

Phase field methods for simulating ferroelectrics and other materials

J.E. Huber
University of Oxford,
Department of Engineering Science

A. Renuka Balakrishna,
University of Minnesota,
Department of Aerospace Engineering and
Mechanics

Idea of Phase field models

To model the interface between "phases" by a continuous variation of an order parameter

To model the variations of composition etc. within an interface

To track a moving interface

Applications

- Solidification of pure substances and alloys
- Solid-state phase transformations
- Coarsening of precipitates
- Grain growth
- Twinning and domains in multiferroics
- Crack growth (as continuum damage)
- Dislocation dynamics

Ferroelectric materials

Battery materials

Simple Example

Assume a free energy of the form:

$$\psi = \psi(\phi, \nabla \phi, \nabla \phi \otimes \nabla \phi, \cdots)$$

The $\nabla \phi$ dependence should be even for symmetry.

The simplest case is:
$$\psi = f(\phi) + \frac{\alpha}{2} |\nabla \phi|^2$$

$$\Psi = A \int_{-\infty}^{\infty} f(\phi) + \frac{\alpha}{2} \left| \frac{d\phi}{dx} \right|^{2} dx$$

Ginzburg-Landau equation

To minimise Ψ consider variation of Ψ

$$\delta \Psi = A \int_{-\infty}^{\infty} \left(\frac{\mathrm{d}f}{\mathrm{d}\phi} - \alpha \frac{\mathrm{d}^2 \phi}{\mathrm{d}x^2} \right) \delta \phi \, \mathrm{d}x$$

Minimise Ψ by relaxation (or assume linear kinetics)

$$\dot{\phi} = -\frac{1}{\beta} \frac{\delta \Psi}{\delta \phi}$$

Giving:

$$\beta \dot{\phi} = \alpha \frac{\mathrm{d}^2 \phi}{\mathrm{d}x^2} - \frac{\mathrm{d}f}{\mathrm{d}\phi}$$

The celebrated Ginzburg-Landau equation

Simple Example

We still need to specify the free energy, $f(\phi)$

For example:

$$f(\phi) = \Delta E(\phi - 1)^{2} (\phi + 1)^{2}$$

Then our evolution law becomes:

$$\beta \dot{\phi} = \alpha \frac{\mathrm{d}^2 \phi}{\mathrm{d}x^2} - 4\Delta E \left(\phi^3 - \phi \right)$$

Phase boundary

Stable nucleus

Unstable nucleus

Balance of configurational forces

Fried & Gurtin (1993, 1994), Gurtin (1996):

If the free energy depends on an independent order parameter there is need for a system of configurational forces that are work conjugate to the order parameter

$$\langle \gamma, \phi \rangle$$
 ... power density expended due to external sources $\langle \xi \cdot \mathbf{n}, \phi \rangle$... power density expended across body surface $\langle \pi, \phi \rangle$... power density expended by internal re-ordering of atoms (dissipation)

$$\int_{\partial V} \xi \cdot \mathbf{n} \, ds + \int_{V} \pi + \gamma \, dv = 0$$
 balance of configurational forces in weak form

$$Div[\xi] + \pi + \gamma = 0$$

balance of configurational forces in strong form

Application: nanoscale ferroelectric crystal

Multiple stable states in BT

Typical microstructures in BaTiO₃

(~ 10µm)

Balance of configurational forces

Fried & Gurtin (1993, 1994), Gurtin (1996):

If the free energy depends on an independent order parameter there is need for a system of configurational forces that are work conjugate to the order parameter

 $\langle \gamma, \dot{\mathbf{P}} \rangle$... power density expended due to external sources $\langle \boldsymbol{\xi} \cdot \mathbf{n}, \dot{\mathbf{P}} \rangle$... power density expended across body surface $\langle \boldsymbol{\pi}, \dot{\mathbf{P}} \rangle$... power density expended by internal re-ordering of atoms (dissipation)

$$\int_{\partial V} \xi \cdot \mathbf{n} \, ds + \int_{V} \pi + \gamma \, dv = 0$$

balance of configurational forces in weak form

$$Div[\xi] + \pi + \gamma = 0$$

balance of configurational forces in strong form

Equations to be solved

Mechanical equilibrium

$$Div[\sigma] + b = \rho \ddot{\mathbf{u}}, \qquad \sigma \cdot \mathbf{n} = \mathbf{t},$$

$$\boldsymbol{\sigma} \cdot \mathbf{n} = \mathbf{t}$$
,

Electrical equilibrium

$$Div[D] - q = 0, D \cdot n = -\omega,$$

$$\mathbf{D} \cdot \mathbf{n} = -\boldsymbol{\omega}$$

Equilibrium of configurational forces

$$Div[\xi] + \pi + \gamma = 0$$

Definitions

$$\mathbf{D} = \mathbf{P} + \kappa_0 \mathbf{E}$$

$$\mathbf{E} = -\mathsf{Grad}[\varphi]$$

$$\varepsilon = \operatorname{Sym}[\operatorname{Grad}[u]]$$

Second Law

$$\int_{\mathcal{B}} \dot{\mathbf{\Psi}} \ dV \leq \int_{\mathcal{B}} (\langle \mathbf{b}, \dot{\mathbf{u}} \rangle + \varphi \, \dot{q} + \langle \boldsymbol{\gamma}, \dot{\mathbf{P}} \rangle) \, dV + \int_{\partial \mathcal{B}} (\langle \mathbf{t}, \dot{\mathbf{u}} \rangle + \varphi \, \dot{\omega} + \langle \boldsymbol{\xi} \cdot \mathbf{n}, \dot{\mathbf{P}} \rangle) \, dA - \frac{d}{dt} \int_{\mathcal{B}} \frac{1}{2} \rho \, \langle \dot{\mathbf{u}}, \dot{\mathbf{u}} \rangle \, dV$$

Formulation for finite element solution

$$\int_{\mathcal{B}} \langle \boldsymbol{\xi}, \operatorname{Grad}[\delta \mathbf{P}] \rangle + \langle \boldsymbol{\eta}, \delta \mathbf{P} \rangle - \langle \boldsymbol{\gamma}, \delta \mathbf{P} \rangle + \langle \boldsymbol{\beta} \cdot \dot{\mathbf{P}}, \delta \mathbf{P} \rangle \, dV - \int_{\partial \mathcal{B}} \langle \boldsymbol{\xi} \cdot \mathbf{n}, \delta \mathbf{P} \rangle \, dA
+ \int_{\mathcal{B}} \langle \boldsymbol{\sigma}, \delta \boldsymbol{\varepsilon} \rangle - \langle \mathbf{b}, \delta \mathbf{u} \rangle + \langle \rho \, \ddot{\mathbf{u}}, \delta \mathbf{u} \rangle \, dV - \int_{\partial \mathcal{B}} \langle \mathbf{t}, \delta \mathbf{u} \rangle \, dA
- \int_{\mathcal{B}} \langle \mathbf{D}, \delta \mathbf{E} \rangle + q \, \delta \varphi \, dV + \int_{\partial \mathcal{B}} \omega \, \delta \varphi \, dA \stackrel{!}{=} 0$$

with

$$\boldsymbol{\sigma} := \frac{\partial \bar{\Psi}}{\partial \boldsymbol{\varepsilon}}, \, \mathbf{D} := -\frac{\partial \bar{\Psi}}{\partial \mathbf{E}} \qquad \boldsymbol{\xi} := \frac{\partial \bar{\Psi}}{\partial \mathsf{Grad}[\mathbf{P}]}, \, \boldsymbol{\eta} := \frac{\partial \bar{\Psi}}{\partial \mathbf{P}}$$

and
$$\bar{\Psi} = \Psi - \langle \mathbf{E}, \mathbf{D} \rangle$$

and we are assuming kinetics of the following form for the evolution of the order parameter

$$\text{Div}[\boldsymbol{\xi}] - \eta + \gamma = \beta \cdot \dot{\mathbf{P}}$$
 with scalar constant β

It remains to specify the constitutive relationship. i.e. $\bar{\Psi}$

Free Energy expression

following Su & Landis (2007) a suitable form of electric enthalpy is

$$\bar{\Psi} = \bar{\Psi}(\varepsilon, E, P, \text{Grad}[P])$$

$$= \frac{1}{2} C_{ijkl} \, \varepsilon_{ij} \, \varepsilon_{kl} + b_{ijkl} \, \varepsilon_{ij} \, P_k \, P_l + f_{ijklmn} \, \varepsilon_{ij} \, \varepsilon_{kl} \, P_m \, P_n + g_{ijklmn} \, \varepsilon_{ij} \, P_k \, P_l \, P_m \, P_n$$
elastic properties, piezoelectric coefficients

$$\begin{vmatrix} +\frac{1}{2}\bar{a}_{ij}\,P_i\,P_j + \frac{1}{4}\bar{\bar{a}}_{ijkl}\,P_i\,P_j\,P_k\,P_l + \frac{1}{6}\bar{\bar{\bar{a}}}_{ijklmn}\,P_i\,P_j\,P_k\,P_l\,P_m\,P_n \\ +\frac{1}{8}\bar{\bar{\bar{a}}}_{ijklmnrs}\,P_i\,P_j\,P_k\,P_l\,P_m\,P_n\,P_r\,P_s \end{vmatrix}$$
 spontaneous polarization

$$+\frac{1}{2}a_{ijkl}P_{i,j}P_{k,l}$$
 domain wall thickness

$$-rac{1}{2}\kappa_0 E_i E_i - E_i P_i$$
 dielectric permittivity

Outline of the talk

Ferroelectrics

Battery materials

Light-interactive materials

Vortex patterns greatly enhance memory storage density

Hayward et al., Ferroelectrics, 255, 2001

Naumov et al., Nature, 432, 2004

Ferromagnets

Gomez, Chapman et al., J. Appl. Phys., 85, 1999

Wachowiak et al., Science, 298, 2002

Ferroelectrics

Chang, Gregg et al., Nano Lett., 13, 2013

Vortex patterns are favorable at small length scales

Phase-field model as a design-tool

Energy Harvesters

Memory elements

Balakrishna and Huber, Smart Mat. Struc., 25, 2016

Balakrishna, Muench, Huber, Phys. Rev B, 93, 2016

Ferroelectric actuators generate strains larger than piezoceramics

Balakrishna, Huber and Landis, Smart Mat. Struc., 23, 2014

Ferroelectric actuators generate strains larger than piezoceramics

Balakrishna, Huber and Landis, Smart Mat. Struc., 23, 2014

Outline of the talk

Ferroelectrics

Battery materials

Light-interactive materials

Crystallographic texture of battery materials can significantly affect its properties

Li, Chueh et al., Adv. Func. Mat., 25, 2015

Nie, Yassar et al., Nano Lett., 15, 2015

Computing evolution of microstructure <u>and</u> crystallographic texture

$$\psi = \int [\nabla c \cdot \kappa \nabla c + f(c, T) + \gamma (g(\phi, r) + \frac{\phi}{2} (1 + \nabla_c^2)^2 \phi)] d\mathbf{x}$$

$$\frac{\partial c}{\partial \tau} = \nabla^2 \frac{\delta \psi}{\delta c}$$

$$\frac{\partial \phi}{\partial n} = \nabla^2 \frac{\delta \psi}{\delta \phi}$$

Crystalline electrodes contain grain boundaries and edge-dislocation defects

Ramana et al., J. of Power Sources 187, 2009

Li-intercalation induces grain boundary migration

Electrochemical cycling accelerates grain growth in electrodes

Electrochemical cycling makes electrodes brittle

Handwerker and Cahn, MRS Proc. Archive, 106, 1987.

Grain-size enhancement

S.-W.Kim et al. J. Am. Ceram. Soc., 94, 2011

Outline of the talk

Ferroelectrics

Battery materials

Light-interactive materials

Light induces actuation mechanisms in molecular materials

Molecular arrangement is transformed in the presence of light

Medishetty, Naumov, Vittal et al., Chem Mater., 27, 2015

Balakrishna and James, ongoing research

Outline of the talk

Ferroelectrics

Battery materials

Light-interactive materials