
Global consensus Monte Carlo

For problems involving large data sets, it may be convenient or

necessary to partition the data across multiple cores or machines.

Consider a target density given by

π(z) ∝ µ(z)
b∏
j=1

fj(z)

where fj is computable on the jth machine, and depends on yj , the

jth subset of the data. We wish to generate samples distributed

according to π.

Existing approaches include:

• Scott et al. (2016), who propose running one MCMC chain
on each computing node, with target densities proportional

to µ(z)1/bfj(z). The samples are combined in a way that

implicitly assumes approximate Gaussianity.

• Xu et al. (2014), who approximate each fj by a density from
an exponential family.

We propose a novel procedure, motivated by the global variable

consensus optimisation algorithm of Boyd et al. (2011), itself

based upon ideas of Bertsekas and Tsitsiklis (1989).
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Introduction

The instrumental model
We introduce an instrumental hierarchical model by associating a

local ‘proxy’ variable xj with each subset of the data, and intro-

ducing a top-level parameter λ (see DAG, above right).

Specifically, on an extended state space we define

πλ(z, x1:b) ∝ µ(z)

b∏
j=1

Kλ(z, xj)fj(xj),

where {Kλ : λ > 0} is a family of Markov transition densities.

Assume that fj is bounded, and that
∫
Kλ(z, x)fj(x)dx → fj(z)

pointwise as λ→ 0. Then the z-marginal of πλ converges in total

variation to π, so that for bounded functions ϕ,∫
ϕ(z)πλ(z)dz →

∫
ϕ(z)π(z)dz.

We look to generate samples distributed according to the artificial

joint distribution πλ; for λ sufficiently close to 0, the z-marginal

forms an approximation to the true target distribution.

For given λ, a πλ-reversible Markov chain is obtained by considering

the full conditional densities:

πλ(z | x1:b) ∝ µ(z)
b∏
j=1

Kλ(z, xj),

πλ(xj | z) ∝ Kλ(z, xj)fj(xj).

A two-variable Gibbs sampler may be constructed, where the two

variables are z and x1:b. In distributed settings, the drawing of a

new x ′j ∼ πλ(· | z) may occur on the jth computing node; the
new values x ′1:b may then be sent to a central node, in order to

draw a new z ′ ∼ πλ(· | x ′1:b).

Gibbs sampler

Binary logistic regression models are commonly used with A/B

testing data – in web design for example, to determine which

content choices lead to maximised user interaction (such as the

user clicking on a link to a product for sale).

• Data set formed of responses ηi ∈ {−1, 1} and vectors
ξi of binary covariates (originally belonging to {0, 1}d , but
centred in a pre-processing step). The data are split into b

subsets; fj(z) =
∏
i σ(ηiz

Tξi), where the product is taken

over those indices i included in the jth data subset, and σ

is the logistic function.

• We use a zero-mean normal prior µ.

• For our algorithm, we use normal transition kernels:
Kλ(z, x) = N (x ; z, λ).

We compare our algorithm (GCMC) with the consensus Monte

Carlo algorithm (CMC) proposed by Scott et al. (2016). We aim

to estimate the posterior mean
∫
zπ(z)dz .

We demonstrate on a simple data set with d = 6 covariates, split

into b = 8 subsets, each comprising 512 data. We use various

choices of λ for GCMC.
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SMC sampler
The parameter λ may be chosen to balance

computational tractability with fidelity to the true model, in a form

of bias–variance tradeoff. When λ is close to 0, MCMC chains

targeting πλ(z, x1:b) may mix poorly.

To this end, one may approximate a sequence of distributions

πλ0, πλ1, . . . using an SMC sampler. By choosing a decreasing

sequence of values λp, such an approach is observed to produce

low-variance estimators for small values of λ.

Work is ongoing on a procedure to specify λ in an automated

manner, by adaptively specifying this sequence, and using SMC

variance estimators to assess the performance of each λ value.

Log-normal toy model
Let LN (x ;µ, σ2) denote the density at x of a log-normal distri-
bution with parameters (µ, σ2).

• Let µ(z) = LN (z ;µ0, σ
2
0).

• Let fj(z) = LN (yj ; log(z), σ2j ).

• For our algorithm, we use log-normal transition kernels:
Kλ(z, x) = LN (x ; log(z), λ).

Although the CMC algorithm of Scott et al. is exact for Gaussian
models, this does not apply to reparametrisations, as is the case
here. In GCMC, for small enough λ we would still expect the
z-marginal of πλ to be a good approximation of the true target.

We demonstrate on an example with b = 32; in each case, 106

samples were used, following burn-in. Estimating the first moment∫
zπ(z)dz ≈ 1.131:

Bias squared Variance

GCMC, λ = 1 1.32× 10−3 4.66× 10−5

GCMC, λ = 10−1 5.45× 10−5 2.32× 10−4

GCMC, λ = 10−2 8.32× 10−5 6.03× 10−4

GCMC, λ = 10−3 1.52× 10−3 1.26× 10−2

CMC 2.37× 10−2 1.41× 10−3

When estimating higher moments, GCMC results in far smaller
biases than CMC, if a small enough λ is used. For example,
estimating the fifth moment

∫
z5π(z)dz ≈ 3.445:

Bias squared Variance

GCMC, λ = 1 1.53× 10+1 6.57× 10−2

GCMC, λ = 10−1 1.15× 10−1 9.84× 10−2

GCMC, λ = 10−2 7.34× 10−2 2.07× 10−1

GCMC, λ = 10−3 1.49× 10−1 9.45× 100

CMC 3.49× 10+3 3.49× 10+3

Binary regression

These boxplots show the biases of estimates of the posterior mean

of two components, as obtained from 10 runs of each setup.

When estimating some parameters, CMC can introduce a far larger

bias than GCMC, as the latter is more robust to deviations from

Gaussianity, though must λ be chosen appropriately to control the

variance. In the case above left, the corresponding covariate is

rarely observed in some of the data subsets, so the fj are skewed

in this dimension, and are poorly approximated by Gaussians.

For parameters corresponding to more frequently-observed covari-

ates, GCMC performs comparably to CMC if λ is chosen suitably

(above right).
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