy to estimate the para-

meters (⌧ ,↵,✓,�) with a Newton-Raphson algorithm for the parameters (✓,�). In

addition to this, we also consider a Firth type estimation (Firth, 1993) for the in-

tercept parameters in ✓, which prevents small sample biases that may easily occur

in a combination of several practical situations. First, the number of data points

pertaining to the block (q, l) can be very small because either the number of nodes in

the block is small or the number of subjects in the study is small. Second, even if the

sample size is moderate, there may be situations in which the covariate values can

be completely divided between two parts, one which corresponds to the presence of

edges and the other which corresponds to the absence of edges. For example, let us

suppose that we have a block with 10 nodes in which we observe only edges for the

subjects who are smokers. In such a scenario, we would get a convergent likelihood

but the MLE of ✓
ql

would diverge. This type of behaviour has been well documented

in the literature (Albert and Anderson, 1984; Santner and Du↵y, 1986; Lesa↵re and

Albert, 1989; Hirji et al., 1989; Clarkson and Jennrich, 1991; Kolassa, 1997; Lesa↵re

and Marx, 1993) and it is broadly labeled as the problem of separation. In par-

ticular, Heinze and Schemper (2002) showed that the Firth type estimates are also

e↵ective against this problem as they introduce a shrinkage to the estimate.

As noted above, the starting point for the estimation of the parameters is

the variational bound,

J (f⇤(z; ⌧ );↵,✓,�) =
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2

KX
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j 6=i
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log[↵
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log[⌧
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], (4.12)

where

f(x
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iq

, z
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; ✓
ql

,�) =
�
⇡
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�
xijk
�
1� ⇡

qlk

�
1�xijk , (4.13)
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=
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>
k �

1 + e✓ql+d

>
k �

. (4.14)

Similarly to the previous model, we obtain the point estimating equations for ⌧̂ and

↵̂ by maximising the variational bound in Eq. (4.12), which yields
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, (4.15)
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↵̂
q

=
1

n

nX

i=1

⌧̂
iq

. (4.16)

However, in order to obtain the estimates of the parameters in the logistic

regression model (✓,�), we use the Newton-Raphson algorithm. In what follows

next, we first fix a general notation and we state the implicit forms of various

preliminary quantities that are needed for the subsequent discussion. Thus, we note

that the first order partial derivatives of the variational bound J (f⇤(z; ⌧ );↵,✓,�)

with respect to ✓
ql

and � as U(✓
ql

) and U(�) and note that they are explicitly given

as

U(✓
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Similarly, we note the negative second order partial derivatives of the variational

bound yield the observed Fisher Information matrix I(✓,�). In particular, I(✓,�)
consists of three sub-matrices

I(✓,�) =
"

I
1

(✓) I>
2

(✓,�)

I
2

(✓,�) I
3

(�)

#
, (4.19)

such that

• I
1

(✓) is a diagonal Q(Q+ 1)/2⇥Q(Q+ 1)/2 matrix,

• I
2

(✓,�) is a P ⇥Q(Q+ 1)/2 matrix, and

• I
3

(�) is a P ⇥ P matrix.

Below, we give their specific elements
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However, in order to obtain the Firth type estimates of ✓, we want to maximise

J ⇤(f⇤(z; ⌧ );↵,✓,�) = J (f⇤(z; ⌧ );↵,✓,�) +
1

2
log


Det(I(✓,�))

�
, (4.23)

whose partial derivatives U⇤(✓
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) are given as

U⇤(✓
ql

) = U(✓
ql

) +
1

2
Tr


I�1(✓,�)

@

@✓
ql

I(✓,�)
�
, (4.24)

and the derivatives of the observed Fisher Information matrix are given as
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Finally, the estimating equations for ✓ and � are found using the Newton-

Raphson formula which, for the (m)-th step, updates the parameters according to

the following expression

 
✓

�

!
(m)

=

 
✓

�

!
(m�1)

+ I�1(✓(m�1),�(m�1))

 
U⇤(✓)

U(�)

!
(m�1)

, (4.28)

where U⇤(✓) is the column vector of length Q(Q + 1)/2 composed of the elements

given in Eq. (4.24). It is important to highlight that the ✓ parameters are based on

the Firth type MLEs and thus they are updated with U⇤(✓), while the � parameters

are based on the Ordinary MLEs and thus are updated with U(�).

Finally, we discuss the ICL criterion. As noted in Section 2.4.1, the ICL cri-

terion is constructed from log f(x, z|m
Q

) = log f(x|z,m
Q

) + log f(z|m
Q

). The ap-

proximation of log f(z|m
Q

) is the same as in Section 2.4.1, while for log f(x|z,m
Q

),

we simply apply the BIC. For this, we note that the total number of parameters is
Q(Q+1)

2

+P , since we have Q(Q+1)

2

intercepts in ✓ and P regression coe�cients in �,

and the total number of data points in x is n(n�1)

2

K. With this, the ICL criterion

is stated as

ICL(m
Q

) = log f(x, ẑ|m
Q
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� Q� 1

2
log[n]. (4.29)

Estimation Algorithm

In this section, we describe the proposed estimation algorithm. Starting with some

initial values for ⌧ 0, we iteratively update the model parameters according to the

two steps

1. (↵(h+1),✓(h+1),�(h+1)) = argmax
(↵,✓,�)


J (f⇤(z; ⌧ (h));↵,✓,�)+

1

2
log
⇥
Det(I(✓,�))

⇤�
,

2. ⌧ (h+1) = argmax
⌧


J (f⇤(z; ⌧ );↵(h+1),✓(h+1),�(h+1))

�
,

until the convergence is obtained. In the first step, we update ↵ according to Eq.

(4.16) and we update (✓,�) according to the Newton-Raphson algorithm (see Eq.

(4.28)). In the second step, we update ⌧ according to Eq. (4.15). The convergence is

measured by the relative changes of the parameter estimates and the improvement of

the variational bound. Note that, in the first step, the parameters (✓,�) are updated

according to the Newton-Raphson algorithm (see Eq. (4.28)) which is initialised with

zero starting values for the parameters (✓,�). Also, note that, for each iteration

of the Newton-Raphson algorithm, we set a maximal absolute change of value 5

for all the parameters (e.g., if the change for a parameter is estimated to be -

7.2, it is forced to be -5). Moreover, when the variational bound is smaller than

the value obtained with the previous parameter estimates, a halving procedure is

executed. This procedure iteratively reduces the parameter updates by half until

an improvement is observed or until a maximal number of halving steps is reached,

in which case we keep the previous parameter estimates. Note that the halving

step is performed block-wise for the parameter ✓, which also indicates that the

improvement of the bound is checked block-wise.

4.1.3 The Heterogenous Stochastic Blockmodel (Het-SBM)

In this model, the variability between subjects is assumed to independently influence

the connectivity of each block and block-to-block relationships (see Figure 4.1 (c)).

Formally this can be written as

X
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|Z
iq
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jl

= 1 ⇠ Bernoulli(⇡
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) (4.30)
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where �
ql

is a 1 ⇥ P dimensional vector of regression parameters and, as before,

d

>
k

is a 1 ⇥ P dimensional vector of the k-th subject’s covariates (typically the
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first element will be 1, representing the intercept). In total, there are Q(Q + 1)/2

individual regression vectors �
ql

which we will collectively denote as �.

Estimation and Model Selection

Similarly to the estimation procedure outlined in Section 4.1.2, in this model, we

use the variational optimisation strategy to estimate the parameters (⌧ ,↵,�) with a

Newton-Raphson algorithm for the parameters in �. However, unlike the Hom-SBM

where we used Firth type estimates (Firth, 1993) only for the intercept paramet-

ers and not for the global regression coe�cients, in this model, we use Firth type

estimates for every regression parameter vector �
ql

in �.

In particular, we note that the variational bound is given as
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but, since �
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= �
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, it is convenient to use the notation �
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, defined as
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which points to the equivalence between
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and, hence, the variational bound given in Eq. (4.32) can be also stated as
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Here,
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Optimising Eq. (4.32) for ⌧ and ↵ yields the following point estimating equations
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However, for the same reasons as discussed in Section 4.1.2, we use the Firth type

estimates for �
ql

which are based on the optimisation of

J ⇤(f⇤(z; ⌧ );↵,�) = J (f⇤(z; ⌧ );↵,�) +
1
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ql

log[Det(I
ql
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)], (4.39)

where J (f⇤(z; ⌧ );↵,�) is given in Eq. (4.34) and its first order partial derivatives

with respect to �
ql

can be written as U
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and similarly, the negative second order partial derivatives with respect to �
ql

yield

the observed Fisher Information matrix I(�) which appears as a Q(Q + 1)/2P ⇥
Q(Q+ 1)/2P block diagonal matrix of individual sub-matrices I
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) defined as
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To find the estimates of �
ql

, we want to optimise the modified bound given in Eq.

(4.39), whose (r)-th element is given as
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and the (r)-th partial derivative of the of the observed Fisher Information matrix is

given as
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Lastly, applying the Newton-Raphson formula, the Firth type estimates are found

iteratively using the formula
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= �(m�1)
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+ I�1
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Similarly to the Hom-SBM (see Eq. 4.29), the part of the ICL criterion which

depends on log f(z|m
Q

) is the same as in Section 2.4.1. For log f(x|z,m
Q

), we use

the BIC, where we note that the total number of parameters in � is Q(Q+1)

2

P and

the total number of data points in x is n(n�1)

2

K. Finally, the ICL criterion of the

Het-SBM is

ICL(m
Q

) = log f(x, ẑ|m
Q

, ↵̂, �̂)� 1

2
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2
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2
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� Q� 1

2
log[n]. (4.45)

Estimation Algorithm

In this model, the proposed estimation algorithm follows the same structure as the

algorithm described in Section 4.1.2. Starting with some initial values for ⌧ 0, we

iteratively update the model parameters according to the two steps

1. (↵(h+1),�(h+1)) = argmax
(↵,�)


J (f⇤(z; ⌧ (h));↵,�) +

1

2

QX

ql

log[Det(I
ql

(�
ql

)]

�
,

2. ⌧ (h+1) = argmax
⌧


J (f⇤(z; ⌧ );↵(h+1),�(h+1))

�
,

until the convergence is obtained. In the first step, we use Eq. (4.38) to update ↵

and the Newton-Raphson algorithm to update � (see Eq. (4.44)). In particular, the

Newton-Raphson algorithm is initialised with zero starting values for the parameters

(�) and, to keep the convergence in check, we use the step halving procedure as

described in Section 4.1.2. In the second step, we update ⌧ according to Eq. (4.37).

4.2 Inference in Multi-subject Stochastic Blockmodels

As mentioned earlier in Section 4.1, the multi-subject models o↵er the possibility

to estimate a common cluster structure across subjects that can serve as a common

ground for making comparisons between the subjects. In that regard, the Homo-

geneous and Heterogeneous SBMs pose a logistic regression model on each element

of a block structure and thus the methodological framework of logistic regression

model can be used to estimate di↵erences between groups of subjects or e↵ects of

covariates on the connectivity rate at each block. While these can be interpreted as

quantities which can summarise the networks like other summary metrics commonly

used in the literature, the logistic regression model o↵ers also the possibility to stat-

istically test if these quantities are di↵erent from 0 or, in a more general sense, if

linear combinations of these quantities are di↵erent from a specified constant. As

far as we are aware of, these two models are the firsts to combine clustering and

hypothesis testing within the same network model.
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In the continuation of this section, we discuss several inference strategies in

the context of parametric (i.e. Wald and likelihood ratio test) and non-parametric

(i.e. permutation test) approaches. It is important to highlight that each of these

tests is assumed to be conditional on ⌧ and ↵ (i.e. the block assignments). While

this may seem like a significant limitation, it is important to note that unconditional

inferences would be impractical as the very membership of the blocks (i.e. that each

regression coe�cient refers to) would be uncertain. While the uncertainty of the

unconditional approach would be somewhat of a problem for the Hom-SBM, it

would be a catastrophe for the Het-SBM.

4.2.1 Wald Test

In the general context of logistic regression analysis, the Wald test has been com-

monly used to make inferences on the estimates of the regression coe�cients. For

the Hom-SBM, we write the set of parameters {✓,�} =  as a column vector. To

perform inference on a combination of the parameters, H
0

: L = b

0

, where L is

a matrix (or a vector) which defines the combination of the parameters (i.e. linear

contrast) tested and b

0

are some constants under the null hypothesis, the Wald

statistic is

W = (L ̂ � b

0

)>(LI�1( ̂)L>)�1(L ̂ � b

0

)/c, (4.46)

where c is the rank of L. Asymptotically, W follows a �2

c

distribution. Alternatively,

if L is a vector, then the Wald statistic can be noted as

W ⇤ =
L ̂ � b

0q
LI�1( ̂)L>

, (4.47)

which asymptotically follows a Standard Normal distribution. The standard errors

of the model parameters depend on the observed Fisher Information matrix given by

Eq. (4.19). Note that Eq. (4.19) applies for the Ordinary and Firth MLEs (Heinze

and Schemper, 2002; Firth, 1993).

Similarly, in the context of the Het-SBM, due to the special block diagonal

structure of the Fisher Information matrix, we can write the null hypothesis as

H
0

: L
ql

�

ql

= b

ql0

. The Wald statistic can take the form

W
ql

= (L
ql

�̂

ql

� b

ql0

)>(L
ql

I�1

ql

(�̂
ql

)L>
ql

)�1(L
ql

�̂

ql

� b

ql0

)/c
ql

(4.48)

where L
ql

is a matrix (or a vector) defining the combination of the parameters (con-

trast) tested and c
ql

is the rank of L
ql

. Asymptotically, W
ql

follows a �2

c

distribution.
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If L
ql

is a vector, then

W ⇤
ql

=
L

ql

�̂

ql

� b

ql0q
L

ql

I�1

ql

(�̂
ql

)L>
ql

, (4.49)

asymptotically follows a Standard Normal distribution. As in the case of Hom-

SBM, the standard errors of the model parameters are estimated with the Fisher

Information matrix (see Eq. (4.41)) and, as noted previously, this equation applies

for both the Ordinary and Firth MLE approaches.

Multiple testing Inference procedures for the block level parameters comprise a

multiple testing problem as we are e↵ectively making Q(Q + 1)/2 individual tests.

To control the family wise error rate (FWE), defined as the probability of making

at least one Type I error, we use the Bonferroni correction (Holm, 1979). This

correction is valid for any dependence structure and is easy to apply: Instead of

using a nominal ↵
0

significance value (e.g., 0.05), ↵
0

/n
T

is used instead, where n
T

is the number of tests (here, n
T

= Q(Q+ 1)/2).

4.2.2 Likelihood Ratio Test

In the case of the Hom-SBM, to perform inference on a combination of parameters

H
0

: L = b

0

, we can use the likelihood ratio (LR) test. For the Firth approach,

we base the likelihood ratio test statistic on the modified variational bound given

by Eq. (4.23), and thus the test statistic can be stated as

⇤ = 2


J ⇤(f⇤(z; ⌧̂ ); ↵̂,  ̂)� J ⇤(f⇤(z; ⌧̂ ); ↵̂,  ̃)

�
, (4.50)

where  ̃ is a column vector containing the parameter estimates under the null

hypothesis. In particular, ⇤ is assumed to follow a �2

c

distribution where c is the

rank of L. Note that the  ̃ is derived from a restricted model whose penalisation

term is di↵erent from the penalisation term associated with the full model. Hence, to

derive ⇤, we do not use the bound associated with the restricted model, but we use

instead the bound of the full model evaluated with  ̃. Note that for the Ordinary

MLEs, the likelihood ratio is computed in a similar manner, but it is based on the

non-modified variational bound given by Eq. (4.12).

Similarly, in the case of the Het-SBM, to perform inference on a combination

of parameters H
0

: L
ql

�

ql

= b

ql0

, we can use the likelihood ratio test. For the Firth

MLEs, using the modified variational bound given by Eq. (4.39), we can formulate
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the likelihood ratio statistic as

⇤ = 2


J ⇤(f⇤(z; ⌧̂ ); ↵̂, �̂)� J ⇤(f⇤(z; ⌧̂ ); ↵̂, �̃)

�
, (4.51)

where �̃ is the set of all parameters containing the parameter estimates under the

null hypothesis. As before, ⇤ is assumed to follow a �2

c

distribution where c is the

rank of L
ql

. In particular, �̃ is derived from a restricted model whose penalisation

term is di↵erent from the penalisation term associated with the full model. Hence,

to derive ⇤, we do not use the bound associated with the restricted model, but we

use instead the bound of the full model evaluated with �̃. Note that for the Ordinary

MLEs, the likelihood ratio is computed in a similar manner, but it is based on the

non-modified variational bound given by Eq. (4.34).

Note that the multiple testing procedures outlined in the previous section

(Section 4.2.1) also apply for the likelihood ratio test.

4.2.3 Permutation Test

As both the Wald and likelihood ratio tests depend on asymptotic sampling distri-

butions, we also consider a non-parametric testing procedure. Permutation tests are

based on the premise that, under the null hypothesis, the data can be exchanged

without altering its distribution (Good, 2000). As a result of this, the distribution

of any test statistics can be found empirically through sequential evaluations of the

rearranged (or permuted) data. In the context of the Het-SBM model, we use per-

mutation tests to make inferences on the �
ql

, where we use a null hypothesis of

no association between edge occurrence and the covariate tested. We only consider

tests of the entire parameter vector �
ql

, although permutation tests allowing for

nuisance variables are possible (for a review, see Winkler et al., 2014).

The p-value of the observed Wald test statistic w
ql0

is computed by a Monte

Carlo sampling scheme, so that, for a sequence of random permutations indexed

by t (t = 1, . . . ,M), we obtain M Wald statistics labelled as w
ql1

. . . , w
qlM

. Thus,

including the observed Wald statistic w
ql0

into the permuted scores, the Monte Carlo

p-value is computed as

P(W
ql

� w
ql0

|H
0

) =

P
M

t=0

I(w
qlt

� w
ql0

)

M + 1
, (4.52)

where I(·) is the indicator function. The same approach can be used with the likeli-

hood ratio test to obtain p-values without assuming an asymptotic �2 distribution.

Improved Multiple testing procedures with permutation The Bonferroni

method for controlling the FWE is conservative in the presence of dependence.
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Hence, we also consider a permutation based procedure. Specifically, the FWE of

a critical value (e.g., W
C

) can be expressed as the probability that the maximum

statistic (taken over the Q(Q + 1)/2 blocks) exceeds that critical value under the

null hypothesis (Westfall and Young, 1993). Therefore, to control the FWE at a

level of significance 5% for the Wald test, we simply need to find the value of W
C

such that

P(max
⇥
((W

ql

))
1q,lQ

⇤ � W
C

|H
0

) = 0.05, (4.53)

likewise for the likelihood ratio (LR) test. To find W
C

, we need to record the max-

imum statistic across the Q(Q + 1)/2 blocks for the original and each of the M

permutation statistics, and choose W
C

as the 95-th percentile of all the maximum

statistics. The corresponding FWE corrected p-values, for each of the Q(Q + 1)/2

blocks, is likewise computed as the proportion of other group maximal statistics

which are greater than or equal to it (Westfall and Young, 1993; Nichols and Haya-

saka, 2003).

4.3 Simulation Methods

In this section, we use two Monte Carlo simulations, Simulation I and II, to investig-

ate the properties of the proposed multi-subject SBMs. In Simulation I, we address

three main points. First, we investigate how closely each multi-subject model re-

covers the true cluster structure. Second, we investigate the accuracy of the model’s

parameters under a range of di↵erent synthetic data, and we contrast the Ordinary

and Firth ML estimates. Third, we investigate the false positive rates (FPRs) of

the inference procedures associated with each model. In Simulation II, we focus on

specific parameter configurations that are particularly challenging for ML estima-

tion and that may be improved by the Firth approach. We also study the e↵ects of

small samples in more detail by varying the block sizes and the number of nodes in

networks.

In both sets of simulations, we fix the total number of blocks to be three

(Q = 3) and order the sizes of each block so that n
1

� n
2

� n
3

. To study the

e↵ects of block sizes on the accuracy of the parameter estimates, we consider three

proportion designs (Balanced, Mildly Unbalanced and Unbalanced) whose details

are shown in Table 4.1. The Balanced case maintains an even spread of nodes,

while the Mildly Unbalanced and Unbalanced cases tend to shrink the number of

nodes in the last two blocks. As the number of edges (or data points) depends

on the individual block sizes, we can expect a more accurate fit in the case of the

Balanced design than in the cases of the Mildly Unbalanced and Unbalanced designs.

However, since the block size increases with increasing network sizes, it is expected
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Block Sizes
Network Sizes Proportion Design n

1

n
2

n
3

n = 30 Balanced 10 10 10
Mildly Unbalanced 18 19 3
Unbalanced 21 6 3

n = 50 Balanced 17 17 16
Mildly Unbalanced 30 15 5
Unbalanced 35 10 5

n = 100 Balanced 34 34 32
Mildly Unbalanced 60 30 10
Unbalanced 70 20 10

n = 500 Balanced 167 167 166
Mildly Unbalanced 300 150 50
Unbalanced 350 100 50

Table 4.1: Proportion Designs. Number of nodes for each scenario. The Bal-
anced, Mildly Unbalanced and Unbalanced proportion designs are defined as the
ratio of individual block sizes and the total number of nodes in a network.

that this e↵ect is ameliorated in the larger networks. For each simulation setting,

we generate the true partition as a vector of length n. Comparisons between the

estimated clustering and the true partition are carried out using the Adjusted Rand

Index, discussed in Section 2.5 (Eq. (2.40)).

For each combination of parameters in Simulations I and II, we generate

S = 1000 networks, s = 1, . . . , S and, to this data, we fit the relevant multi-subject

model (e.g., in Simulation I, we consider the Bin-SBM, Hom-SBM and Het-SBM

while in Simulation II, we consider the Het-SBM). For each simulated network and

multi-subject model, we only consider a single restart with Q = 3. We compare

their resulting parameter estimates using the root mean square error (RMSE) and

the bias (Bias), defined as

RMSE(↵̂
q

) =

✓
1

S

SX

s=1

(↵̂
qs

� ↵
q

)2
◆
,

1/2

(4.54)

RMSE(✓̂
ql

) =

✓
1

S

SX

s=1

(✓̂
qls

� ✓
ql

)2
◆
,

1/2

(4.55)

RMSE(�̂(p)

ql

) =

✓
1

S

SX

s=1

(�̂(p)

qls

� �(p)

ql

)2
◆
,

1/2

(4.56)

Bias(�̂(p)

ql

) =
1

S

SX

s=1

(�̂(p)

qls

� �(p)

ql

), (4.57)

74



Bias(cvar(�̂(p)

ql

)) =
1

S

SX

s=1

(cvar(�̂(p)

qls

)� var(�̂(p)

ql

)), (4.58)

where �̂(p)

ql

is the (p)-th element of �̂
ql

, �̂(p)

qls

is its realisation in simulation s, cvar(�̂(p)

ql

)

corresponds to the (p, p)-th element of the inverse of the observed Fisher Informa-

tion given in Eq. (4.41), cvar(�̂(p)

qls

) is its realisation in simulation s and var(�̂(p)

ql

) is

the simulation sample variance of �̂(p)

ql

. Note that we can use the transformation

log(⇡̂/(1� ⇡̂)) = ✓̂ for the Bin-SBM so that Eq. (4.55) applies.

4.3.1 Simulation I

In this simulation, we consider ten subjects (K = 10) and networks of three sizes

(n 2 {50, 100, 500} nodes). Binary network edges are generated according to eight

di↵erent types of connectivity structures, labelled PI1-8. As shown in Figure 4.2,

each such PI portrays various rates of within/between block connectivity and, there-

fore, di↵erent cluster structures in the simulated networks. Furthermore, each PI

represents di↵erent levels of clustering evidence for three blocks. For example, PI1

illustrates the case when there is no block structure at all because all three blocks

rates are the same. Similarly, the combination of PI1 and Unbalanced proportions

will also be di�cult to fit and the same can be said about PI2 and PI5, which

have almost homogenous rates of connections. For the remaining cases, the fitting

is expected to be easier as there is clearly more heterogeneity in the data. Note

that, apart from the modular structure in PI6, all cases have identical within-block

connection rates.

Noting that the labelling of node assignment is random for each fit, we need to

correct this by relabelling the numbering of the Block after each fit. For the majority

of the scenarios, we resolved this by rearranging the blocks by decreasing sizes, giving

the label ‘Block 1’ to the largest block, the label ‘Block 3’ for the smallest block

and the label ‘Block 2’ for the remaining block. However, this approach cannot

work in the Balanced design as the blocks have the same size (see Table 4.1) and,

thus, there is some ambiguity in their ordering. To resolve this, we take advantage

of the PI structure, where in all cases (see Figure 4.2), except for PI1 & PI6, the

o↵-diagonal elements are decreasing. For PI6, we assign the labels in such a way

that ‘Block 1’ has the smallest connectivity rate while ‘Block 3’ has the largest. For

PI2-PI5, PI7 & PI8, we rearrange the labels in such a way that the connectivity

rates between ‘Block 1’ and ‘Block 2’ is the largest between-block connectivity rate

and the connectivity rates between ‘Block 2’ and ‘Block 3’ is the smallest between-

block connectivity rate. However, note that the labelling for PI1 and the Balanced

design is not identifiable at all.

To simulate the networks, we also consider the e↵ect of an age covariate.
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Figure 4.2: Design of connectivity structures PI1-8. Each of eight di↵erent
cases portraits various levels of homogeneity in the cluster structures, starting from
PI1, P2 and PI5 as highly homogenous examples to more heterogeneous cases with
stronger evidence for three block structures (PI3-4 and PI6-8).

Each of the ten subjects is assigned an age score, between 21 and 49 years, such

that their average value is 33.9 (the same as in the real data). We consider two

cases: (a) no age e↵ect and hence all subjects have the same PI (see Figure 4.2),

and (b) the e↵ect of age is set to �0.025, so that the subject specific block-rates

decrease with age. To distinguish between these two cases, hereafter, we use the

notation n50 0 and n50 0025 to indicate the size of network (50 nodes) and to state

an age e↵ect (i.e. n50 0 stands for no age e↵ect and n50 0025 stands for an age e↵ect

of -0.025).

For the Het-SBM, we apply the Wald and permutation inference procedures

described in Sections 4.2.1 and 4.2.3. The p-values of the Monte Carlo permutation

test statistic were obtained by computing 1000 permutations of the age covariate in

each of the simulations. We compare both approaches with respect to their control

of the false positive rates (FPR) and their power. In addition, we also consider the

control of FWE rate for both approaches when they were using a FWE correction.

4.3.2 Simulation II

In this simulation, we consider samples with 3, 5 and 10 subjects (K 2 {3, 5, 10})
and four network sizes (n 2 {30, 50, 100, 500} nodes) and the block sizes varying

according to Table 4.1. By considering additional networks with 30 nodes, we have
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generated blocks which are smaller than those considered in the previous set of

simulations. In the combination with other simulation parameters, the blocks with

fewer nodes are expected to create small sample e↵ects for which we expect to see

di↵erences between the Ordinary and Firth MLEs. Similarly to the previous set

of simulations, we generate data considering either the presence or the absence of

an age e↵ect, whose respective sizes are set to -0.025 and 0. The binary networks

Figure 4.3: Design of connectivity structures PI9 and PI10. Connection rates
portrait two cases of cluster structure, which are relatively easy to estimate with the
multi-subject SBMs. However, the probability rates should pose some challenges in
the logistic regression estimation, and this should provide a more interesting basis
for the comparisons between the Ordinary and Firth ML estimates.

are generated according to the connection rates given in Figure 4.3. The cluster

structures featured in PI9 and PI10 are expected to be relatively easy to estimate

by the Het-SBM, so that, regardless of the MLE approach, we will get the same

cluster structure estimate, allowing a clear comparison between the two approaches.

It is also interesting to note that PI9 and PI10 are characterised by saturated/sparse

connection rates. This, in the combination of a small number of nodes and subjects,

is expected to pose some interesting estimation challenges.

4.4 Simulation Results

In this section, we detail the results of Simulation I and II. In Simulation I, we show

the behaviour of the parameter estimates in the circumstances when the Ordinary

and Firth MLEs coincide and, in Simulation II, we focus in more details on the

improvements brought in by the Firth MLEs.
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4.4.1 Results of Simulation I

We report the quality of the fitted parameter estimates based on the RMSE of ↵̂

and the regression parameters (✓̂
ql

, �̂
ql

) associated with the Hom-SBM and Het-SBM

respectively.
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Figure 4.4: RMSE of ↵̂. The elements of the vector ↵̂ are given along the x-
axis. The RMSE scores are given with respect to varying (i) proportion designs
(Balanced, Mildly Unbalanced and Unbalanced, on each column), (ii) network sizes
(n 2 {50, 100, 500} nodes, on each row), and (iii) connectivity structures (PI1-8,
plotting symbols and colours).

In Figure 4.4, the highest RMSE values are mostly associated with the chal-

lenging types of connectivity structures (PI1-2 & PI5), while the smallest values are

mostly associated with PI3-4 and PI6-8 whose connectivity structures show more

clustering evidence. The proportion designs (Unbalanced and Mildly Unbalanced)

and the network size also contribute to the accuracy of the estimates. Indeed, the

accuracy seems to increase with increasing network or block sizes.

In Figure 4.5, we also show the RMSE for ✓̂ with respect to the Ordinary and

Firth MLEs. In particular, for the connectivity data considered in this simulation

(PI1-8), there are no appreciable di↵erences between the two approaches. Overall,

we can observe that increasing the network sizes, and hence, block sizes, tends to

improve the RMSE values. It is also evident that the proportion design influences

the accuracy of the estimates. For example, in the Unbalanced design, the estimates

related to Block 3 (i.e. ✓̂
23

and ✓̂
33

) are less accurate which can be explained by the

very small number of nodes in Block 3 (see Table 4.1). In all of these settings,

there seems to be little di↵erence between the RMSE of the Firth and Ordinary

MLEs even though our simulation consider small block sizes and 10 subjects. These

results might suggest that there is no interest in using the Firth MLEs even in small
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Figure 4.5: RMSE of ✓̂ evaluated in terms of the Ordinary and Firth
MLEs. The RMSE scores are given with respect to varying (i) proportion designs
(Balanced, Mildly Unbalanced and Unbalanced, on each column), (ii) network sizes
(n 2 {50, 100, 500} nodes, one each row), and (iii) connectivity structures (PI1-
8, plotting symbols and colours). For these PI values, there are no appreciable
di↵erences between the Ordinary and Firth MLEs.
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Figure 4.6: RMSE of �̂
ql

(Het-SBM) with an age e↵ect of -0.025. The Ordin-
ary and Firth MLE approaches gave identical results, so only one set of the results
is shown. The RMSE scores are given with respect to varying (i) proportion designs
(Balanced, Mildly Unbalanced and Unbalanced, on each column), (ii) network sizes
(n 2 {50, 100, 500} nodes, one each row), and (iii) connectivity structures (PI1-8,
plotting symbols and colours).

samples. However, as we will show in Simulation II, there is a gain in using the Firth

MLEs in small samples when the connectivity rates are extreme (i.e. close to 0 or

1). In Figure 4.6, we show only the RMSE for �̂
ql

slope (i.e. the e↵ect of age) of the

Het-SBM as the estimates for the intercepts are very similar to the those presented
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in Figure 4.5. The estimates associated with the slope are reasonably accurate.
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Figure 4.7: ARI scores for the Het-SBM. The network sizes and the pres-
ence/absence of the e↵ect are given along the x-axis. The Het-SBM is evaluated
with respect to varying (i) proportion designs (Balanced, Mildly Unbalanced and
Unbalanced, on each column) and (ii) connectivity structures (PI1-8, on each row
and plotting colour). These results are consistent with the results of the Hom-SBM
and Bin-SBM.

In addition to these results, we also use ARI scores (see Eq. (2.40)) to evaluate

how similar the estimated partitions are to the true partitions. In Figure 4.7, we note

that, for PI1 and PI5, the estimated partitions never fully match the true partition

and the median values are consistently low. For PI2 and PI3, we note that with an
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(b) Monte Carlo Permutation test

Figure 4.8: False Positive Rates (FPR) for �̂
ql

slope (age e↵ect). Both
methods are evaluated with respect to (i) proportion designs (Balanced, Mildly
Unbalanced and Unbalanced, on each column), (ii) network sizes (on each row) and
(iii) connectivity structures (PI1-8, plotting symbols and colours). Both tests show
a similar profile with respect to the simulation conditions and are liberal for the
cases in which the model does not accurately recover the true partitions.

increasing network and block sizes, the estimated partitions almost always recover

the true partition, suggesting the influence of the proportion design and the network

size. The other types of connectivity structure are generally more straightforward

to estimate and, thus, in the cases of PI4 and PI6-8, the model consistently recovers

the true partitions over all 1000 realisations.

In the final part of our simulation analysis, we investigate the accuracy of
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(a) Wald test/Bonferroni correction
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(b) Monte Carlo permutation test/Max-based correction

Figure 4.9: Control of the FWE after correction. Network sizes are displayed
along the x-axis. Both methods are evaluated with respect to varying (i) proportion
designs (Balanced, Mildly Unbalanced and Unbalanced, on each row) and (ii) con-
nectivity structures (PI1-8, on each column). The significance level of 0.05 is given
by a red line, while the Monte Carlo confidence interval (0.04, 0.06) is demarcated by
red dashed lines. Both tests are accurate for the cases in which the model accurately
recovers the true partitions.

parametric and non-parametric inference procedures. In Figure 4.8, we show the

FPR for the Wald and Monte Carlo permutation tests, computed at a significance

level of 0.05. For each test, we show the confidence interval for a nominal 0.05 re-

jection rate using a Normal approximation to the Binomial distribution (0.04, 0.06),

demarcated by a red shaded strip. It is evident that both tests show remarkable
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mutual similarity and also equal sensitivity to the simulation conditions. In that

sense, both tests show a good control of the FPR for PI4 and PI6-8. For these cases,

the influence of the proportion design and network size seems negligible. However,

in the cases of PI1 and PI5, we can see that the inference is always liberal (i.e.

FPR>0.05). Nevertheless, for the remaining connectivity structures (PI2 and PI3),

we see that both methods fail to control the FPR in small networks but that the

quality of their inference is improved when the number of nodes is increased. Thus,

the inference becomes more accurate in networks with 100 and 500 nodes. From

Figure 4.7, we see that a successful control of the FPR corresponds closely to the

cases in which the estimated partitions are the most accurate. For example, for PI4

and PI6-8 the method accurately retrieves the true partitions and this is reflected

in the good control of the FPR. Similarly, when the model struggles to estimate

the true partition, like in the case of PI2, we see a poor control of the FPR, which

becomes instantaneously better when the model recovers the true partition. Thus,

we can conclude that the accuracy of the tests is not driven by the logistic regression

but by the general framework of the mixture model which struggles to provide good

partition estimates in the challenging cases with very little evidence for the three

block fit.

In Figure 4.9, we show the control of the FWE rate for the slope estimates

after FWE correction (see Sections 4.2.1 and 4.2.3). Notably, both methods show

very similar results and the overall improved control of FWE for the well behaved

cases. As in the FPR results, we see that both tests struggle with PI1 and PI5 and

show improved accuracy for the cases PI2-3, when the estimated partition recovers

exactly the true partition.

4.4.2 Results of Simulation II

Due to space considerations, we refrain from reporting on all of the simulation

outcomes and, instead, we focus only on the most striking results. Specifically we

show only the Unbalanced design since these by construction are expected to exhibit

very strong small sample e↵ects (see Table 4.1). Also, we only consider results for

the connectivity matrix PI9 (see Figure 4.3). Nevertheless, we note that the full set

of results is available in Appendix B.1.

Figures 4.10 (a) and (b) show the bias of the intercept and slope (�̂
ql

) es-

timates according to the Ordinary and Firth MLEs. In several simulation scenarios,

the Ordinary and Firth MLEs seem to be equally accurate, however, in the smallest

samples (in terms of nodes and subjects), the Ordinary MLE displays the tendency

to be severely biased, which is evidently not the case with the Firth MLE which

seems to be almost unbiased. This is especially noticeable in the cases with three

subjects and small blocks (e.g., in the networks with 30 nodes) for which the bias of
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Figure 4.10: Bias of �̂
ql

of the Het-SBM in terms of the Ordinary and

Firth MLEs. Between/within block �̂
ql

values are displayed along the x-axis.
These estimates are shown with respect to the Unbalanced proportion design, vary-
ing numbers of subjects (K 2 {3, 5, 10}) and network sizes (n 2 {30, 50, 100, 500}
nodes).

the Ordinary MLE seems to be the largest. However, it is also interesting to point

out that these e↵ects are ameliorated in larger blocks and with more subjects.

Next, we report the quality of the inference procedures based on the Wald

and likelihood ratio tests, each of which is assessed in terms of the Ordinary and

Firth MLE approaches. In Figure 4.11 (a), we show the False Positive Rates (FPR)

for the Wald test related to the intercept values. Note that despite the obvious

small sample bias of the Ordinary MLEs, it seems that the Wald test based on

such estimates are conservative. A possible explanation for this can be obtained in

Figure 4.12 which shows the bias of the variance of the intercept (cvar(�̂
ql

)). The

84



Unbalanced
3 Subjects

Unbalanced
5 Subjects

Unbalanced
10 Subjects

● ●
●●

● ●

● ● ●
●

● ●

● ●
●

●
● ●

● ● ●
● ●

●

● ● ●●
● ●

● ● ●● ●

●

● ● ●● ●
●● ● ●● ● ●

● ●
●

●
●

●

● ● ●●

●

●

● ●
●

●
●

●

●
●

●● ●
●

● ● ●●
● ●

● ● ●● ●
●

● ● ●● ● ●● ● ●● ● ●

● ●

●
●

● ●
● ●

●
●

●

●

● ● ●● ●
●

●
● ●● ● ●

● ● ●● ●
●

● ● ●● ● ●

● ● ●● ● ●● ● ●● ● ●

0.00
0.05
0.10
0.15
0.20

0.00
0.05
0.10
0.15
0.20

0.00
0.05
0.10
0.15
0.20

0.00
0.05
0.10
0.15
0.20

n30_0
n50_0

n100_0
n500_0

W
ald

W
ald

W
ald

W
ald

β̂11 β̂12 β̂13 β̂22 β̂23 β̂33 β̂11 β̂12 β̂13 β̂22 β̂23 β̂33 β̂11 β̂12 β̂13 β̂22 β̂23 β̂33

FP
R

Methods
●

●

Ordinary MLE
Firth MLE

(a) Wald test for �̂ql intercepts
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(b) Likelihood ratio (LR) test for �̂ql intercepts

Figure 4.11: False Positive Rates (FPR) at 5% significance level for the
Wald and likelihood ratio (LR) tests based on the Ordinary and Firth
MLEs. Between/within block intercept values are displayed along the x-axis. The
FPR are shown with respect to the Unbalanced proportion design, varying numbers
of subjects (K 2 {3, 5, 10}) and network sizes (n 2 {30, 50, 100, 500} nodes).

variance estimates of the Ordinary MLEs are strongly positively biased and, as a

result of this, the Wald scores are deflated and the test is conservative. In contrast

to this, the Wald test based on the unbiased Firth estimates (Figure 4.11 (a)) has

the tendency to be liberal in the small sample cases. This is especially evident in

the cases of blocks with only three nodes (e.g., network with n = 30 nodes), for

which an increasing number of subjects does not seems to lead to a better control

of the FPR. However, in Figure 4.11 (b), we see that the likelihood ratio (LR) test
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Figure 4.12: Bias of dvar(�̂
ql

) intercepts for the Ordinary and Firth MLEs.
Between/within block intercept values are displayed along the x-axis. Bias estimates
are evaluated with respect to Unbalanced proportion design, varying numbers of
subjects (K 2 {3, 5, 10}) and network sizes (n 2 {30, 50, 100, 500} nodes). In many
scenarios, the Ordinary MLEs present a large bias that is corrected by the the Firth
MLEs.

is better behaved for the Firth MLEs than for the Ordinary MLEs. Indeed, the

Ordinary MLEs in small samples seem to be either liberal or conservative. On the

other hand, the Firth MLEs have the tendency to be slightly conservative in small

samples with the exception of the case with three subjects and the network with 50

nodes where it seems to be liberal.

In addition to this, we also investigate the performance of the Wald and

likelihood ratio tests based on the slope estimates of the Ordinary and Firth MLE

approaches. In Figure 4.13 (a), we note that the Ordinary and Firth MLE ap-

proaches are very similar and tend to be accurate in many situations. However, in

the most di�cult scenarios, both approaches exhibit a conservative behaviour. In

contrast, for the likelihood ratio test (see Figure 4.13 (b)), we observe a di↵erence

of behaviours between the Ordinary and Firth MLEs such that the Ordinary MLEs

are liberal, while the Firth MLEs are conservative.
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(a) Wald test for �̂ql slope
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(b) Likelihood ratio (LR) test for �̂ql slope

Figure 4.13: False Positive Rates (FPR) at 5% significance level for the
Wald and likelihood ratio (LR) tests based on the Ordinary and Firth
MLEs. Between/within block slope values are displayed along the x-axis. The FPR
are shown with respect to the Unbalanced proportion design, varying numbers of
subjects (K 2 {3, 5, 10}) and network sizes (n 2 {30, 50, 100, 500} nodes).
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4.5 Multi-subject Functional Connectivity fMRI Data

Our analysis considers the Placebo treatment data obtained from a crossover rest-

ing state fMRI study (Lynall et al., 2010; Towlson et al.), involving Placebo, Aripi-

prazole and Sulpiride treatment sessions. Within the Placebo treatment session,

data was collected for 13 healthy volunteers (Controls) and 12 individuals dia-

gnosed with schizophrenia (Patients). The full details of the fMRI acquisition and

pre-processing can be found in the original references. In brief, the subjects were

instructed to lay quietly in the scanner with their eyes closed for a duration of 17

minutes and 12 seconds. In each session, a total of 512 scans were taken with a

repetition time of 2 seconds. Each such dataset was further corrected for motion

artefacts according to the procedures described in Suckling et al. (2006) and then

registered to the MNI standard space atlas. A Gaussian kernel of 6 mm was used

to spatially smooth the registered images and the time series were high-pass filtered

with a cuto↵ frequency of ⇡ 0.008 Hz. Each subject’s data was parcellated into

325 anatomically defined regions (ROIs) using the AFNI atlas and 28 regions were

discarded due to missing data for some individuals. Averaged voxel time series in

each region were further decomposed into four frequency scales by a discrete wavelet

transform (Percival and Walden, 2000). Our subsequent analysis considers correl-

ations in the frequency interval of 0.06 � 0.125 Hz, as it has been shown in Lynall

et al. (2010) that, within this frequency range, the di↵erences between Controls and

Patients were the most salient. Using the binarisation procedure outlined in Section

2.1.4 with N = 128 discrete wavelet coe�cients, we obtain a 297 ⇥ 297 undirected

and binary adjacency matrix for each subject.

To this data, we fit the Het-SBM, described in Section 4.1.3, for which we

consider as covariates: age, premorbid intelligence1 (Nart IQ; Nelson, 1982), and

per-subject motion (see Section 2.1.3). All covariate vector values are column-

wise assigned to the design matrix D, so that the first two columns represent the

intercept for Controls and the intercept for Patients, while the remaining columns

are associated with the age, Nart IQ and motion, all of which are centred about

their respective mean values.

4.5.1 Procedure for Functional Block Evaluations

In order to make functional interpretations of the estimated partition, we compare

each estimated block of nodes against the 20 Intrinsic Connectivity Networks (ICN)2

reported in the study of Laird et al. (2011). More precisely, we first classify each node

in terms of their Intrinsic Connectivity Networks, using the coordinates of its ROI

1
Subject’s intellectual functioning prior to known or suspected brain disfunction or disease.

2
Intrinsic Connectivity Networks are defined as large scale networks, simultaneously captured

in resting-state and task-based neuroimaging data.
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centroid, and then, for each estimated block of nodes, we compute the proportion of

nodes in each of the 20 ICNs and assign to it the ICN with the highest proportion.

Note that this comparison with the ICNs reported in Laird et al. (2011) is

rather rough due to the fact that we only use the coordinates of the ROI centroids

and not the whole volumes of the ROIs (the latter information was unfortunately

not available to us). Also, for some blocks, it seemed that the proportion of nodes

in the selected ICN was relatively small and therefore, the ICN assignment for these

blocks may not be relevant. Nevertheless, this rough classification of the estimated

blocks may still be regarded as a useful exploratory tool.

4.6 Het-SBM Fit to Multi-subject Functional Connectiv-

ity fMRI Data

The Het-SBM estimates a multi-subject network decomposition with 24 blocks.

Figure 4.14 shows the spatial location of each node and its corresponding block

assignment. The blocks are further organised into panels (Panel A-F). A striking

feature of this decomposition is that the Het-SBM reasonably well captures the

spatial information, despite the fact that this information was not used during the

estimation. For example, the nodes in Block 5 (see Panel D) belong to the spatially

separated regions in the frontal and parietal lobes.

Panel A Panel B Panel C

Block 24 � ICN 1 Block 9 � ICN 6 Block 1 � ICN 11
Block 3 � ICN 2 Block 17 � ICN 6 Block 2 � ICN 12
Block 12 � ICN 2 Block 19 � ICN 7 Block 6 � ICN 12
Block 18 � ICN 2 Block 21 � ICN 7 Block 16 � ICN 12
Block 14 � ICN 5
Block 20 � ICN 5

Panel D Panel E Panel F

Block 5 � ICN 13 Block 7 � ICN 14 Block 4 � ICN 17
Block 10 � ICN 13 Block 23 � ICN 15 Block 15 � ICN 18
Block 11 � ICN 13 Block 13 � ICN 16 Block 8 � ICN 20

Block 22 � ICN 16

Table 4.2: Correspondence between the Intrinsic Connectivity Networks
(ICNs) published in Laird et al. (2011) and the 24 blocks estimated by
the Het-SBM.

To work out the approximate functional labels of the individual blocks, we

contrast their nodes against the Intrinsic Connectivity Networks maps reported in

Laird et al. (2011) (see Table 4.2). While this comparison is approximate, it is a
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Figure 4.14: Anatomical locations of individual nodes in the blocks, shown
in terms of panels (Panel A-F). The plots were generated using the Matlab’s
BrainNet toolbox (Xia et al., 2013, http://www.nitrc.org, last accessed on the
9th of January 2015).

convenient exploratory tool that helps us assign relative functional labels to the

estimated blocks.
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Panel A: Broadly speaking, we found that the nodes in Block 24, 3, 12 and 18 are

mostly associated with networks linked to emotional and autonomic processes.

In particular, about 73% of nodes in Block 24 are linked to the visual recogni-

tion of emotions like fear, anger, happiness or humour, while more than 90% of

nodes in Block 3 and 12 are associated with networks involved in olfaction and

gustation. About 40% of nodes in Block 18 are involved in similar autonomic

process and 24% in cognitive processes like reasoning, attention and memory.

About 72% of nodes in Block 14 and the node in Block 20 (Right Cerebellar

Tonsil) are linked to autonomic processes related to breathing.

Panel B: The majority of the nodes in Blocks 9 (36%), Block 17 (52%), Block 19

(100%) and Block 21 (32%) are associated with motor and visual processing.

Panel C: All the blocks in Panel C - Block 1 with 80%, Block 2 with 62 %, Block 6

with 40% and Block 16 with 50 % nodes - are linked to higher visual perception.

Panel D: All the blocks in Panel D - Block 5 with 39% , Block 10 with 29% and

Block 11 with 86% nodes - are linked to the Default Mode Network.

Panel E: About 80% of the nodes in Block 7 are located in the cerebellum, 37%

of the nodes in Block 23 are linked to cognitive processes, while 63% of the

nodes in Block 13 and 39% of the nodes in Block 22 are linked to audition and

speech.

Panel F: This panel contains blocks related to speech and language (Block 4 with

67% and Block 15 with 35%). It is somewhat more challenging to functionally

quantify Block 8 as its nodes are participating in a variety of networks. In

particular, about 15 % of its nodes are involved in autonomic processes, 23 %

in visuospatial processing and reasoning, 15 % in higher visual processing, 15

% in language and 31% are related to artefacts.

Inference

In Figure 4.15 (a) and (b), we show the estimated intercept values for the Con-

trol and Patient groups. The values are expressed as probabilities and denote the

within-block or the between-block rates of connections. For convenience, the blocks

are organised in terms of panels (Panel A-F). Although, both subject groups show

reasonably similar patterns of connectivity structures, the Patients seems to be

under-connected relative to the Controls. However, to obtain a finer view of the

extent of their di↵erences, we make some inferences on di↵erences between the in-

tercepts of the Patients vs. Controls.

In Figure 4.16, we show the corresponding Wald test score image thresholded

at 5% after using a Bonferroni correction. Overall, we can observe significantly less
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(b) Patients

Figure 4.15: Estimated within/between block connectivity rates. Individual
block labels are shown on (x� y) axis and each block cell is demarcated by a grey
line. The blocks were further aggregated into 6 panels, labelled Panel A-F, which
are visually separated by black lines. Largely similar patterns of connectivity are
found in each population, though patients appear to have generally lower connection
densities.

connections in the Patients compared to the Controls. In order to view these results

in more detail, we discuss each panel (Panel A-F) separately.

Panel A: The most significant di↵erences are found in the connection rates between

Panel A (emotional and autonomic processes) and Panel B (motor and visual

processes), especially within the connections of Blocks 3 & 17 and Blocks 18 &

17. Further significant results are found in its connection to Panel F (speech

and language), particularly between Blocks 18 & 4.

Panel B: The most significant di↵erences within Panel B (motor and visual pro-

cesses) are seen in the connections of Block 21 with Blocks 9 &17. In particular,

Blocks 9, 17 & 21 are significantly less connected with the blocks in Panel D

(Default Mode network), Panel E (audition and speech) and Panel F (speech

and language).

Panel C: There are almost no significant di↵erences in the connectivity rates between

the Patients and Controls in Panel C (higher visual perception). Also, the

connection rates between this circuit and the rest of the network are weakly

significant.

Panel D: The most significant di↵erences are found in the way Panel D (Default
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Figure 4.16: Bonferroni thresholded (5%) LR score image of the intercept
di↵erences between Patients vs. Controls, interpretable as the Patient-
Control di↵erence in (logit-scale) connectivity rates at mean age, Nart
IQ and motion (33.32 years, 113.06 Nart IQ and 7.40 mm). Note that the
LR scores have been multiplied by the sign of L

ql

�̂

ql

to indicate direction of the
e↵ect. An increasing e↵ect is shown in red and a decreasing e↵ect is shown in blue.

Mode network), relates to Panel B (motor and visual processes) and Panel

F (speech and language). In particular, the bulk of weaker connections is

associated with the connectivity profile of Block 5.

Panel E: Overall, connection rate-di↵erences are weakly significant with the ex-

ception of Block 23 (cognitive processes) & Block 4 (speech and language).

Panel F: Most of the blocks show weakly significant results.

Next, we tested for the e↵ect of age on the connectivity rates on both subject
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Figure 4.17: Bonferroni thresholded (5%) LR score image of the common
Age e↵ect. Note that the LR scores have been multiplied by the sign of L
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to indicate the direction of the e↵ect. An increasing e↵ect is shown in red and a
decreasing e↵ect is shown in blue.

groups. In Figure 4.17, most of the results indicate that the connection rates decrease

with increasing age. In particular, decreasing connectivity rates are strongly evident

between Block 24 (emotional processes) and Block 17 (motor and visual processing),

Block 17 (motor and visual processing) and Block 22 (audition and speech), Block

17 (motor and visual processing), and Block 5 (Default Mode Network) and Block

5 (Default Mode Network) and Block 4 (speech and language). Note that there

is some weak evidence of an increasing connectivity with age within and between

Blocks 19 & 21.
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4.7 Discussion

In this chapter, we proposed three models that can be used to estimate a common

network decomposition in multi-subject data. Each model accounts for di↵erent

levels of variability between the subjects. The Binomial Stochastic Blockmodel

(Bin-SBM) assumes no variability between subjects. The Homogeneous Stochastic

Blockmodel (Hom-SBM) assumes that a covariate proportionally a↵ects the con-

nectivity across all blocks. The Heterogeneous Stochastic Blockmodel (Het-SBM)

assumes that a covariate a↵ects connectivity in the blocks as well as their mutual

interactions.

Our results in Simulation I showed that the inference procedure with a Wald

test may fail to control the FPR in some scenarios. Nevertheless, this behaviour is

not necessary due to the test procedure itself, but more likely to the fact that, in

these scenarios, the models had the tendency to fail to recover the true clustering.

Indeed, in such cases, the connection patterns of (wrongly) estimated clusterings

may not be representative of those of the true clustering. As the simulations are

based on the assumption that the underlying connectivity patterns are the true null

e↵ect and not those of the estimated clusters, the test has the tendency to detect

this di↵erence, yielding an apparent liberal control of the FPR.

In connection to the cluster estimation, our simulation analysis did not in-

vestigate the impact of the regression parameters biases on the accuracy of cluster es-

timates. In particular, Simulation II showed that the Ordinary MLEs were severely

biased while the Firth MLEs were more accurate. However, for the sake of the

objective comparison between the Ordinary and Firth MLEs, we kept the cluster

structure relatively simple and easy to estimate, but it would be very important to

investigate the impact of the Ordinary MLE bias on the estimation of the cluster

structure. For this, we would need additional simulations which would combine

challenging cluster structures and connectivity rates. On these lines, it would be

also interesting to investigate the di↵erences in the clustering abilities between the

three multi-subject models by allowing heterogenous covariate e↵ects across blocks.

We note that both of these points are left as a future work.

In terms of the accuracy of the inference procedures, we identified several

sources of small sample behaviour, including the relative block sizes, number of sub-

jects and sparse/saturated block connection rates. In particular, the Wald, Likeli-

hood Ratio and permutation tests seem to be equally a↵ected by small sample e↵ect.

So far, our analysis showed that, although the Ordinary MLEs are biased in small

samples, the Wald test values based on their estimates tend to be very conservat-

ive, while their likelihood ratio test values tend to either conservative or liberal for

small samples. The Wald tests based on Firth MLEs seemed to be liberal in small

samples. In contrast, the likelihood ratio test based on Firth MLEs seemed were
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somewhat better behaved. This is consistent with the results obtained by Heinze

and Schemper (2002).

In the real data analysis, the Het-SBM identified anatomically and function-

ally plausible blocks, as well as di↵erences in connectivity between groups (Controls

vs. Patients) and their variations with age. Although our real data application was

intended as an illustration of the Het-SBM, the results seem to be consistent with

the previous literature which hypothesised that the schizophrenia is a disease of

disconnectivity in the brain which heavily impacts regions associated with the De-

fault Mode network (Van Den Heuvel and Pol, 2010). In that regard, the Het-SBM

fit and its group inference pointed to even more details regarding the integrative

properties of the Default Mode network which, taken globally, seems to be even less

connected with other networks in Patients than in Controls. For example, nodes

linked to the Default Mode Network seems to be less connected to the nodes asso-

ciated with motor & visual processes, and with speech & language in Patients vs.

Controls. However, further analyses would be needed to obtain deeper insights from

this functional connectivity data and to validate these results with other datasets.

In the context of functional connectivity analyses, the adjacency matrices are

typically constructed by the means of a hard thresholding. This implies that the

researchers often select a threshold which preserves a pre-specified fraction of edges

(e.g., 10% or 15% of the total number of connections). However, as this type of data

imposes restrictions on each subject’s total number of edges, we may encounter some

artefacts in the later stages of the analysis. For example, let us consider two blocks

of nodes (Block A and Block B) and a subject that happens to have a relatively

higher correlation in Block A than in Block B, but the same correlation as all other

subjects in Block B. To maintain a fixed connection rate, that subject must have a

relatively higher (correlation) binarisation threshold, but as a result will be seen to

have relatively lower connectivity in Block B. For such cases, the Hom-SBM model

would be inappropriate as it can only model a homogeneous increase or decrease

of connections for all the blocks. Therefore, for this kind of thresholding, the Het-

SBMmodel would be more appropriate as it can model separate e↵ects across blocks,

allowing for decreasing e↵ects in some blocks and increasing e↵ects in others.

The Het-SBM and the Hom-SBM estimate a cluster structure on the residuals

from a logistic regression model or, in other words, on the variability between sub-

jects that has not been accounted for by the covariates in the model. Consequently,

the residuals are not changed with the additional nuisance covariates and, therefore,

the cluster structure remains approximately the same. To investigate this point,

we also estimated a cluster structure on the real data using density (i.e. the pro-

portion of observed edges over all possible edges, computed for each subject) as an

additional nuisance covariate. Despite this additional covariate in the model, the
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Het-SBM estimated a fit with 24 blocks whose structure was very similar to the fit

presented in the paper (ARI score of 0.81).

In a wider context, the models proposed in this chapter are complementary to

the models described in Mariadassou et al. (2010) which utilise Generalised Linear

Models with edge-based covariates; and in Zanghi et al. (2010) which assume Nor-

mally distributed node-based covariates as additional terms in the likelihood. Both

modelling approaches o↵er some interesting applications to fMRI data analysis, par-

ticularly if researchers wish to account for spatial information in the data, either

expressed as a distance between the nodes or as a node-based vector of coordinates.

Using the framework presented in this work, one can easily consider multi-subject

extensions of these two models.
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CHAPTER 5

Generalised Linear Mixed Stochastic Blockmodelling and Inference

in Multi-subject Networks

In Chapter 4, we investigated the joint cluster analysis of independent multi-subject

network data. For such data, we proposed two non-trivial extensions of the SBM,

namely the Homogenous SBM (Hom-SBM) and the Heterogeneous SBM (Het-SBM).

Each of these two models accounts for di↵erent levels of variability between the

subjects with a logistic regression model, which embodies either a ‘homogeneous’

(common) or a ‘heterogeneous’ (interacting) relationship between the block structure

and subject specific covariates like age, gender or IQ. In addition to their clustering

abilities, both models also provide inference tools to detect group di↵erences in

connectivity rates.

However, although these models are useful for the analysis of independent

multi-subject networks, they may not be appropriate in the cases where some form

of dependence exists in the data. This may be generally attributed to two sources.

First, if covariates do not fully explain inter-subject di↵erences in connectivity rates,

there may still be some dependence within the individual elements of a block struc-

ture. For example, the prevalence of edges in one subject’s block (e.g., the block

(q, l)) may be consistently over-estimated and, therefore, this lack of fit may be

randomly distributed over subjects. Second, data may comprise more than one net-

work per each subject inducing a repeated measures correlation. The latter data

typically occurs in studies with multiple scans per-subject, who are either scanned

at di↵erent time points or after being exposed to di↵erent experimental conditions,

such as di↵erent drug e↵ects (e.g., a cross-over design). Other examples of such

data may include combined outcomes of di↵erent imaging modalities or data which

combines di↵erent classes of connectivity (e.g., structural and functional) where
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the goal would be to answer questions regarding the similarities of their networks’

organisations.

In order to model within-subject correlated data, in this chapter, we invest-

igate an extension of the SBM which uses a logistic mixed regression model with

per-subject random intercepts. Here, we focus only on a ‘heterogeneous’ association

between the subjects’ covariates and the block structure, meaning that each block

element has its own regression model. This model is the natural generalisation of

the Het-SBM of the previous chapter, and should be able to represent a wide range

of cluster structures.

In the reminder of this chapter, we define the Heterogenous Mixed SBM

(Het-Mixed-SBM) and discuss estimation strategies based on the Ordinary Max-

imum Likelihood approach and points related to its practical implementation. We

evaluate the proposed model over a range of di↵erent Monte Carlo simulations and

we illustrate it on the data described in Section 4.5. Finally, we finish with discussion

and future work.

5.1 Heterogeneous Mixed Stochastic Blockmodel (Het-

Mixed-SBM)

To motivate what becomes a quite complex model, we first consider a simple logistic

regression model with a random intercept per subject illustrated on a single block

of binary data extracted from a known cluster structure. We describe the likelihood

of the mixed e↵ect model pertaining to this block and use it as a basis upon which

the more complex Het-Mixed-SBM is developed. In particular, the Het-Mixed-SBM

considers additional block-specific fixed e↵ects (‘heterogeneous’ fixed e↵ects) as well

as subject-specific random e↵ects for each block element (‘heterogeneous’ random

e↵ects). For this model, we discuss its optimisation strategy and its ICL criterion,

and we finish by detailing the proposed estimation algorithm.

5.1.1 Logistic Regression with a Random Intercept

In this example, we assume that the cluster structure is known and we only consider

data for a single block element for which we specify a logistic regression model with

a random intercept per subject. Thus, given a subject k (k = 1, . . . ,K) and its

repeated measurement t (t = 1, . . . , T ), we write the edge data for a particular

block (q, l) to be a vector x

kt

of n⇤ data points. Since the block assignment is

known, the variable related to the block assignment (Z) is redundant and, for each

data point s = 1, . . . , n⇤, the model can be stated as

X
skt

|R
k

= r
k

⇠ Bernoulli(⇡
kt

),
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is a P ⇥1 vector of covariates associated with the k-th subject and its t-th

measurement and R
k

are independent identically distributed (iid) subject-specific

random intercepts with variance �2. As noted in McCulloch (1997), the density of

this simple model can be stated as
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and its log likelihood is given as
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We now elaborate this model to account for the entire block structure with an

unknown membership.

5.1.2 Model Definition

In this section, we describe the Het-Mixed-SBM. Let us consider the Bernoulli

random variable X
ijkt

such that the indices i, j = 1, . . . , n, k = 1, . . . ,K, and

t = 1, . . . , T denote the nodes, subjects, and per-subject measurements, respect-

ively. For each of K subjects and T measurements, we use X

kt

= ((X
ijkt

))
1i 6=jn

to denote their n⇥n random and symmetric matrix and, for the simplicity of nota-

tion, we use X to denote the set of all such random variables.

Similarly to Section 4.1 (see Eq. (4.2) and Eq. (4.2)), in this model, we as-

sume that the cluster structure is common across all subjects and their repeated

measurements. Thus, for a fixed Q, the latent random variable Z

i

indicates the

cluster membership of node V
i

and it is assumed to independently follow a Categor-
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ical distribution with Q possible outcomes,

Z

i

⇠ Categorical(Q,↵), (5.1)

with individual probabilities of success ↵ = (↵
1

, . . . ,↵
Q

) such that
P

Q

q=1

↵
q

= 1.

Writing Z = ((Z
iq

))
1in,1qQ

for the n⇥Q matrix, its probability mass function

is

f(z;↵) =
QY

q=1

nY

i=1

↵
ziq
q

. (5.2)

Finally, the Het-Mixed-SBM can be summarised as follows

X
ijkt

|Z
iq

= 1, Z
jl

= 1, R
qlk

= r
qlk

⇠ Bernoulli(⇡
qlkt

), (5.3)
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R
qlk

iid⇠ Normal(0,�2
ql

), (5.5)

where R
qlk

represents a subject specific random intercept for the block (q, l), d
kt

is a

P⇥1 vector of covariates associated with the k-th subject and its t-th measurement,

and �
ql

is a P ⇥ 1 vector of regression coe�cients for the block (q, l). We note that

�2
ql

is the variance of each block or block-to-block regression and it is collectively

written as �2 = ((�2
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))
1q,lQ

. In particular, the probability mass function of x

given z can be written as
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5.1.3 Estimation and Model Selection

Similarly to the models considered in Chapter 4, we use the variational approach (see

Section 2.4.1) to estimate the models parameters (⌧ ,↵,�,�2). Using the notation

�
ijql

introduced in Section 4.1.3 (Eq. (4.33)), the variational bound is given as

J (f⇤(z; ⌧ );↵,�,�2) =
1
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For a fixed Q, we want to maximise the variational bound, defined by Eq. (5.7) with

respect to the variational parameter ⌧ , as well as the parameters ↵, � and �2. The

optimal variational parameter ⌧ satisfy the fixed point relations
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where, we use the notation I
qlk1

and I
iqlk

to denote the following integral expressions
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In particular, the optimisation of ⌧ follows the same procedure of fixed-point itera-

tion used for the models of Chapter 4 (see Sections 4.1.2 and 4.1.3), and, therefore,

ĥ
qlk

is evaluated on the previous values of ⌧ . As before, the estimates of ↵ are given

as

↵̂
q

=
1

n

nX

i=1

⌧̂
iq

. (5.11)

We next turn our attention to the optimisation of the variational bound for � and

�

2. For the clarity of the subsequent discussions and easy referencing, we provide a

list of integrals I
qlk1

� I

qlk6

that will be used in the estimating equations of � and

�

2. Thus, we have

I
qlk1

=

+1Z
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, (5.12)

102



I
qlk2

=
@I

qlk1

@�2
ql

=
1

2�4
ql

+1Z

�1

ehqlkr2
qlk

dr
qlk

, (5.13)

I

qlk3

=
@I

qlk1

@�
ql

=

0

@�1

2

nX

i=1

nX

j 6=i

�
ijql

1

A
TX

t=1

d

kt

+1Z

�1

ehqlk⇡
qlkt

dr
qlk

, (5.14)

I
qlk4

=
@I

qlk2

@�2
ql

=
1

4�8
ql

+1Z

�1

ehqlkr4
qlk

dr
qlk

� 1

�6
ql

+1Z

�1

ehqlkr2
qlk

dr
qlk

, (5.15)

I

qlk5

=
@I>

qlk3

@�
ql

=

0

@�1

2

nX

i=1

nX

j 6=i

�
ijql

1

A
2

TX

t=1

TX

t

0
=1

d

kt

d

>
kt

0

+1Z

�1

ehqlk⇡
qlkt

⇡
qlkt

0 dr
qlk

+

0

@�1

2

nX

i=1

nX

j 6=i

�
ijql

1

A
TX

t=1

d

kt

d

>
kt

+1Z

�1

ehqlk⇡
qlkt

(1� ⇡
qlkt

) dr
qlk

,

(5.16)

I

qlk6

=
@I

qlk3

@�2
ql

=
1

2�4
ql

0

@�1

2

nX

i=1

nX

j 6=i

�
ijql

1

A
TX

t=1

d

kt

+1Z

�1

ehqlkr2
qlk

⇡
qlkt

dr
qlk

. (5.17)

Taking the partial derivatives of the variational bound J (f⇤(z; ⌧ );↵,�,�2) (Eq.

(5.7)) with respect to �
ql

and �2
ql

, for an individual block (q, l), we can form a

score vector, U(�
ql

,�2
ql

) as a (P + 1) ⇥ 1 vector of first derivatives U(�
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) =
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))> whose equations are given as
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Similarly, the negative second order partial derivatives of the variational bound yield

the observed Fisher Information matrix I(�,�2), which appears in this model as a

block diagonal matrix whose overall dimension is (P +1)Q(Q+1)/2⇥ (P +1)Q(Q+

1)/2. In particular, each diagonal block element is noted as I(�
ql

,�2
ql

) and is a

(P + 1)⇥ (P + 1) matrix that can be represented as
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such that
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The estimates of �
ql

and �2
ql

can be found with the Newton-Raphson formula, so

that, for the (m)-th step, we have
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As discussed in Chapter 4 (see Eq. 4.45), the ICL criterion is derived from

log f(x, z|m
Q

) = log f(x|z,m
Q

)+ log f(z|m
Q

). The part of the ICL criterion which

depends on the log f(z|m
Q

) is the same as in Section 2.4.1. For the log f(x|z,m
Q

),

we use the BIC criterion. For this, we note that the total number of parameters

in � is Q(Q+1)

2

P and in �2 is Q(Q+1)

2

, and the total number of data points in x is
n(n�1)

2

KT . Finally, the ICL criterion of the Het-Mixed-SBM is defined as
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Note that we do not use any Firth-type regularisation here, due to additional

complexity related to the random e↵ect.

5.1.4 Estimation Algorithm

We propose an estimation algorithm that follows the same structure as the al-

gorithms described in Sections 4.1.2 and 4.1.3. Starting with some initial values

for ⌧ 0, we iteratively update the model parameters according to the two steps

1. (↵(h+1),�(h+1),�2

(h+1)

) = argmax
(↵,�,�

2
)


J (f⇤(z; ⌧ (h));↵,�,�2)

�
,

2. ⌧ (h+1) = argmax
⌧


J (f⇤(z; ⌧ );↵(h+1),�(h+1),�2

(h+1)

))

�
,

until the convergence is obtained. The convergence is measured by the relative

changes of the parameter estimates and the improvement of the variational bound.

104



In the first step, ↵ is updated according to Eq. (5.11) while the parameters (�,�2)

are updated according to the Newton-Raphson algorithm (Eq. (5.24)). In the second

step, ⌧ is updated according to Eq. (5.9).

The Newton-Raphson algorithm uses a näıve estimate of ⇡̂
ql

as starting values

for the intercept �
ql

(i.e. �̂
ql

= log(⇡̂
ql

/(1 � ⇡̂
ql

)). In particular, for a given block

element (i.e. block (q, l)), ⇡̂
ql

is the ratio of the sum of its observed edges across

the K subjects and T measurements and the total number of possible edges. The

starting values for �2 are based on the strategy outlined in Demidenko (2004) whose

objective is to estimate the random e↵ects r
qlk

and their sample variance, from which

we finally obtain the initial estimates of �2. The full details of this procedure can

be found in Appendix C.1.

At each step of the Newton-Raphson algorithm, we require a numerical ap-

proximation of the six integrals (Eq. (5.12)-(5.17)). In practice, such integrals can

be reasonably well estimated with the adaptive Gauss-Hermite quadrature approx-

imation (Lesa↵re and Spiessens, 2001; Liu and Pierce, 1994) whose implementation

in R is available via the function integrate (R Core Team, 2015; Piessens et al.,

1983). Although this computational strategy o↵ers relatively quick and accurate

approximations, in few examples, we encountered some instabilities and numerical

issues. First, some integrals were evaluated as zeros which caused the variational

bound to diverge to �1. The main reason for this was that the maximal value

attained by the function h
qlk

was very small (e.g., -1000), making the integrand

numerically equal to zero over the whole domain of integration. To fix this, we used

a reparametrisation such that the exponent h
qlk

is counterbalanced by a quantity

c
qlk

which corresponds to the maximum of h
qlk

, taken with respect to r
qlk

while the

values of �
ql

(m) and �2
ql

(m)

are assumed to be fixed. Thus, we have

c
qlk

= � max
rqlk2[�1000,+1000]

⇣
h
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(m),�2
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(m)

)
⌘
, (5.26)

and then each integral in the list I
qlk1

� I

qlk6

(see Eq. (5.12) - (5.17)) can be re-

parametrised in the following way: I
qlk1

= ecqlk
R
+1
�1 ehqlk�cqlkdr

qlk

. The details of

this reparametrisation can be found in Appendix C.2. Second, we noticed several

practical examples in which the function integrate would fail to provide satisfact-

ory estimates of the integrals. This typically occurs in scenarios when the integrand

is zero over most of its integration range and the quadrature approximation fails to

detect the range of values for which the contribution to the integral is non-zero. We

solved this issue by systematically reducing the range of integration. More precisely,

this was achieved by first detecting the value of r
qlk

corresponding to the maximum

of h
qlk

which is then used as the centre of the reduced interval of integration. Then,

starting by this value as unique point of integration, we iteratively increased the
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interval of integration by a value 1 in each direction with the stopping criterion that

the values of h
qlk

at the endpoints of the new interval were inferior to 10�10 times

the maximum value of h
qlk

. Noting that h
qlk

is a concave function, we were sure

that all the values outside the reduced interval of integration were also inferior to

10�10 times the maximum value of h
qlk

and hence negligible. We used the same

step-halving procedure described in Section 4.1.2 to facilitate the convergence of the

Newton-Raphson algorithm.

5.1.5 Inference

Similarly to the Het-SBM, we can use a Wald test or a likelihood ratio test to make

inference on a combination of the fixed e↵ects parameters and, as before, these

inferences are conditional on the block assignments. Since the Het-Mixed-SBM has

block-specific parameters, the inference procedures for a linear combination of the

fixed e↵ects (�
ql

) have the same form as the Het-SBM described in Section 4.2 and,

thus, we do not repeat them here. Note simply that the relevant Fisher’s Information

matrix for inference on �
ql

is given in Eq. (5.21).

5.2 Methodology of Simulation

In this simulation, we consider di↵erent number of subjects (K 2 {10, 20, 40}) with
two network sizes (n 2 {50, 100} nodes). In addition to this, we also consider two

scenarios of repeated measurements (or visits, T 2 {1, 3}) and we consider three

di↵erent variance values (�2 2 {0.5, 1, 2}) which are assumed to be constant across

the entire block structure. We also consider a single fixed e↵ect, that of age, induced

as 0 which is assumed to be homogeneous over the entire block structure. Due to the

increased computational burden, the case with 80 subjects was also considered, but

only on the networks with 50 and 100 nodes, �2 = 1 and T 2 {1, 3}. Binary network

edges are generated according to four di↵erent types of connectivity structures,

labelled PI3 & PI6-8 (see Figure 5.1). Similarly to the simulations settings described

in Section 4.3, we consider three proportion designs (Balanced, Mildly Unbalanced

and Unbalanced) which can be found in Table 4.1. In particular, we fix the total

number of blocks to be three (Q = 3) and order the sizes of each block so that

n
1

� n
2

� n
3

and we follow the same strategy as in Section 4.3 to identify the

model parameters. The comparison between the estimated clustering and the true

partition is carried out using the Adjusted Rand Index (ARI) discussed in Section

2.5 (Eq. (2.40)). For each combination of simulation parameters, we generated

S = 1000 networks and fit each with the Het-Mixed-SBM, where we use only one

restart for the algorithm and fix Q = 3.

The quality of parameter estimates is assessed with the root mean square
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Figure 5.1: Designs of connectivity structures. Each of four di↵erent cases
portraits various levels of homogeneity in cluster structures.

error (RMSE) and bias (Bias),
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where �(p)

ql

is the p-th element of vector �
ql

.

5.3 Simulation Results

In Figure 5.2 (a) and (b), we show the box plots of ARI scores for the two scen-

arios of repeated measurements (T 2 {1, 3}) and variance �2 = 1 over S = 1000

network realisations. We note that the Het-Mixed-SBM struggles to correctly es-

timate the cluster structure for PI3 and that this is particularly pronounced in the

cases with Mildly Unbalanced and Unbalanced designs, networks with 50 nodes and

samples with 10 & 20 subjects (see Figure 5.2 (a)). However, as shown in Figure

5.2 (b), with a larger number of visits (T = 3), the accuracy of cluster estimates is

improved. Similarly, for PI6 and PI7, the Unbalanced proportion design, networks

with 50 nodes and 10 subjects, the Het-Mixed-SBM struggles to correctly estimate

the cluster structure. However, the model improves the accuracy of the cluster es-

timates as the number of subjects increases and it tends to perform even better in

the samples with more visits (Figure 5.2 (b)). In Figure 5.3, we show the box plots
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(a) One visit and �
2
= 1

(b) Three visits and �
2
= 1

Figure 5.2: ARI scores over S = 1000 network realisations with increasing
number of subjects along the x-axis. The Het-Mixed-SBM fits are evaluated
with respect to (i) varying proportion designs (Balanced, Mildly Unbalanced and
Unbalanced, on each column), (ii) varying network sizes (n 2 {50, 100}) with no age
e↵ect (on each of the first three columns), and (iii) varying connectivity structures
(PI3 & PI6-8, on each row and plotting colour).

of ARI scores for di↵erent variance settings (�2 2 {0.5, 1, 2}), Unbalanced propor-

tion designs, one visit (T = 1) and varying subjects K 2 {10, 20, 40}. In the cases

with a small number of nodes and subjects, there seems to be some evidence that

the estimates of cluster structure are less accurate when the variance is larger (e.g.,

in the cases of PI7 & PI8 and their respective samples with 10 and 20 subjects).

However, in other examples (e.g., PI3, n = 50 and 20 subjects), this influence is less

apparent.

Next, in Figure 5.4 (a) and (b), we show the RMSE scores for the estimates

of ↵̂ for the cases of one and three visits and variance �2 = 1. For both visit
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Figure 5.3: ARI scores over S = 1000 network realisations with �

2 along
the x-axis. The Het-Mixed-SBM fits are evaluated with respect to the Unbalanced
proportion design, (i) varying network sizes (n 2 {50, 100}, on each of the first three
columns) with no age e↵ect, (ii) varying numbers of subjects (K 2 {10, 20, 40}, on
each of the first three columns), and (iii) varying connectivity structures (PI3 &
PI6-8, on each row and plotting colour).

counts, the RMSE scores seems to decrease with an increasing number of subjects

and an increasing number of nodes. This behaviour is consistent with the behaviour

reported in Section 4.4.1 (see Figure 4.4) and seems to be also linked with the overall

accuracy of the estimated cluster structure. For example, the cluster structure

estimates exhibit some degree of variability over 1000 realisations for PI3 and this is

captured in the RMSE scores that tend to be the largest. In Figure 5.5 (a) and (b),

we show the RMSE of the intercept estimates (�̂) in the cases of one and three visits,

and �2 = 1. The RMSE is generally smaller for PI8 than for the other connectivity

structures. This can be explained by the presence of a bias which occurs when the

Het-Mixed-SBM struggles to correctly estimate the cluster structure. As PI8 was

the least a↵ected by this (see Figure 5.3), it is not surprising that its RMSEs are

the lowest. It is also interesting to note that the RMSE is typically decreasing with

an increasing number of subjects. This can be simply explained by the decrease of

variance of �̂ with an increasing number of subjects. Note however that the variance

does not markedly change with either number of visits or number of nodes.

In Figure 5.6, we show the bias of �̂2 in the cases of one and three visits,

and �2 = 1. We clearly see that the estimates tend to have an appreciable negative

bias in small samples, which decreases with an increasing number of subjects.

In Figure 5.7, we show the FPR obtained using a Wald test on both the

intercepts and slopes, and in the cases of one and three visits, and �2 = 1. In small

samples, the Wald test is liberal, but becomes more accurate when the number of

subjects increases. Our simulations seem to suggest that a sample with 80 subjects
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(a) One visit and �
2
= 1

(b) Three visits and �
2
= 1

Figure 5.4: RMSE of ↵̂ whose individual block elements are given along
the x-axis. The RMSE scores are evaluated with respect to (i) varying proportion
designs (Mildly Unbalanced and Unbalanced, on each of the first four columns), (ii)
varying numbers of subjects (K 2 {10, 20, 40, 80}, on each of the first four columns),
(iii) varying network sizes (n 2 {50, 100}) with no age e↵ect (on each row), and (iv)
varying connectivity structures (PI3 & PI6-8, plotting symbols and colour).

is su�cient to allow a relatively accurate control of the FPR.
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(a) One visit and �
2
= 1

(b) Three visits and �
2
= 1

Figure 5.5: RMSE of �̂-intercepts whose individual block elements are
given along the x-axis. The RMSE scores are evaluated with respect to (i)
varying proportion designs (Mildly Unbalanced and Unbalanced, on each column),
(ii) varying numbers of subjects (K 2 {10, 20, 40, 80}, on each of the first four
columns), (iii) varying network sizes (n 2 {50, 100}) with no age e↵ect (on each
row), and (iv) varying connectivity structures (PI3 & PI6-8, plotting symbols and
colour). Note that, for clarity, the RMSE of �̂

33

in the first column and row of (i)
is not shown and its value is 2.74.
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(a) One visit and �
2
= 1

(b) Three visits and �
2
= 1

Figure 5.6: Bias of �̂2 whose individual block elements are given along
the x-axis. The bias scores are evaluated with respect to (i) varying proportion
designs (Mildly Unbalanced and Unbalanced, on each column), (ii) varying numbers
of subjects (K 2 {10, 20, 40, 80}, on each of the first four columns), (iii) varying
network sizes (n 2 {50, 100}) with no age e↵ect (on each row), and (iv) varying
connectivity structures (PI3 & PI6-8, plotting symbols and colour).
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(a) Intercept for three visits and �
2
= 1

(b) Slope for three visits and �
2
= 1

Figure 5.7: False Positive Rates (FPR) at 5% significance level for the Wald
test on each element of �̂, whose individual block elements are given along
the x-axis. The FPR scores are evaluated with respect to (i) varying proportion
designs (Mildly Unbalanced and Unbalanced, on each column), (ii) varying numbers
of subjects (K 2 {10, 20, 40, 80}, on each of the first four columns), (iii) varying
network sizes (n 2 {50, 100}) with no age e↵ect (on each row), and (iv) varying
connectivity structures (PI3 & PI6-8, plotting symbols and colour).
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5.4 Het-Mixed-SBM Fit to Multi-subject Functional Con-

nectivity fMRI Data

We fit the Het-Mixed-SBM to the same data considered in the previous chapter,

Section 4.5. Specifically, we compare resting state fMRI connectivity in 13 healthy

controls (Controls) to 12 patients with schizophrenia (Patients). The Het-Mixed-

SBM estimates a multi-subject network decomposition with 22 blocks. In Figure 5.8,

we show the spatial location of each node and its corresponding block assignment.

Similarly, to Section 4.6, the blocks are further organised into panels (Panel A-

F) and matched against the Intrinsic Connectivity Networks (ICNs) assignments

(see Section 4.5.1). The individual panels in Figure 5.8 indicate that the estimated

cluster structure accounted reasonably well for the spatial information in the brain.

To work out the approximate functional labels of the individual blocks, we contrast

Panel A Panel B Panel C

Block 12 � ICN 1 Block 4 � ICN 6 Block 5 � ICN 11
Block 1 � ICN 2 Block 9 � ICN 6 Block 14 � ICN 12
Block 2 � ICN 2 Block 11 � ICN 7 Block 16 � ICN 12
Block 13 � ICN 2 Block 6 � ICN 10
Block 15 � ICN 5
Block 19 � ICN 5

Panel D Panel E Panel F

Block 3 � ICN 13 Block 18 � ICN 14 Block 8 � ICN 17
Block 21 � ICN 13 Block 10 � ICN 15 Block 17 � ICN 18

Block 7 � ICN 16 Block 20 � ICN 20
Block 22 � ICN 16

Table 5.1: Correspondence between the Intrinsic Connectivity Networks
(ICNs) published in Laird et al. (2011) and the 22 blocks estimated by
the Het-Mixed-SBM.

their nodes against the Intrinsic Connectivity Networks maps reported in Laird

et al. (2011) (see Table 5.1). Below, we describe the functional characteristics of

each block.

Panel A: The nodes in Block 12, 1, 2 and 13 are predominately associated with

the networks ICN 1 & 2 that are linked to emotional and autonomic processes.

About 67 % of the nodes in Block 12 are linked to the visual recognition of

emotions like fear, anger, happiness or humour, while all the nodes in Block

1 & 2, and 42% of the nodes in Block 13 are associated with the networks

implicated in olfaction and gustation. About 57% of the nodes in Block 15
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Figure 5.8: Anatomical locations of individual nodes in the blocks, shown
in terms of panels (Panel A-F).The plots were generated using the Matlab’s
BrainNet toolbox (Xia et al., 2013) (http://www.nitrc.org, last accessed on the
12th of September 2015).

are located in the midbrain and are linked to autonomic processes that re-

flect responses to internal stimuli (e.g., headache and stomach aches). Finally,

Block 19 has only one node (Right Cerebellar Tonsil) and it is linked to auto-

nomic processes related to breathing. Thus, we will broadly label this panel
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as ‘autonomic and visual’ processes.

Panel B: About 44 % of the nodes in Block 4 and 31 % of the nodes in Block 9 are

associated with ICN 6 which is located in the superior frontal gyrus and the

middle frontal gyrus. These areas are linked to cognitive processes that include

working memory, reasoning and problem solving. About 86% of the nodes in

Block 11 are linked to ICN 7 which is located in the middle frontal gyrus

and superior parietal lobules. This network is linked to cognitive processes

that include visuospatial processing and reasoning. Finally, about 34% of the

nodes in Block 6 are associated with ICN 10 which is located in the middle

and inferior temporal gyri. This network is activated by viewing complex

and emotional stimuli, as well as visual tracking of moving objects. As most

of the areas in this panel are involved in functions related to the motor and

visuospatial integration, coordination, and execution, we will broadly label

this panel as ‘motor and visual’ processing.

Panel C: About 82 % of the nodes in Block 5 are linked to ICN 11 while 72% of

nodes in Block 14 and 36% of nodes in Block 16 are linked to ICN 12. These

two networks are located in the lateral and medial posterior occipital cortices

and are linked to higher visual processes concerned with recognition of objects

(ICN 11) as well as responses to simple visual stimuli (ICN 12). Thus, we will

broadly label this panel as ‘higher visual processes’.

Panel D: About 78% of the nodes in Block 3 and 37% of the nodes in Block 21 are

linked to ICN 13 which represent the ‘Default Mode Network’. In particular,

the Default Mode Network is associated with the theory of mind which allows

one to assign thought, desires and attentions to others and to explain or predict

their actions.

Panel E: The majority of the nodes (91%) in Block 18 are linked to ICN 14 (located

in the cerebellum) that is associated with a distributed range of sensorimotor,

autonomic and cognitive functions. Approximatively 36% of the nodes in Block

10 are linked to ICN 15 which is associated with several cognitive processes,

including reasoning, attention, inhibition, and memory. Next, about 63% of

the nodes in Block 7 and 36% of the nodes in Block 22 correspond to ICN 16

which is mostly linked to functions related to audition and speech. Thus, we

will broadly label this panel as ‘audition and speech’.

Panel F: Finally, 67% of the nodes in Block 8 correspond to ICN 17 which includes

primary sensorimotor cortices for mouth. It is associated with actions corres-

ponding to speech and chewing/swallowing. A relatively small proportion of

the nodes in Block 18 (38%) and in Block 20 (38%) are linked to ICN 18 &
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20. In particular, ICN 18 is linked to language tasks while ICN 20 is linked to

artefacts. Thus, we will label this panel as ‘speech and language’.

It is also interesting to note that both of the cluster structures estimated

by the Het-SBM (see Section 4.6) and the Het-Mixed-SBM show a very high level

of mutual similarity (ARI score of 0.81). As indicated by Figure 5.9, relatively

large portions of the cluster structure are simultaneously captured by both fits. In

particular, both fits estimated the same mono-node (or a single node) block which

contains the Right Cerebellar Tonsil.

Figure 5.9: Correspondence between the fits of the Het-SBM and Het-
Mixed-SBM. The strands of the alluvial diagram show each block of the Het-SBM
fit (on the left) and how these merge and split to form the blocks of the Het-Mixed-
SBM fit (on the right). The strands of the alluvial diagram are colour coded in
terms of their respective panels (Panel A-F). Large portions of the cluster structure
are similar between the two fits and both fits estimated a mono-node block (Block
20 in the Het-SBM & Block 19 in the Het-Mixed-SBM).

117



5.4.1 Inference

In Figure 5.10 (a) and (b), we show the estimated intercept values for the Control

and Patient groups. The values are expressed as probabilities and denote the within-

block or the between-block connection rates and the blocks are further organised in

terms of panels A-F. A visual inspection of Figure 5.10 seems to suggest that the

cluster structure in the Patient group (b) exhibits much weaker connection rates

than the Control group (a). However, to gauge the extent of their di↵erences,

we make some inferences on di↵erences between the intercepts of the Patients vs.

Controls.
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(a) Controls
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(b) Patients

Figure 5.10: Estimated within/between block connectivity rates for the
Het-Mixed-SBM fit. Individual block labels are shown on (x� y) axis and each
block cell is demarcated by a grey line. The blocks are further aggregated into 6
panels, labelled A-F, which are visually separated by black lines. Largely similar
patterns of connectivity are found in each population, though patients appear to
have generally lower connection densities.

We note that our simulation indicates a danger of inflated false positive

risk for a fixed e↵ect for fewer than 60 subjects. Thus, with only 25 subjects in

this analysis, we o↵er only tentative interpretation of the p-value computed. In

Figure 5.11, we show the Wald test score image thresholded using a two-sided False

Discovery Rate (FDR) method at 5% significance level. Overall, we can observe that

the connection rates are significantly decreased in Patients compared to Controls

and this is mainly captured in the relationships between the blocks rather than

within-blocks. For example, a decreased connectivity is noted between Blocks 1

& 2 (emotional and autonomic processes) and all blocks in Panel B (motor and

visual processing), the majority of the blocks in Panel C (higher visual processes),
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Figure 5.11: Two-sided FDR thresholded (5%) Wald score image of the
intercept di↵erences between Patients vs. Controls, interpretable as the
Patient-Control di↵erence in (logit-scale) connectivity rates at mean age,
IQ and motion (33.32 years, 113.06 NART and 7.40 mm). An increasing
e↵ect is shown in red and a decreasing e↵ect is shown in blue.

all blocks in Panel D (Default Mode Network), some blocks in Panel E (audition

and speech) and almost all blocks in Panel F (speech and language). Similarly, a

decreased connectivity is observed in the blocks comprising Panel B, as well as in

their links to the Default Mode Network (Block 3 & 4), Block 7 in Panel E (audition

and speech), and Block 8 in Panel F (speech and language). It is also interesting to

note that the nodes in the Default Mode Network do not show significant di↵erences

between the two populations, however, a significant decrease of connectivity is noted

between the Default Mode Network and the nodes in Block 8 (actions corresponding

to speech). However, some significant results also suggest an increased connectivity
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in Patients relative to Controls, for example, mono-node Block 19 (Right Cerebellar

Tonsil) and its connections to Block 12 (emotional and autonomic processes) and

Block 22 (audition and speech).
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Figure 5.12: Two-sided FDR thresholded (5%) Wald score image of the
common age e↵ect. A decreasing e↵ect is shown in blue.

In contrast to the Het-SBM inference results (see Figure 4.16) where almost

the entire cluster structure tested significantly di↵erent in Patients vs. Controls,

in the case of the Het-Mixed-SBM a much smaller number of significant results

is present. It is also interesting to note that no results were significant after a

Bonferroni correction to control the FWE. This is either attributable to small-sample

conservativeness, a decreased detection sensitivity with between-subject variance

now explicitly modelled, or both.

In Figure 5.12, we show the two-sided FDR thresholded (5%) Wald score

image of the common age e↵ect. Overall significant results suggest a decrease of
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connectivity with an increase of age. This is especially evident for connections

from Block 12 to Block 4 & 18, Block 1 to Block 9, Block 15 to Block 22 & 8.

In particular, connections from Block 18 (sensorimotor, autonomic and cognitive

functions) to Block 4 (working memory, reasoning and problem solving), 21 (Default

Mode Network) and 8 (speech and language) show a decrease of connectivity with

age.
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5.5 Discussion

In this chapter, we proposed a novel multi-subject model, termed the Het-Mixed-

SBM, which can be used for the analysis of multi-subject binary network data,

allowing for random subject e↵ects. As noted previously in the introductory sec-

tion, this type of data may arise as a result of repeated networks per subject or

simply dependences between the edges within-subjects not otherwise accounted for

by covariates. In the real data analysis, the Het-Mixed-SBM estimated a very sim-

ilar cluster structure as the Het-SBM (see Section 4.6). However, the di↵erences

between the two models are mainly reflected in their inference results, where the

Het-Mixed-SBM detected a much smaller number of significant results than the

Het-SBM. Although our simulation results showed that the Wald test for the Het-

Mixed-SBM tend be liberal in small samples, the results of our analysis seem to

suggest that much of the detected e↵ect in the Het-SBM real data inference may

be attributed to the dependencies in the data which were not accounted for by the

model. Thus, it seems that the Het-Mixed-SBM may be a more appropriate model

for this type of data. Nevertheless, more work is needed to investigate the behaviour

of other tests, including the likelihood ratio and permutation tests.

One limitation of this work is that our simulations did not investigate the

quality of the Het-Mixed-SBM parameter estimates in very challenging cases, for

example, (i) when connection rates approach 0 or 1, and (ii) when a covariate has a

heterogeneous impact onto a cluster structure, such as di↵erent e↵ect sizes or dir-

ections per each block. In the context of example (i), it would be also interesting

to compare the estimates between the Ordinary and Firth MLEs. However, it is

important to note that the exact form of Firth adjustment used in the Het-SBM

would not be appropriate for the Het-Mixed-SBM because it would have introduced

a severe shrinkage to the variance estimate �̂2 (Firth, 1993). This shrinkage would

likely have persevered even if the Fisher Information matrix was simplified by set-

ting the fixed-random o↵-diagonal blocks to zero. As pointed out by Firth (1993),

the appropriate regularisation term for generalised linear mixed models is based on

the expected Fisher Information matrix, but this would necessitate an even more

computationally involved procedures than the current Het-Mixed-SBM implement-

ation. To our knowledge there is very little in the literature on the logistic mixed

e↵ects models and Firth type estimates. Recently, Claassen (2014) considered the

practical aspects and the advantages of using Firth adjusted estimates. Therein,

using a very simple logistic mixed e↵ects model, comprised of one intercept and one

random e↵ect, she demonstrated that the Firth adjusted variance components are

substantially less biased than those estimated by the Ordinary MLE approach and

that this leads to more accurate inferences. However, more analysis is needed to

formally assess how these findings would scale to our applications, where we have
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a more complex logistic mixed e↵ects model than the model considered in Claassen

(2014), as well as already computationally involved estimation procedures. Indeed,

the current implementation of the Het-Mixed-SBM has particularly slow computa-

tional times due to the estimation of ⌧ and its numerous evaluations of the integrals

I
iqlk

(see Eq. (5.10)) whose total number scales with the number of nodes in the

network.

Finally, as part of our future work, we will also consider a useful simplifica-

tion of our model that may speed up computation while accounting for subject-level

randomness. Specifically, a model that combines ‘homogeneous random e↵ects’ (per-

subject random intercepts common to the entire network) with ‘heterogeneous fixed

e↵ects’ regression for each block element. We expect this model to have similar clus-

tering potential as the Het-Mixed-SBM with much reduced computational burden.
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CHAPTER 6

Conclusions and Future Work

This work has been motivated by the immense interest neuroscientists have shown in

modelling brain networks. However, much of the methods for this work has consisted

of network summary statistics that are not rooted in statistical models. To address

these issues and to facilitate a methodological framework in which neuroimaging re-

searchers can carry out multi-subject network analyses, this thesis proposed various

extensions of a SBM that may be suitable for such neuroscientific applications. One

particularly important aspect of the proposed models is that they allow for inference

procedures on the block level parameters which may be particularly useful in studies

that aim to detect topological abnormalities between the brains in a state of health

and pathology. In the reminder of this chapter, we first give a brief summary of this

thesis and then discuss relevant points which place this work in a wider context.

In Chapter 3, we used the neuronal network of C. elegans to compare cluster

estimates based on the SBM, and the Fast Louvain and Spectral algorithms. We

used the C. elegans network data for this task since its nodes (neurons) and edges

have additional biological information which could be used to validate resulting

cluster estimates. Our results showed that the ‘cores-in-modules’ decomposition of

the SBM (comprising 9 blocks) was more compatible with prior biological inform-

ation about the C. elegans than the modular decompositions found by the Fast

Louvain and Spectral algorithms (comprising 5 and 4 modules respectively). These

results also seem to suggest that a more plausible topological organisation of the C.

elegans is that of a strongly connected core and a weakly connected periphery than

a purely modular topological organisation. The SBM fit also provided a reasonable

approximation of the network’s observed degree distribution but it underestimated

the network’s empirical clustering coe�cient.
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In Chapter 4, we focused on the extensions of the SBMs which can be used for

joint multi-subject network analysis. In particular, the two non-trivial multi-subject

SBMs, the Hom-SBM and Het-SBM, capitalise on a logistic regression model which

allows for an interaction between subject specific covariates and the block structure.

The Hom-SBM assumes a ‘homogeneous’ regression model, where covariates exert

a common influence over all block structure elements, while the Het-SBM is ‘het-

erogeneous’, having a regression for each block element. Parameter estimation for

these models, can be based on the Ordinary and Firth MLEs and, in most scen-

arios, there are no striking di↵erences between the two approaches. However, in the

situations where the block connectivity rates approach 0 or 1, the Firth MLEs are

preferable to the Ordinary MLEs as they tend to be the least biased. In terms of

the inference, we investigated a series of issues including the accuracy of the Wald,

likelihood ratio and permutation tests. Our analysis showed that the Wald test ten-

ded to be conservative for the Ordinary MLEs and liberal for the Firth MLEs, and

that the likelihood ratio test is more preferable for the Firth MLEs, than the Wald

test. In the real data analysis, the Het-SBM fit estimated a cluster structure with

24 blocks and found that the patients diagnosed with schizophrenia showed overall

weaker rates of connections than the healthy controls. While our results showed

a decreased connectivity in the Default Mode Network for the Patient group, a

stronger di↵erence seems to be noted in the way Default Mode Network connects

to the nodes linked to motor & visual processes, and speech & language. In partic-

ular, these connections rates seems to be much weaker in the Patient than in the

Control group. However, more analysis is needed to rigorously investigate this on

other datasets.

In Chapter 5, we considered extensions of the SBMs that explicitly account

for intra-subject correlation. When there is only one network per subject, this model

can be useful if there is an excess of subject-level variation (i.e. not fully accounted

for by covariates). When there are multiple networks per subject, e.g., as part of a

‘repeated measures’ design, this model is essential. The proposed Het-Mixed-SBM

combines the classical SBM with a logistic mixed e↵ect model with ‘heterogeneous’

block e↵ects and per subject random intercepts. In the Monte Carlo simulations, the

Het-Mixed-SBM showed a relatively satisfactory estimation of the cluster structure

and its performance was very similar to the Het-SBM. However, the Het-Mixed-

SBM showed poor small sample behaviour and, thus, we require generally larger

datasets to attain accurate inferences.

Nevertheless, the Het-Mixed-SBM may bring new insights into the network

organisations as it can estimate a common cluster structure while controlling for

within-subject sources of variations. In the real data analysis, we illustrated this

model on data with one network per subject. However, it would be also interesting
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to apply this model to datasets with a larger number of subjects, where in addition

each subject has several measurements. For example, the connectivity data shared

by the Human Connectome Project (HCP) is particularly appealing as it o↵ers high

quality multi-subject data involving up to 1200 subjects and repeated measurements

which pertain to di↵erent imaging modalities, including fMRI and DTI scans. In

addition, there is extensive information on each subject, including their age, gender,

intelligence quotient (IQ) and various family history and environmental factors. We

expect that the application of the Het-Mixed-SBM will o↵er some interesting in-

sights into the networks’ organisation across di↵erent connectivity types (structural

and functional) and disease states. Also, as indicated by our simulation results in

Chapter 5, for such a large sample of subjects, we could expect accurate inferences.

In connection to the Het-Mixed-SBM, we would also like to develop models

with additional random e↵ects that would be nested within subjects. Indeed, with

only a random intercept per subject, the model assumes a unique level of dependence

between all the nodes within each block and each subject, even if they pertain to

di↵erent networks. However, when we have multiple networks per subject, it seems

more realistic to assume that, within each subject, we have two di↵erent levels of

dependence, one within a network at measurement t, and the other between the

T multiple of networks. Thus, to account for this situation more realistically, we

could include a random intercept per network in addition to the random intercept

per subject. Note that, even if this model appears to be more flexible, it might not

be rich enough to model more complicated levels of dependence that can occur, for

example, in longitudinal studies. Indeed, in such studies, the dependence between

two networks from the same subject may also depend on the elapsed time between

their measurements. In such cases, it would be also useful to include a random e↵ect

of time per subject.

The class of SBMs and their various multi-subject extensions considered in

this thesis are expected to be very useful tools in the analysis of brain networks as

well as other types of applications that are broadly related to brain parcellations.

For example, the study of Johansen-Berg et al. (2004) established ideas for parcella-

tion based on structural connectivity, where the individual voxels are grouped into

clusters with homogeneous connectivity profiles and similar ideas were explored in

the domain of functional connectivity analysis. We acknowledge that our multi-

subject SBMs are based on ‘binary connectivity data’ and, as such, may not be

appropriate for researchers who prefer to work directly with correlations (Smith

et al., 2009) or weighted network data. Nevertheless, given the general outline of

this work, adapting the multi-subject SBMs for such kind of data would be an

important direction to pursue.

All multi-subject SBMs considered in this thesis, use parameter estimation
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procedures that are based on a variational approximation. However, although the

variational approximation tends to show promising results in practice, it is still im-

portant to highlight some theoretical concerns which are yet to be resolved. First,

we still do not have a full understanding of the asymptotic behaviour of the MLEs

based on the marginal likelihood and, second, as the variational bound approximates

the behaviour of such MLEs, it would be desirable to have a set of su�cient condi-

tions which would guarantee similar properties between the variational and marginal

MLEs. With regards to the first point, some interesting findings were presented in

the article of Ambroise and Matias (2012) who showed that, under the assumption of

a modular or a disassortative cluster structure (termed ‘a�liation structure’) which

are also assumed to be fully specified by two parameters, the estimators based on

a method of moments as well as the estimators based on the optimisation of three-

variate composite likelihoods are consistent and
p
n-convergent. The motivation for

the use of three-variate composite likelihoods comes from the fact that the mixture

components are identifiable for three-variate Bernoulli variables (X
ij

, X
ik

, X
jk

), but

not for the univariate Bernoulli variables (X
ij

). In particular, both of these ap-

proaches o↵er some interesting applications that may be particularly relevant in

the analysis of networks with a large number of nodes. In the contexts of brain

connectivity analysis, such datasets typically arise in the animal studies that focus

on the connections between neuronal elements on a small scale and these networks

tend to have about 6000 nodes. In such cases, the researchers so far would have very

limited methodological options that would be mostly based on modular algorithms.

Therefore, it would be interesting to see how these two approaches compare to the

results from the modular algorithms and if these two approaches identify a modular

structure as well.

The work presented in this thesis relied upon the assumption that each node

in a network can only belong to one block, that is, that the estimated blocks are

disjoint. However, such assumptions may reveal only the coarsest views of the net-

work’s functional specialisation because the nodes rarely facilitate only one function

and instead they tend to be involved in several functions. Therefore, it seems to

be more plausible to expect that an overlapping cluster structure might be more

representative of the network’s overall functions. Motivated by this, the article of

Latouche et al. (2011) proposed an overlapping SBM in the context of a single net-

work. The key assumption, which separates this model from the classical SBM, is

that the nodes are allocated into Q blocks according to the Bernoulli distribution

rather than the Categorical distribution. In particular, this ensures that some nodes

are allocated into several blocks, but, also, that some nodes are excluded from the

overall cluster structure. The block connection rates are modelled through a se-

quence of interactions terms which account for various types of cluster structures,
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and the estimation procedure is based upon two levels of variational approximation.

As a part of our future work, we will consider the ways in which an edge-based

covariates can be incorporated in this model and used as a source of additional

clustering information.

128



APPENDIX A

Background

A.1 Lower Bound of the Stochastic Blockmodel

We note that E(Z
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the SBM can be explicitly derived as
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A.2 Factorisation of the Integrated Classification Like-

lihood

If the prior of the model parameters can be factorised, so that p(⇡,↵|m
Q
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where ⇧,A are parameter spaces for ⇡ and ↵ for a particular Q.

A.3 Likelihood of Mixing Proportions

Assuming that the prior of ↵ is Dirichlet D(�, . . . , �), we consider
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1
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A.4 Stirling’s Approximation

Given large values of n
q

, Stirling’s formula approximates Gamma function,

�(n
q

+ 1) ⇡
p
(2⇡)n

nq+
1
2
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e�nq . (A.3)

Starting from
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], (A.4)

we apply Eq. (A.3), and we drop order one terms (note that Q is assumed to

be of smaller order than n) and we also make use of the fact that log
⇥
n
q

� 1

2

⇤
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asymptotically equivalent to log[n
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] and the same is true for log
h
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i
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is asymptotically equivalent to log[n],
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Notice that MLE of log f(z|m
Q
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and, therefore, ↵̂
q

=
nq

n

.

A.5 Clustering Coe�cient in the Stochastic Blockmodel

As noted in Section 2.2 clustering coe�cient is defined as the proportion of the

prevalence of fully connected triplets of nodes among the set of triplets that have at

least two connections. Mathematically this can be noted as
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P
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,

and this can be simply expressed as the probability of seeing three nodes connected

given that the two of these nodes are already connected,

P(X
ij

X
jk

X
ik

= 1|X
ij

X
ik

= 1) =
P(X

ij

X
jk

X
ik

= 1)

P(X
ij

X
ik

= 1)
,

=

P
Q

q,l,s

P(X
ij

X
jk

X
ik

= 1, Z
iq

= 1, Z
jl

= 1, Z
ks

= 1)
P

Q

q,l,s

P(X
ij

X
ik

= 1, Z
iq

= 1, Z
jl

= 1, Z
ks

= 1)
,

=

P
Q

q,l,s

P(X
ij

= 1, X
jk

= 1, X
ik

= 1, Z
iq

= 1, Z
jl

= 1, Z
ks

= 1)
P

Q

q,l,s

P(X
ij

= 1, X
ik

= 1, Z
iq

= 1, Z
jl

= 1, Z
ks

= 1)
,

=

P
Q

q,l,s

↵̂
q

↵̂
l

↵̂
s

⇡̂
ql

⇡̂
qs

⇡̂
ls

P
Q

q,l,s

↵̂
q

↵̂
l

↵̂
s

⇡̂
ql

⇡̂
qs

= Ĉ,

A.6 Errata for the Stochastic Blockmodel of Zanghi,

Volant and Ambroise

This model retains the complete structure of the SBM described in Section 2.4.1,

but introduces the nodal features as a n ⇥ P matrix of random variables Y such

that the features pertaining to a node V
i

are distributed according to Multivariate

Normal density,

Y

i

|Z
iq

= 1 ⇠ MVN(µ
q

,⌃
q

), (A.7)

4



where µ

q

= (µ
q1

, . . . , µ
qP

) is the vector of population means related to block (q, q)

and the variance ⌃
q

, is P ⇥P diagonal matrix related to block (q, q). The complete

data likelihood of this model can be written as

log f(x, z,y;⇡,↵,µ,⌃) = log f(x|z;⇡) + log f(y|z;µ,⌃) + log f(z;↵). (A.8)

It is worth mentioning that the details related to the variance component in the

original work are di�cult to interpret due to numerous typographical and notational

inconsistencies. In that regard, we could think of two intended formulations for

which we give corrected equations. First, ⌃
q

= �2I in which case the updating

equations are
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(A.11)

and the ICL criterion is given as
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Second, ⌃
q

= �2
q

I and in this case µ̂
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is the same as in the first scenario and
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(A.14)

and the ICL criterion is given as

ICL(m
Q

) = log f(x,y, ẑ|m
Q

, ⇡̂, ↵̂, µ̂, ⌃̂)

� 1

2

Q(Q+ 1)

2
log


n(n� 1)

2

�
� Q� 1

2
log[n]� 1

2
(Q(P + 1)) log[nP ]. (A.15)

Note that, for both cases, the point estimating equations for ↵ and ⇡ are the same as

in the SBM Eq. (2.23) and (2.24). It is also worth highlighting that, in the original

work, the ICL criterion is inconsistent with the formulation of the model and it

5



seems to reward for the complexity of a model rather than penalise it. This is also

corroborated by many inconsistencies, including the fact that there is nP number

of data points in y rather than n(n� 1)/2 as stated in the original publication.
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APPENDIX B

Generalised Linear Stochastic Blockmodelling and Inference in

Multi-subject Networks

B.1 Additional Results for the Simulation II

In this section, we provide full details of the simulation results based on PI9 con-

nectivity matrix. In Figures B.1 and B.2, we report the bias of the intercept and

slope. In most cases, the Ordinary and Firth MLEs tend to be similar, but in the

cases with smaller block sizes and a smaller number of subjects the Ordinary MLE

tends to be severely biased while the Firth MLE is almost unbiased. This is espe-

cially striking in the cases with 30 nodes, three subjects and all three proportion

designs. The quality of the Ordinary MLEs seem to improve with increasing blocks

sizes and number of subjects. Next, in Figures B.3 and B.4, we show the FPR

rates of the intercepts for the Wald and likelihood ratio test based on the Ordinary

and Firth MLEs. The Wald test based on the Ordinary MLEs is mostly conser-

vative with the exception of the cases with 30 nodes, three subjects and Balanced

proportion design (see also Figure B.5 & B.8 for its variance bias and power). In

contrast, the Wald test based on the Firth MLEs is mostly liberal in small samples

(e.g., networks with 30 and 50 nodes) but in other cases shows similar behaviour

as the Ordinary MLEs. However, the likelihood ratio test based on the Ordinary

MLEs (see Figure B.4) seems to be either liberal or conservative in small samples

while the Firth MLEs tend to be liberal. These results seems to suggest that for the

Firth MLEs the likelihood ratio test is preferable to the Wald test. The Ordinary

and Firth MLEs are very similar for the slope estimates in the Wald test, but the

Firth MLEs are conservative in the likelihood ratio test while the Ordinary MLEs

are liberal (see Figures B.6 and B.7).
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Figure B.8: Power at 5% significance level of �̂
ql

-intercepts in the Het-
SBM for the Ordinary and Firth ML estimates obtained with Wald tests.
Between/within block slope values are displayed along the x-axis and correspond to
the data simulated from PI9 connectivity matrix. The power values are evaluated
with respect to varying (i) proportion designs (Mildly Unbalanced by columns),
(ii) number of subjects (by columns), and (iii) network sizes (n 2 {30, 50, 100, 500}
nodes by rows). In the cases with the smallest samples, the power of the Wald test
on the Ordinary estimates is significantly lower than for the Firth estimates.
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APPENDIX C

Generalised Linear Mixed Stochastic Blockmodelling and Inference

in Multi-subject Networks

C.1 Starting Values for Variance of the Random E↵ects

In this section, we describe a procedure for obtaining the initial values of the �2.

The goal is to first obtain the estimate of random e↵ects or deviation of a subject

specific intercept from the population intercept and then estimate their variances

and then finally construct the initial value estimates of �2. For the k-th subject

and the (q, l)-th block, the goal is to maximise h
qlk

with respect to r
qlk

. Dropping

the terms which depend on �2
ql

, we have
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Taking the derivatives with respect to r
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, gives U(r
qlk

)
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and setting U(r
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) = 0, we get
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Using substitution !
qlk

= erqlk , we obtain the
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and taking derivatives with respect to !
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gives
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Estimate of !
qlk

are found via Newton-Raphson updating equations
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For the starting point !0

qlk

, we take advantage of the relationship between arithmetic

and harmonic mean, so that
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Substituting (C.7) in (C.4) we can estimate starting point !0
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For the solution of Newton-Raphson step !
(⇤)
qlk

, we take the transformation r
qlk

=

log(!(⇤)
qlk

). After obtaining estimate for every subject k, we get a sequence {u
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, . . . , r
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}.
Then the goal is to use this sequence to estimate �2
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and finally the estimate of a starting point is
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C.2 Reparametrisation of the Integrals in the Het-Mixed-

SBM

As mentioned in Chapter 5, when h
qlk

assumes a small value (e.g., h
qlk

= �1000) the

integrals I
qlk1

� I
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vanish and, consequently, the likelihood diverges to �1. To

treat this point of numerical instability, we add an o↵set value c
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to the exponent
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. In particular, this o↵set value is chosen to be the maximum of h
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, taken with

respect to r
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, while iterative values of �
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are assumed to be fixed.

Thus, we have
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Using this, we can now write the integral
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Next, we state the list of all integrals Ic
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Equations for the score vector U(�
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As mentioned in Chapter 5, the Fisher Information matrix I(�,�2) is a block

diagonal matrix, whose overall dimension is (P +1)Q(Q+1)/2⇥ (P +1)Q(Q+1)/2.

In particular, an individual block component noted as I(�
ql

,�2
ql
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such that
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P. Erdős. Some remarks on the theory of graphs. Bull. Amer. Math. Soc, 53:292–294,

1947.
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