

Minimal coarse-grained models for biological assembly

Anđela Šarić Institute for the Physics of Living Systems University College London

Proteins Workhorses and building material of life

Single players

Team players

Proteins as team players

Good

Gone bad

Protein assembly & disassembly: multiscale problem

Our Research: modelling protein assembly

FUNCTIONAL

Protein filaments remodelling membranes

Extracellular matrix assembly

Cellular Uptake

PATHOLOGICAL

TODAY

II: Pathological Protein Aggregation

Amyloid aggregation

Simplest form of mechanosensing? Bacterial mechanosensitive channels

Non-specific! ms scale!

Simplest form of mechanosensing? Bacterial mechanosensitive channels

Non-specific! ms scale!

Channels share the cell membrane: Cooperative sensing?

Assembly of mechanosensitive channels

AFM of channel clustering in supported bilayer.

SR image of multi-channel clustering in live bacterium.

Channel clustering in liposome.

Channel clustering in liposome.

Simplest form of mechanosensing? Bacterial mechanosensitive channels

Non-specific! ms scale!

Structure (MscL)

Aim: to understand collective behaviour of mechanosensitive channels

Details of the model

$$V_{rep}(r;b) = egin{cases} 4arepsilon \left[\left(rac{b}{r}
ight)^{12} - \left(rac{b}{r}
ight)^{6} + rac{1}{4}
ight], & r \leq r_c \ 0 & r > r_c \end{cases}$$

$$V_{attr}(r;b) = egin{cases} -arepsilon, & r < r_c \ -arepsilon cos^2 rac{\pi(r-r_c)}{2w_c}, & r_c \leq r \leq r_c + w_c \ 0, & r > r_c + w_c \end{cases}$$

Lipids:

Shock is applied by hard "solute" particles

Surface tension:

$$\gamma = \int [p_{zz} - \frac{1}{2}(p_{xx} + p_{yy})] dz$$

Shock is applied by hard "solute" particles

Aim: to understand collective behaviour of mechanosensitive channels

Single Channel Response

MEASURING PORE SIZE

 $channel state = \begin{cases} open, & pore size \\ closed, & otherwise \end{cases}$

 \geq threshold size

Multiple Channels Response

NON-AGGREGATING CHANNELS

Multiple Channels Response

AGGREGATING CHANNELS

Multiple Channels Response

AGGREGATING CHANNELS

Channel heterogeneity within one cluster

Dynamic channel aggregation

Clusters dynamically respond to osmotic shock

Osmotic shock applied!

Dynamic channel aggregation

Dynamic channel aggregation

Quiescent conditions →
Low activity

Form of a liquid-liquid phase separation

High tension → High activity

Built-in control

Functional role of channel aggregation

Bacterial cell under osmotic shock:

COMPARISON WITH EXPERIMENTS: Tracing cell volume

Experiments

with T. Pilizota, Edinburgh

Cooperative activity of mechanosensitive channels

- Channel clustering decreases activity
- Effective adjustment mechanism
- Possibly a control mechanism to sequester unnecessary channels and prevent over-gating

TODAY

I: Functional Protein Aggregation

Bacterial mechanosensitive channels

II: Pathological Protein Aggregation

Amyloid aggregation

Amyloid aggregation

Amyloid fibril

cross-β-sheet

~µm

Fibrils are built out of **β-sheet**

Self-assembly

d

Aggregated (self-assembled)

Randomly dispersed

Amyloid aggregation & diseases

Amyloid plaque

Amyloid proteins and clinically relevant diseases	
Protein	Clinical syndrome
Amyloid-β peptides (40 and 42)	Alzheimer's disease
Islet amyloid polypeptide (IAPP)	Type II diabetes
α-Synuclein	Parkinson's disease
Prion protein	Creutzfeldt-Jakob disease
Tau	Fronto-temporal dementias
Huntingtin (polyQ)	Huntington disease
Lysozyme	Systemic amyloidoses

Amyloid nucleation and toxic oligomers

J. Lee et al., Nat. Chem. Biol. 2011

Amyloid aggregation: Minimal model

fibril

J. Lee et al., Nat. Chem. Biol. 2011

"healthy" state soluble

fibril-forming state β -sheet prone

A. Šarić, Y. C. Chebaro, T. P. J. Knowles and D. Frenkel, *PNAS*, 111, 17869 (2014).

Amyloid aggregation: Minimal model

healthy state fibril-forming state

charged

hydrophobic

H-bonding

charged

hydrophobic

A. Šarić, Y. C. Chebaro, T. P. J. Knowles and D. Frenkel, PNAS, 111, 17869 (2014).

How do we obtain parameters?

$$\varepsilon_{ss} < \varepsilon_{s\beta} < \varepsilon_{\beta\beta}$$

Atomistic explicit water simulations to obtain PMF:

Amyloid nucleation and oligomers

oligomer

Oligomers are fibril-nucleation centres.

Primary amyloid nucleation and oligomers

Nucleation via oligomers

Primary amyloid nucleation and oligomers

nucleation via oligomers

...but it is unfavourable to make big oligomers...

Primary amyloid nucleation and oligomers

nucleation via oligomers

...but it is unfavourable to make big oligomers at low concentrations...

$$\Delta F^*(N) = \Delta F_o(N) + \Delta F_c(N)$$

fibril formation

oligomerisation

conversion

Free energy of nucleation via small oligomers

A. Šarić, Y. C. Chebaro, T. P. J. Knowles and D. Frenkel, *PNAS*, 111, 17869 (2014).

Very different from classical nucleation (ice, bubbles, ...)

Classical nucleation

Amyloid nucleation

- At physiological conditions, amorphous oligomers serve as nucleation centres for amyloid fibrils, and are necessarily on-pathway
- Distinct class of a nucleation mechanism: involves a dynamic change of the nucleating building-block

Illustration: Ivan Barun, dr med

Positive feedback: Self-replication of protein fibrils

• Fibril surface catalyses formation of new growth centres

F. A. Ferrone, J. Hofrichter and W A. Eaton, J. Mol. Biol. (1985).

- Produces oligomers and dominates the aggregation
- ~8 orders of magnitude faster than spontaneous nucleation (Alzheimers' $A\beta$)

S. A. Cohen et al., PNAS (2013).

Self-replication of protein fibrils

• Extension of the model:

Proteins adsorb onto fibrils.

For A β measured Kd $\approx 50 \mu M$

recent MD simulations by M. Bellaiche & R. Best, NIH.

Minimal model for fibril self-replication

Fibril-catalysed nucleation.

Kinetics of Aβ40 self-replication

rate \sim concentration $^{\gamma}$

slope: reaction order

Self-replication: governed by surface coverage

AMYLOID SELF-REPLICATION

A. Šarić et al, *Nature Physics* 12, 874 (2016).

Controlling self-replication by modulating the surface coverage of fibrils

 Protein-fibril affinity as a target in bypassing fibril self-replication and propagation of cytotoxic species.

Comparison of spontaneous formation and self-replication Thermodynamic signatures

Comparison of spontaneous formation and self-replication Why is self-replication slower at higher T?

S.I.A. Cohen et al., Nature Chem, 2018.

T.C.T. Michaels et al., Mol Phys 2018.

Controlling Aß self-replication by inhibitors

inhibitors

Brichos chaperone inhibits self-replication

Binders to the fibril surface.

- What is the inhibition mechanism?
- Can we design inhibitors?

Inhibiting Aβ42 fibril self-replication

Amyloid self-replication

- Fibril self-replication is governed by a single process of protein adsorption onto the fibril surface
- Self-replication be controlled by modulating protein-fibril affinity, or protecting the fibril surface
- Searching for design rules for efficient inhibition

Illustration: Ivan Barun, dr med

Modelling biological assembly

UCL IPLS Institute for the Physics of **Living Systems**

MANY THANKS

- Alexandru Paraschiv
- Lena Kirschneck-Harker
- Johannes Krausser
- Joel Forster
- Eugen Rozic
- Anne Hafner
- Samo Curk

- Teuta Pilizota, Edinburgh
- Daan Frenkel, Cambridge
- Tuomas Knowles, Cambridge
- Sara Linse, Lund
- Chris Dobson, Cambridge
- Buzz Baum, UCL
- Bart Hoogenboom, UCL
- Ewa Paluch, UCL