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Our Research: modelling protein assembly 
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I: Functional Protein Aggregation

II: Pathological Protein Aggregation
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Bacterial mechanosensitive channels

Amyloid aggregation
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Simplest form of mechanosensing? 
Bacterial mechanosensitive channels

Non-specific!
ms scale!



cell interior cell interior

cell exterior cell exterior

Channels share the cell membrane: 
Cooperative sensing?

Simplest form of mechanosensing? 
Bacterial mechanosensitive channels

Non-specific!
ms scale!



Assembly of mechanosensitive channels
AFM of channel clustering in 

supported bilayer.
SR image of multi-channel clustering in 

live bacterium.

S. Grage, …, B. Martinac, Biophys J, 100 (2011).

Channel clustering in liposome. Channel clustering in liposome.
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E Haswell, R Phillips, DC Rees, Structure 19 (2011).

Structure (MscL)

Simplest form of mechanosensing? 
Bacterial mechanosensitive channels

Non-specific!
ms scale!



Minimal model of a mechanosensitive channel

CLOSED

OPEN

by Alex Paraschiv

Aim: to understand collective behaviour of mechanosensitive 
channels
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Cooke, Deserno, PRE 2005, 011506.

hydrophilic 
head

hydrophobic 
tail

Lipids:

Minimal model of a mechanosensitive channel

Details of the model



Minimal model of a mechanosensitive channel

Shock is applied by hard “solute” particles
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Kirkwood, Buff, J Chem Phys, 17 1949

Surface tension:



Minimal model of a mechanosensitive channel
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Shock is applied by hard “solute” particles



Minimal model of a mechanosensitive channel

CLOSED

OPEN

by Alex Paraschiv

Aim: to understand collective behaviour of mechanosensitive 
channels



Single Channel Response
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Multiple Channels Response

NON-AGGREGATING CHANNELS



Multiple Channels Response

AGGREGATING CHANNELS
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Multiple Channels Response
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Channel heterogeneity within one cluster

EXPANDED

TIGHT



Dynamic channel aggregation

Clusters dynamically respond to osmotic shock

Osmotic shock applied!
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Quiescent conditions →  
Low activity

High tension → 
 High activity

Dynamic channel aggregation

Mid tension → 
Mid activity

Built-in control



Quiescent conditions →  
Low activity

High tension → 
 High activity

Dynamic channel aggregation

Mid tension → 
Mid activity

Built-in control

Form of a liquid-liquid 
phase separation 



hypoosmotic 
shock!

with T. Pilizota, Edinburgh

Functional role of channel aggregation

Bacterial cell under osmotic shock:

Experiments Simulation predictions

COMPARISON WITH EXPERIMENTS: Tracing cell volume
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• Channel clustering decreases activity 
• Clustering ↔ Activity are coupled, and shock-dependent 

• Effective adjustment mechanism 
• Possibly a control mechanism to sequester unnecessary channels and 
prevent over-gating

Cooperative activity of mechanosensitive channels



I: Functional Protein Aggregation

TODAY

Bacterial mechanosensitive channels

II: Pathological Protein Aggregation
Amyloid aggregation



Amyloid aggregation

Amyloid fibril“Healthy” proteins

cross-β-sheet

5-15 nm

~µm

Fibrils are built out 
of β-sheet

Randomly dispersed Aggregated (self-assembled)

Self-assembly



Amyloid aggregation & diseases

Amyloid plaque
Amyloid proteins and clinically relevant diseases

Protein Clinical syndrome
Amyloid-β peptides (40 and 42) Alzheimer’s disease
Islet amyloid polypeptide (IAPP) Type II diabetes
α-Synuclein Parkinson’s disease
Prion protein Creutzfeldt-Jakob disease
Tau Fronto-temporal dementias
Huntingtin (polyQ) Huntington disease
Lysozyme Systemic amyloidoses



J. Lee et al., Nat. Chem. Biol. 2011

oligomer

fibril

Amyloid nucleation and toxic oligomers

?toxic



“healthy” fibril-forming

“healthy” state fibril-forming state 

A. Šarić, Y. C. Chebaro , T. P. J. Knowles and D. Frenkel, PNAS, 111, 
17869 (2014).

slow 
unfavourable

J. Lee et al., Nat. Chem. Biol. 2011

oligomer
fibril

fibriloligomer

?

Amyloid aggregation: Minimal model

β-sheet prone soluble 



“healthy” fibril-forming

healthy state fibril-forming state 

A. Šarić, Y. C. Chebaro , T. P. J. Knowles and D. Frenkel, PNAS, 111, 
17869 (2014).

slow 
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Amyloid aggregation: Minimal model



How do we obtain parameters?

Atomistic explicit water simulations 
to obtain PMF:

εss< εsβ< εββ

A. Šarić et al, PNAS, 111, 17869 (2014).



“healthy" 
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state 
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Amyloid nucleation and oligomers

Oligomers are fibril-nucleation centres.



Nucleation via oligomers 

Primary amyloid nucleation and oligomers

Nucleation is easier inside bigger 
oligomers: cooperativity
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nucleation via oligomers 

Primary amyloid nucleation and oligomers

…but it is unfavourable to make 
big oligomers… 
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nucleation via oligomers 

Primary amyloid nucleation and oligomers

…but it is unfavourable to make big 
oligomers at low concentrations… 

conversion fibril formation oligomerisation 
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nucleation via oligomers 

critical oligomer size  

N* 

…the most probable nucleating 
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A. Šarić, Y. C. Chebaro , T. P. J. Knowles and D. Frenkel, PNAS, 111, 17869 (2014).

Free energy of nucleation via small oligomers



Very different from classical nucleation  
(ice, bubbles, …)
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A. Šarić et al, PNAS, 111, 17869 (2014).

Classical nucleation
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Amyloid nucleation

A. Šarić et al, J Chem Phys (2016).



Amyloid nucleation

• At physiological conditions, amorphous oligomers serve as nucleation 
centres for amyloid fibrils, and are necessarily on-pathway 

• Distinct class of a nucleation mechanism: involves a dynamic change of 
the nucleating building-block 

Illustration: Ivan Barun, dr med



Positive feedback: 
Self-replication of protein fibrils

•  Fibril surface catalyses formation of new growth centres

• Produces oligomers and dominates the aggregation 

F. A. Ferrone, J. Hofrichter and W A. Eaton, J. Mol. Biol. (1985).

• ~8 orders of magnitude faster than spontaneous nucleation (Alzheimers’ Aβ)

seeded  
with 
fibrils

oli
go

me
r 

co
un

ts/
 

10
4

ce
ll v

iab
ilit

y 
re

du
cti

on
 (%

)

S. A. Cohen et al., PNAS (2013).



Self-replication of protein fibrils

• Extension of the model:

Proteins adsorb onto fibrils. 

For Aβ measured Kd ≈ 50μM
recent MD simulations 

by M. Bellaiche & R. Best, NIH.



Minimal model for fibril self-replication

Fibril-catalysed nucleation.



Kinetics of Aβ40 self-replication

slope: reaction order
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Aβ40

with Tuomas Knowles, Sara Linse



Self-replication: governed by surface coverage

A. Šarić et al, Nature Physics 12, 874 (2016).



protein-fibril affinity [kT]protein-protein affinity [kT]

screening repulsion,
increasing stickiness

Controlling self-replication 
by modulating the surface coverage of fibrils 

•  Protein-fibril affinity as a target in bypassing fibril self-replication and 
propagation of cytotoxic species.

salt concentration (mM)
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A. Šarić et al, Nature Physics 12, 874 (2016).



primary nucleation, 
faster at high T 

 

Self-replication, 
slower at high T 

 

with Tuomas Knowles, Sara Linse

Comparison of spontaneous formation and self-replication 
Thermodynamic signatures

primary nucleation 

Self-replication 

S.I.A. Cohen et al., Nature Chemistry, 2018.
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increase in T  
decrease in coverage

Comparison of spontaneous formation and self-replication 
Why is self-replication slower at higher T?

S.I.A. Cohen et al., Nature Chem, 2018. by Tuomas Knowles, Sara Linse
T.C.T. Michaels et al., Mol Phys 2018.



Brichos chaperone inhibits 
self-replication

S. I. A. Cohen et al., Nat. Struct. Mol. Biol, 2015
P. Arosio et al., Nat. Comm., 2016.

• What is the inhibition mechanism?

Controlling Aβ self-replication 
by inhibitors 

Binders to the fibril surface.

inhibitors

• Can we design inhibitors?

inhibitors
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Inhibiting Aβ42 fibril self-replication

20% inhibitors

no inhibitors

by Samo Curk in preparation

ln(concentration/ M)

surface coverage



• Fibril self-replication is governed by a single 
process of protein adsorption onto the fibril 
surface 

• Self-replication be controlled by modulating 
protein-fibril affinity, or protecting the fibril 
surface 

• Searching for design rules for efficient inhibition

Amyloid self-replication

Illustration: Ivan Barun, dr med



~ 1nm ~ 1μm ~ 1mm

~ 1s

~ 1μs

~ 1h

~ 1y

Structure

Continuum

Modelling biological assembly

‣ Bridge structural and continuum representations

‣ Connect macroscopic measurements to 
microscopic mechanisms
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