UCL IPLS

Institute for
the Physics of
Living Systems

Minimal coarse-grained models for biological
assembly

Andela Sari¢
Institute for the Physics of Living Systems

University College London




Proteins
Workhorses and building material of life

Single players Team players

Substrate

oo &

Enzyme




Proteins as team players
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Protein assembly & disassembly :

multiscale problem
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Our Research: modelling protein assembly
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TODAY
Functional Protein Aggregat
Bacterial mechanosensitive channels
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Simplest form of mechanosensing?
Bacterial mechanosensitive channels
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Simplest form of mechanosensing?
Bacterial mechanosensitive channels
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Assembly of mechanosensitive channels

AFM of channel clustering in SR image of multi-channel clustering in
supported bilayer. live bacterium.
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Channel clustering in liposome.

(4 channels)

the patch with 11 channels behaved more like
— > a patch with five channels, suggesting that the behavior of
“  the channels was not independent.
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S. Grage, ..., B. Martinac, Biophys J, 100 (2011).



Simplest form of mechanosensing?
Bacterial mechanosensitive channels

® o
P
cell interio cell interior
cell exterior cell exterior

Nown-specific!
ms scale!

MscL MscS MscK MscM/YbdG MSC1 MSL10 MSL3 Cv-bCNG PamA
|- v . -
v 4
Escherichia coli Chlamydomonas Arabidopsis Chromobacterium  Synechocystis
reinhardtii thaliana violaceum sp.PCC 6803

ATCC12472

E Haswell, R Phillips, DC Rees, Structure 19 (2011).



Minimal model of a mechanosensitive channel

Aim: to understand collective behaviour of mechanosensitive
channels
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Minimal model of a mechanosensitive channel

Details of the model
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Minimal model of a mechanosensitive channel

Shock is applied by hard “solute” particles

Surface tension:

Y = /[ 2z %(pazx _|‘pyy)]dz
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Fixed boundary

Minimal model of a mechanosensitive channel

Shock is applied by hard “solute” particles

Membrane COM
tethered to 0,0,0

Periodic boundary



Minimal model of a mechanosensitive channel

Aim: to understand collective behaviour of mechanosensitive
channels
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Single Channel Response

osmotic shock applied MEASURING PORE SIZE
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Multiple Channels Response
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Multiple Channels Response

AGGREGATING CHANNELS
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Channel heterogeneity within one cluster
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Dynamic channel aggregation
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Dynamic channel aggregation

Quiescent conditions —
Low activity

Mid tension =
Mid activity

High tension —
High activity

ullt-in control



Dynamic channel aggregation

Quiescent conditions —
Low activity

Mid tension =
Mid activity

High tension —
High activity

ullt-in control



Functional role of channel aggregation

Bacterial cell under osmotic shock:

g

hypoosmotic

shock!

COMPARISON WITH EXPERIMENTS: Tracing cell volume

Experiments
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Cooperative activity of mechanosensitive channels

e Channel clustering decreases activity

 Clustering < Activity are coupled, and shock-dependent

e Effective adjustment mechanism
* Possibly a control mechanism to sequester unnecessary channels and

prevent over-gating
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Amyloid aggregation

“Healthy” proteins Amyloid fibril
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Amyloid aggregation & diseases

a-synuclein

Amyloid plaque

Amyloid proteins and clinically relevant diseases

Protein
Amyloid-3 peptides (40 and 42)
Islet amyloid polypeptide (IAPP)
a-Synuclein
Prion protein
Tau

Huntingtin (polyQ)

Lysozyme

Clinical syndrome
Alzheimer’s disease
Type Il diabetes
Parkinson’s disease
Creutzfeldt-Jakob disease
Fronto-temporal dementias
Huntington disease

Systemic amyloidoses



Amyloid nucleation and toxic oligomers
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toxic oligomer

fibril

J. Lee et al., Nat. Chem. Biol. 2011



Amyloid aggregation: Minimal model oligomer
fibril

“healthy” fibril-forming

J. Lee et al., Nat. Chem. Biol. 2011

slow
unfavourable
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“healthy” state fibril-forming state

oligomer fibril

soluble B-sheet prone

A. Sari¢, Y. C. Chebaro , T. P. J. Knowles and D. Frenkel, PNAS, 111,
17869 (2014).



Amyloid aggregation: Minimal model

“healthy” fibril-forming

<

slow
unfavourable

. - interactions interactions

charged charged
hydrophobic hydrophobic
H-bonding

healthy state fibril-forming state

A. Sari¢, Y. C. Chebaro , T. P. J. Knowles and D. Frenkel, PNAS, 111,
17869 (2014).



How do we obtain parameters?

Atomistic explicit water simulations
to obtain PMF:

| | | | | | | |
-1 50 1 2 3 4

Center of mass distance (nm)

A. Sari¢ et al, PNAS, 111, 17869 (2014).



Amyloid nucleation and oligomers

UT’ =
“healthy"

state fibril-forming

state

oligomer

Oligomers are fibril-nucleation centres.



Primary amyloid nucleation and oligomers

Nucleation via oligomers
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Primary amyloid nucleation and oligomers

nucleation via oligomers Lo
d ...but it is unfavourable to make
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Primary amyloid nucleation and oligomers

nucleation via oligomers o )
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Free energy of nucleation via small oligomers

nucleation via oligomers :
9 ...the most probable nucleating
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Very different from classical nucleation

(ice, bubbles, ...)
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A. Sari¢ et al, J Chem Phys (2016).
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A. Sari¢ et al, PNAS, 111, 17869 (2014).



Amyloid nucleation

At physiological conditions, amorphous oligomers serve as nucleation
centres for amyloid fibrils, and are necessarily on-pathway

Distinct class of a nucleation mechanism: involves a dynamic change of
the nucleating building-block

lllustration: lvan Barun, dr med



Positive feedback:
Self-replication of protein fibrils

e Fibril surface catalyses formation of new growth centres

FREE-E-

F. A. Ferrone, ]. Hofrichter and W A. Eaton, J. Mol. Biol. (1985).

® Produces oligomers and dominates the aggregation

e ~8 orders of magnitude faster than spontaneous nucleation (Alzheimers’ Ap)
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S. A. Cohen et al., PNAS (2013).



Self-replication of protein fibrils

e Extension of the model:

Proteins adsorb onto fibrils.

recent MD simulations
For AR measured Kd =~ 50pM by M. Bellaiche & R. Best, NIH.



Minimal model for fibril self-replication
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In(rate/ uMs-1)

Kinetics of AB40 self-replication

rate ~ concentration?

Experiment
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with Tuomas Knowles, Sara Linse

slope: reaction order

Simulation
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Self-replication: governed by surface coverage

< In(rate/ uMs™") <

In (fibril coverage)
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A. Sari¢ et al, Nature Physics 12, 874 (2016).



Controlling self-replication
by modulating the surface coverage of fibrils
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* Protein-tibril affinity as a target in bypassing fibril self-replication and
propagation of cytotoxic species.

A. Sari¢ et al, Nature Physics 12, 874 (2016).



Comparison of spontaneous formation and self-replication
Thermodynamic signatures
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Comparison of spontaneous formation and self-replication
Why is self-replication slower at higher T?

200 B ° e 2ooC d
D)
< ' b
© 150¢ e .
o . 30°C
g Increase in T
S 100} Z 1 | decrease in coverage
= . o 20°C
S
L 50t
@
g e
O 1 1 1
0 10 20 30 40

Monomer concentration /um

S.ILA. Cohen et al., Nature Chem, 2018.

Tuom '
T.C.T. Michaels et al., Mol Phys 2018. by uomas Knowles, Sara Linse



Controlling AR self-replication
by inhibitors

inhibitors

inhibitors
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Brichos chaperone inhibits
self-replication

Binders to the fibril surface.

e What is the inhibition mechanism?

e Can we design inhibitors?

S. I. A. Cohen et al., Nat. Struct. Mol. Biol, 2015
P. Arosio et al., Nat. Comm., 2016.



Inhibiting APR42 fibril self-replication
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by Samo Curk in preparation



Amyloid self-replication

» Fibril self-replication is governed by a single
process of protein adsorption onto the fibril
surface

« Self-replication be controlled by modulating
protein-fibril affinity, or protecting the fibril
surface

* Searching for design rules for efficient inhibition

lllustration: lvan Barun, dr med



Modelling biological assembly

» Bridge structural and continuum representations

» Connect macroscopic measurements to
Structure microscopic mechanisms
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