
Global consensus Monte Carlo

For problems involving large data sets, it may
be practical or necessary to distribute the data
across multiple processors. We consider a target
probability density function given by

π(z) ∝ µ(z)
b∏
j=1

fj(z)

where fj is computable on processor j , requiring
consideration of yj, the jth subset of the full data
set. We wish to generate samples distributed
according to the corresponding distribution.

Existing approaches to this problem include:

• Scott et al. (2016), who propose running one
MCMC chain on each processor, with target
densities proportional to µ(z)1/bfj(z). The
samples are combined in a way that implicitly
assumes approximate Gaussianity.

• Xu et al. (2014), who approximate each fj by
a density belonging to an exponential family.
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Introduction

The instrumental model

Specifically, we define a family of approximating
densities on an extended state space by

πλ(z, x1:b) ∝ µ(z)

b∏
j=1

Kλ(z, xj)fj(xj),

where {Kλ : λ ∈ R+} is a family of Markov
transition densities. The z-marginal of πλ is

πλ(z) ∝ µ(z)

b∏
j=1

∫
Kλ(z, x)fj(x)dx.

We assume that fj is bounded, and assume that
this family satisfies

∫
Kλ(z, x)fj(x)dx → fj(z)

pointwise as λ→ 0. This implies convergence in
total variation of πλ to π, so that for bounded
functions ϕ,∫

ϕ(z)πλ(z)dz →
∫
ϕ(z)π(z)dz.

For given λ, a πλ-reversible Markov chain is ob-
tained by considering the full conditional densities:

πλ(z | x1:b) ∝ µ(z)
b∏
j=1

Kλ(z, xj),

πλ(xj | z) ∝ Kλ(z, xj)fj(xj).

A two-variable Gibbs sampler may be constructed,
where the two variables are z and x1:b. One may
thereby form estimates of

∫
ϕ(z)πλ(z)dz .

The relevance to distributed settings is that draw-
ing a new x ′j according to the density πλ(xj | z)
may occur on the jth computing node; the new
values x ′1:b may then be sent to a central node
that draws a new z ′ according to πλ(z | x1:b).

Gibbs sampling
Binary regression

Binary logistic regression models are commonly
used in A/B testing settings – in web design
for example, to determine which content choices
lead to maximised user interaction (such as the
user clicking on a link to a product for sale).

• Data set formed of responses ηi ∈ {−1, 1}
and vectors ξi ∈ {0, 1}d of binary covariates.
The data are split into b subsets;
fj(z) =

∏
i σ(ηiz

Tξi), where the product is
taken over those indices i included in the jth
data subset, and σ is the logistic function.

•We centre the covariates and use a zero-mean
normal prior µ.

• For GCMC, we use normal transition kernels:
Kλ(z, x) ∝ N (x ; z, λ).

We demonstrate on a simple data set with d = 6
covariates, split into b = 8 subsets, each com-
prising 512 data. We use various choices of λ for
GCMC.
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We propose a procedure motivated by the global
variable consensus optimisation algorithm of
Boyd et al. (2011), itself based upon ideas of
Bertsekas and Tsitsiklis (1989).

We introduce an instrumental hierarchical model
by associating an instrumental variable xj with
each subset of the data, and a introducing a top-
level parameter λ:

SMC sampler
The parameter λ may be chosen to balance
computational tractability with fidelity to the true
model, in a form of bias–variance tradeoff. To
this end, a sequence πλ0

, πλ1
, . . . may be ap-

proximated by an SMC sampler. If πλp-invariant
MCMC kernels are used (such as those formed
by the Gibbs procedure), then the potential func-
tions depend only on the transition kernels Kλ.

By adaptively specifying the sequence of values
λp, and using appropriate variance estimators,
this approach could be used to specify λ in an
automated manner.

Examples (continued)

References

We compare our algorithm (GCMC) with the
consensus Monte Carlo algorithm (CMC) pro-
posed by Scott et al. (2016). In both examples,
we aim to estimate

∫
zπ(z)dz .

Lognormal toy example

Let LN (x ;µ, σ2) denote the density at x of a
lognormal distribution with parameters (µ, σ2).

• Let µ(z) = LN (z ;µ0, σ20)
• Let fj(z) = LN (z ; yj, σ2j )
• For GCMC, use lognormal transition kernels:
Kλ(z, x) = LN (x ; log(z), λ).

The treatment of the prior in the CMC algorithm
results in large biases when an asymmetric prior
is used (although a reparametrisation would solve
the issue in this toy example). GCMC avoids this,
but requires a careful choice of λ, as demon-
strated here with b = 10. In each case, 106

samples were used, following burn-in.

Bias Variance

GCMC, λ = 1 1.34× 10−1 1.12× 10−6

GCMC, λ = 10−2 −7.87× 10−5 2.88× 10−5

GCMC, λ = 10−4 −8.55× 10−3 1.56× 10−4

CMC 3.86× 10+3 2.89× 100

Examples
When estimating some parameters, CMC intro-
duces a far larger bias than GCMC (if λ is chosen
appropriately), as the latter is more robust to
deviations from Gaussianity. In the case above
left, the corresponding covariate is rarely observed
in some of the data subsets; the fj are therefore
skewed in this dimension, and are poorly approxi-
mated by Gaussians.

For parameters corresponding to more frequently-
observed covariates, GCMC performs compara-
bly to CMC if λ is chosen suitably (above right).
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