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Abstract

The spike-triggered average voltage (STV) is an experimentally measurable quantity that is determined by both the membrane

response properties and the statistics of the synaptic drive. Here, the form of the STV is modelled for neurons with three distinct types of

subthreshold dynamics; passive decay, h-current sag, and damped oscillations. Analytical expressions for the STV are first obtained in

the low-noise limit, identifying how the subthreshold dynamics of the cell affect its form. A second result is then derived that captures the

power-law behaviour of the STV near the spike threshold.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Reverse-correlation methods are a standard tool in the

neurosciences [2]. The spike-triggered average voltage

(STV) is a quantity that contains information about both

the statistics of the synaptic drive and the response

properties of the neuron, and can be readily extracted

from intracellular voltage traces. An analytical under-

standing of the processes that shape the STV can be used to

classify the response characteristics of neurons and the

synaptic drive to which they are subjected [1].

Typically, the neuronal models that have been used to

investigate the STV are of the integrate-and-fire (IF) type

with leaky, passive dynamics [1,8]. The IF model, however,

misses many important features of biological neurons such

as the h-current sag seen in cortical and hippocampal

pyramidal cells, as well as more complex behaviour such

as damped oscillations seen in certain entorhinal cortical

cells [4].

Here the form of the spike-triggered average will be

investigated for model neurons with biologically more

realistic dynamics. Two methods will be used: the first

involves a low-noise approximation, which, in the context

of spiking neurons, corresponds to low-noise, noise-driven

spike generation; the second method captures the power-

law behaviour of the STV near threshold—a feature missed

by low-noise approximations.

2. The model

The subthreshold voltage dynamics are described by a

two-variable IF model [3,5,9,10] which is sufficient to

capture the response of neurons with passive dynamics, h-

current sag response and damped oscillations. The model

comprises a variable v for the membrane voltage, with

time-scale tv and a second variable w proportional to the

excess current flowing through voltage-gated trans-mem-

brane channels, with time-scale tw and coupled with

strength g to the voltage. Thus,

tv _v ¼ m� v� gwþ ffiffiffiffi

tv

p
sxðtÞ and tw _w ¼ v� w. (1)

The variable m=ð1þ gÞ is the drive-dependent equilibrium

potential and xðtÞ is delta-correlated white noise multiplied

by an amplitude factor s. The subthreshold dynamics are

supplemented by a voltage threshold vth ¼ �55mV and

reset vre ¼ �65mV that provide the spike mechanism.

The standard integrate-and-fire dynamics are recovered

when g ¼ 0.
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3. Spike-triggered average voltage

3.1. Low-noise approximation

Our calculation is based on a principle which states that

for a set of equations of the type (1), the most likely

trajectory followed by the system when moving from one

point to another is obtained by maximising the probability

of the synaptic input
ffiffiffiffi

tv
p

sxðtÞ that would yield such a

transition. This optimisation is carried through the

minimisation of a cost function that will now be derived

(the informal derivation given here follows the well-known

principle of minimum available noise energy [7]).

We start by introducing a time-discretised version of the

system (1)

tvðvk�1 � vkÞ ¼ �ðvk þ gwkÞDþ
ffiffiffiffiffiffiffiffiffiffiffiffi

s2tvD

p

Ck,

twðwk�1 � wkÞ ¼ ðvk � wkÞD, ð2Þ

where Ck are independent Gaussian random numbers with

zero mean and unit variance, D is a small time interval, and

the variables have been rescaled so that the equilibrium

point is ðv;wÞ ¼ ð0; 0Þ. It should be noted that the label k

counts backwards in time from the threshold crossing. It is

given that the neuron is at rest at time T ¼ �nD (where n is

the number of discrete time bins) and at threshold at time

0. The probability for the voltage to follow a particular

trajectory between these two points is proportional to the

probability of the sequence of random numbers Ck that

would yield this trajectory,

pðvn;wn;�nD; . . . ; v0;w0; 0Þ

/
Y

n

k¼1
exp � 1

2s2tv

tv

vk�1 � vk

D
þ ðvk þ gwkÞ

h i2

D

� �

, ð3Þ

where vn;wn ¼ 0 (the neuron is at rest) and v0 ¼ vth (a spike

is emitted). This equation is supplemented by the con-

straint that the deterministic equation for the second

variable w should be satisfied. When the continuum limit is

taken, this expression becomes

pðvðtÞ;wðtÞÞ / exp � 1

2s2tv

Z 0

T

ðtv _vþ vþ gwÞ2 dt

� �

. (4)

From this, we see that in the limit of vanishing noise

ðs! 0Þ, the trajectory of highest probability which

dominates the dynamics is that which minimises the

integral (under the constraint that v ¼ tw _wþ w). It is this

trajectory, analogous to the maximum-likelihood escape

trajectory [8] identified for the one-variable IF model, that

will be derived. It should also be noted that taking T !
�1 yields a scenario in which the neuronal voltage

approaches the threshold from its equilibrium distribution:

this limit is taken.

If we insert the v constraint into the above integral, we

obtain a variational problem for w in which the functional

SðwðtÞÞ ¼
Z 0

�1
ðtvtw €wþ ðtv þ twÞ _wþ ð1þ gÞwÞ2 dt (5)

must be minimised over all possible trajectories wðtÞ
starting from 0 at time �1 and ending at an arbitrary

point wð0Þ at time 0. This point will be determined later.

Solving the Euler–Lagrange equation for this problem

leads to wðtÞ ¼ Ae�l1t þ Be�l2t, where l1;2 are the eigenva-

lues associated with the equation set (1). A and B are

integration constants; one of them is determined by the

condition vð0Þ ¼ vth, while the other is obtained by further

minimising the functional over all possible values of wð0Þ.
The voltage trajectory is then calculated from v ¼ tw _wþ w,

yielding

vðtÞ ¼ vth

l1l2t2w þ 1

l2ðl21t2w � 1Þ
l1 � l2

e�l1t þ l1ðl22t2w � 1Þ
l2 � l1

e�l2t

� �

.

(6)

The resulting trajectories for three examples (passive decay,

h-current sag and damped oscillations) are shown in Fig. 1.

For the passive IF case, the low-noise approximation is

equivalent to the time-reversed relaxation trajectory result
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Fig. 1. The spike-triggered average voltage for neurons with three distinct subthreshold dynamics characterised by the voltage response to a step-current

pulse: (A) passive decay; (B) h-current sag; and (C) damped oscillations. The low-noise approximation gives a fair account of the escape trajectories, except

for the passive model for which the response near threshold is dominated by a power law (see Eq. (11). The parameters used are: (A) tv ¼ 20ms, g ¼ 0,

s ¼ 4:75mV, firing rate 0.62Hz; (B) tv ¼ 10, tw ¼ 50ms, g ¼ 0:5, s ¼ 4:5mV, firing rate 0.69Hz; (C) tv ¼ 20, tw ¼ 10ms, g ¼ 5, s ¼ 6:25mV, firing rate

0.50Hz. In all cases m=ð1þ gÞ ¼ vre.
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[6]. From Fig. 1B, the case of an h-current, it can be seen

that given a spike it was likely that there was a small

amount of early inhibition: this has the effect of switching

on the h-current which helps to depolarise the neuron.

Similar, more pronounced behaviour is seen for the case of

a neuron with damped oscillations in Fig. 1C.

3.2. Behaviour near the threshold

The low-noise approximation is inaccurate near thresh-

old as can be seen in Fig. 1A. However, an (asymptotically)

exact form can be derived for the region near threshold

under the assumption that noise dominates over the w and

v leak currents. The first step is to expand the conditional

voltage distribution using Bayes’s rule as

pðv;�tjspike at t ¼ 0Þ ¼ jðvÞ
r

rðv;�tÞ, (7)

where jðvÞ ¼ pðv;�tÞ is the stationary distribution of

voltage, and r is the spike rate. r is the conditional spike

rate at time 0 given the value v of the voltage at some

earlier time �t. Since we are interested in the behaviour

near the threshold, i.e., at small times before the spike, this

quantity is well approximated by the first-passage-time

density to the threshold, which we denote by r1ðv;�tÞ.
If we assume that noise dominates over the leak currents,

the latter quantity can be calculated using standard

methods:

r1ðv;�tÞ ¼ 1

t

ðvth � vÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2t=tv

p exp � ½vth � v�2
2s2t=tv

� �

. (8)

By considering the probability current, the distribution

jðvÞ near the threshold can be found to be

jðvÞ ¼ 2tvr

s

vth � v

s

� �

þO
vth � v

s

� �2
� �

. (9)

Using approximations (8) and (9) in (7), we can write the

STV as

vth � vstvðtÞ ’
Z vth

�1
ðvth � vÞjðvÞ

r
r1ðv;�tÞdv (10)

and obtain the asymptotic form

vstvðtÞ ’ vth � s

ffiffiffiffiffiffiffi

8t

ptv

r

. (11)

This is also plotted in Fig. 1A and can be seen to give a

satisfactory account of the run-up to the spike. It should be

noted that noise always dominates over the deterministic

terms sufficiently close to threshold, regardless of the exact

form of the leak currents. The boundary layers are,

however, much smaller for the h-current sag and damped

oscillations models and therefore not included in Figs. 1B

and C. For cases of stronger noise the boundary layer

exhibiting the power-law decay will penetrate further into

the subthreshold domain.

4. Discussion

We have derived analytical expressions for the spike-

triggered average voltage (STV) of three model neurons

with subthreshold dynamics corresponding to those seen in

biological neurons: passive decay, h-current sag and

damped oscillations. Our analyses demonstrate that (i)

the form of the STV is closely related to the subthreshold

membrane dynamics, and (ii) for a hard-threshold model

with white noise the STV behaves as a
ffiffi

t
p

power-law near

threshold. The distinct forms for the STV derived here can

be included in models of spike-timing-dependent synaptic

plasticity to investigate the effects of subthreshold mem-

brane properties on the dynamics of the synaptic weights.

Although fixed-threshold models (such as the generalised

IF models here) are commonly used, they do not provide a

good model for spike generation. Other, non-linear, models

with soft thresholds (such as those containing the full

sodium and potassium spike-generating currents) are more

realistic. Since the subthreshold behaviour is similar for

both types of models away from threshold, part (i) of our

results is relevant to the analysis of the voltage traces of

biological neurons. Part (ii) of our results, however, is

rather of technical interest to theoreticians working with IF

neurons.

Here, we examined the influence of membrane properties

on the STV. The rich statistics of biological synaptic drive,

here simplified to Gaussian white noise, are also likely to

affect the form of the STV. The influence of temporal

correlations and conductance effects in the synaptic drive,

and non-linearities in the voltage-activated currents pro-

vide topics for further study. However, a preliminary

analysis did not show qualitative differences with the

results presented for the simplified model here.
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