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RStudio Projects

An Rstudio project is a context for work on a speci�c project, with its
own working directory, workspace and command history.

A new project can be created from the Project tab

I in a brand new directory

I from an existing directory

It is possible to save the workspace on exit, and restore when the project
is re-opened.



Project Structure

By opening the project, the working directory is automatically set to the
project root folder.

Sub-directories can be created to organise work, e.g.

I raw data

I processed data

I R scripts

I outputs (�gures/documents)

Relative paths should then be used to specify �les, e.g.
"../data/survey.csv". If it is not practical to store the data under the
project tree, assign a name to the data directory, so it is easy to change

dir <- "//network/directory" # put at top of script

files <- list.files(file.path(dir, "experiment1.csv"))



Data Input via Import Dataset

The Import Dataset dialog in RStudio can import �les stored locally or
online in the following formats:

I .txt/.csv via read_delim/read_csv from readr.

I .xlsx via read_excel from readxl.

I .sav/.por , .sas7bdat and .dta via read_spss, read_sas and
read_stata respectively from haven.

Most of these functions also allow �les to be compressed, e.g. as .zip.



Tibbles

The functions used by Import Dataset return enhanced data frames of
class "tbl_df", aka tibbles. These have certain advantages over the
standard R data frame:

I no partial name matching with $ (warns if name does not exist)

I safe printing: default 10-20 rows and columns to �t visible width

I single column indexing, e.g. tbl[, 1] returns a tibble not a vector

I rows are numbered not named

I no copy created when column names changed

I only recycle values of length 1

In addition the read_ functions do not convert character vectors to
factors as the standard read. functions do.



Data Input via Code

For writing code it is convenient to use the rio package, which provides a
common interface to the functions used by Import Dataset as well as
many others.

The data format is automatically recognised from the �le extension; to
read the data in as a tibble, we use the setclass argument.

library(rio)

compsci <- import("compsci.csv", setclass = "tibble")

cyclist <- import("cyclist.xlsx", setclass = "tibble")

See ?rio for the underlying functions used for each format and the
corresponding optional arguments, e.g. the skip argument to
read_excel to skip a certain number of rows.



Basic Checks
Using View to view the data in RStudio is a good way to check the data
has been read in as expected. Other useful summaries include

I head/tail to look at the �rst/last few rows of data

I dim to �nd out the dimensions (number of rows and columns)

I summary to summarise each variable in the data

The print method for tibbles has arguments n and width to set the
number of rows and the output width, in number of characters

print(compsci, n = 2, width = 80)

## # A tibble: 44 x 7

## Year `Bachelor's - Men` `Bachelor's - Women`

## <chr> <int> <int>

## 1 1970-71 .................. 2064 324

## 2 1971-72 .................. 2941 461

## # ... with 42 more rows, and 4 more variables: `Master's -

## # Men` <int>, `Master's - Women` <int>, `Doctor's - Men` <int>,

## # `Doctor's - Women` <int>



Tidy Data

To make it easier to work with, i.e. to operate on, visualise, or model,
data should be tidy, i.e.

I each column is a variable

I each row is an observation

Then you have a consistent way to refer to variables (by name) and to
observations (by number).

The tidyr package provides functions to help get data into this tidy
form. The key functions are gather and separate.



gather
The gather function gathers a variable that is spread over multiple
columns into two columns: one for the key (original column name) and
one for the value.

library(tidyr)

compsci2 <- gather(compsci, key = "Student Group",

value = "Number of students", -Year)

print(compsci2, n = 3)

## # A tibble: 264 x 3

## Year `Student Group` `Number of students`

## <chr> <chr> <int>

## 1 1970-71 .................. Bachelor's - Men 2064

## 2 1971-72 .................. Bachelor's - Men 2941

## 3 1972-73 .................. Bachelor's - Men 3664

## # ... with 261 more rows

The last value speci�es the columns to gather: -Year means everything
minus Year. Alternatively name each column as a separate argument, or
specify a sequence: �Bachelor's - Men�:�Doctor's - Women�.



separate

The separate function separates values that have been concatenated
into a single variable.

compsci2 <- separate(compsci2, col = `Student Group`,

into = c("Degree", "Gender"),

sep = " - ")

print(compsci2, n = 3)

## # A tibble: 264 x 4

## Year Degree Gender `Number of students`

## * <chr> <chr> <chr> <int>

## 1 1970-71 .................. Bachelor's Men 2064

## 2 1971-72 .................. Bachelor's Men 2941

## 3 1972-73 .................. Bachelor's Men 3664

## # ... with 261 more rows

By default (if no sep is speci�ed), the column will be split on any
sequence of non-alphanumeric characters. Since the degree names have
apostrophes, we specify a custom sep to avoid two splits.



Further Tidying

Other functions in tidyr are focused on the following tasks

More separating separate_rows separates concatenated values into
multiple rows

Expanding e.g. complete to include missing combinations of values

Handling missing values replacing/�lling in/dropping missing values

Reverse operations create messy data! Can be useful for table output.



Data Wrangling

Often we need to go beyond tidying the data to create derived data sets.

The dplyr package provides the following key functions to operate on
data frames

I filter()

I arrange()

I select() (and rename())

I distinct()

I mutate() (and transmute())

I summarise()



filter()

filter() selects rows of data by criteria

library(dplyr)

filter(compsci2, Gender == "Men" & `Number of students` > 40000)

## # A tibble: 5 x 4

## Year Degree Gender `Number of students`

## <chr> <chr> <chr> <int>

## 1 2002-03 ............. Bachelor's Men 41950

## 2 2003-04 ............... Bachelor's Men 44585

## 3 2004-05 ............... Bachelor's Men 42125

## 4 2012-13 ............... Bachelor's Men 41874

## 5 2013-14 ............... Bachelor's Men 45393

The second argument can be anything that returns a logical vector.



Logical Filters

The following components are useful for de�ning �lters

Binary comparisons >, <, ==, <=, >= and !=

Logical operators or |; and &, not !

Value matching e.g. Degree %in% c("Master's", "Doctor's");
grepl

Missing value indicator is.na



arrange()

arrange() orders the rows of data by one or more variables.

By default, ordering is in ascending order; use desc() for descending
order

print(arrange(compsci2, desc(Year), Gender), n = 4)

## # A tibble: 264 x 4

## Year Degree Gender `Number of students`

## <chr> <chr> <chr> <int>

## 1 2013-14 ............... Bachelor's Men 45393

## 2 2013-14 ............... Master's Men 17484

## 3 2013-14 ............... Doctor's Men 1566

## 4 2013-14 ............... Bachelor's Women 9974

## # ... with 260 more rows



select()
select() selects variables from the data frame. Columns are selected in
the same way as for gather()

select(compsci2, Year, Gender, `Number of students`)

select(compsci2, Year:Degree, `Number of students`)

select(compsci2, -Degree, -Gender)

select(compsci2, -(Year:Gender))

Blocks of variables can be selected using starts_with(), ends_with(),
contains() and num_range()

print(select(compsci, starts_with("Bachelor's")), n = 2)

## # A tibble: 44 x 2

## `Bachelor's - Men` `Bachelor's - Women`

## <int> <int>

## 1 2064 324

## 2 2941 461

## # ... with 42 more rows



Renaming Variables

Variables can be renamed when they are selected using named
arguments, e.g.

select(compsci2, `Academic Year` = Year, Gender, `Number of students`)

However this drops any variables not speci�ed in the selection. To
rename without selection, use rename()

rename(compsci2, `Academic Year` = Year)

N.B. the new name is given on the left!



Obtaining Distinct Records

distinct() extracts records with unique combinations of the speci�ed
variables

distinct(compsci2, Degree, Gender)

## # A tibble: 6 x 2

## Degree Gender

## <chr> <chr>

## 1 Bachelor's Men

## 2 Bachelor's Women

## 3 Master's Men

## 4 Master's Women

## 5 Doctor's Men

## 6 Doctor's Women



Computing New Columns

mutate() computes new columns based on existing columns. Re-using
an existing name replaces the old variable

dat <- mutate(compsci2,

Postgrad = Degree != "Bachelor's",

Year = gsub(".", "", Year, fixed = TRUE),

Year = sub(" ", "", Year, fixed = TRUE))

print(dat, n = 2)

## # A tibble: 264 x 5

## Year Degree Gender `Number of students` Postgrad

## <chr> <chr> <chr> <int> <lgl>

## 1 1970-71 Bachelor's Men 2064 FALSE

## 2 1971-72 Bachelor's Men 2941 FALSE

## # ... with 262 more rows

Note computations are in the order given, so mutated columns can be
used in subsequent computations



Discarding Original Variables

To only keep the computed columns, use transmute()

dat <- transmute(compsci2,

Postgrad = Degree != "Bachelor's",

Year = gsub(".", "", Year, fixed = TRUE),

Year = sub(" ", "", Year, fixed = TRUE))

print(dat, n = 2)

## # A tibble: 264 x 2

## Postgrad Year

## <lgl> <chr>

## 1 FALSE 1970-71

## 2 FALSE 1971-72

## # ... with 262 more rows

To keep some original and some computed columns, we could use
mutate followed by select, or set a transmuted variable equal to the
original, e.g. Gender = Gender.



Summarise Columns
summarise() is for computing single number summaries of variables

summarise(compsci2,

Average = mean(`Number of students`),

Total = sum(`Number of students`))

## # A tibble: 1 x 2

## Average Total

## <dbl> <int>

## 1 6862 1811522

Selected variables can be summarised using summarise_all(),
summarise_at() and summarise_if()

summarise_if(compsci2, is.numeric, mean)

## # A tibble: 1 x 1

## `Number of students`

## <dbl>

## 1 6862



Multiple Steps

Typically data pre-processing will involve multiple steps

dat <- mutate(compsci2,

Year = gsub(".", "", Year, fixed = TRUE),

Year = sub(" ", "", Year, fixed = TRUE))

dat <- filter(dat, Year == "2013-14" & Degree != "Bachelor's")

select(dat, -Year)

## # A tibble: 4 x 3

## Degree Gender `Number of students`

## <chr> <chr> <int>

## 1 Master's Men 17484

## 2 Master's Women 7048

## 3 Doctor's Men 1566

## 4 Doctor's Women 416



Chaining

Since the �rst argument to all dplyr functions is the data frame to
operate on, we can use "%*%" to pipe the data from one step to the next

compsci2 %>%

mutate(Year = gsub(".", "", Year, fixed = TRUE),

Year = sub(" ", "", Year, fixed = TRUE)) %>%

filter(Year == "2013-14" & Degree != "Bachelor's") %>%

select(-Year)

## # A tibble: 4 x 3

## Degree Gender `Number of students`

## <chr> <chr> <int>

## 1 Master's Men 17484

## 2 Master's Women 7048

## 3 Doctor's Men 1566

## 4 Doctor's Women 416



Pipe-aware Functions
Any function with data as the �rst argument can be added to the data
pipeline, e.g. tidyr functions.

compsci %>%

gather(key = "Student Group", value = "Number of students",

-Year) %>%

separate(col = `Student Group`, into = c("Degree", "Gender"),

sep = " - ") %>%

mutate(Year = gsub(".", "", Year, fixed = TRUE),

Year = sub(" ", "", Year, fixed = TRUE)) %>%

filter(Year == "2013-14" & Degree != "Bachelor's") %>%

select(-Year)

## # A tibble: 4 x 3

## Degree Gender `Number of students`

## <chr> <chr> <int>

## 1 Master's Men 17484

## 2 Master's Women 7048

## 3 Doctor's Men 1566

## 4 Doctor's Women 416



Grouped Operations

Grouping can be set on a data frame using group_by. This a�ects the
dplyr functions as follows

I select() adds the grouping variables to the selection if you don't

I arrange() acts as on an unordered data frame

I mutate() and filter() operate per group - only di�er when
involve a summary statistic

I summarise() operate per group



Grouping

compsci2 %>%

filter(grepl("2013-14", Year)) %>%

group_by(Gender) %>%

select(Degree, `Number of students`) %>%

arrange(`Number of students`)

## # A tibble: 6 x 3

## # Groups: Gender [2]

## Gender Degree `Number of students`

## <chr> <chr> <int>

## 1 Women Doctor's 416

## 2 Men Doctor's 1566

## 3 Women Master's 7048

## 4 Women Bachelor's 9974

## 5 Men Master's 17484

## 6 Men Bachelor's 45393



Grouped Mutate

compsci2 %>%

filter(grepl("2013-14", Year)) %>%

group_by(Gender) %>%

mutate(`Relative number` =

100 * `Number of students`/max(`Number of students`))

## # A tibble: 6 x 5

## # Groups: Gender [2]

## Year Degree Gender `Number of students`

## <chr> <chr> <chr> <int>

## 1 2013-14 ............... Bachelor's Men 45393

## 2 2013-14 ............... Bachelor's Women 9974

## 3 2013-14 ............... Master's Men 17484

## 4 2013-14 ............... Master's Women 7048

## 5 2013-14 ............... Doctor's Men 1566

## 6 2013-14 ............... Doctor's Women 416

## # ... with 1 more variables: `Relative number` <dbl>



Grouped Summarise

compsci2 %>%

filter(grepl("2013-14", Year)) %>%

group_by(Gender) %>%

summarise(Total = sum(`Number of students`))

## # A tibble: 2 x 2

## Gender Total

## <chr> <int>

## 1 Men 64443

## 2 Women 17438



Factors

For the purpose of data manipulation categorical variables may be stored
as character or numeric.

For analysis, particularly modelling, categorical variables must be de�ned
as factors. By default factor levels are the ordered unique values

dat <- compsci2 %>%

mutate(Year = factor(Year),

Degree = factor(Degree),

Gender = factor(Gender))

summary(select(dat, -`Number of students`))

## Year Degree Gender

## 1970-71 ..................: 6 Bachelor's:88 Men :132

## 1971-72 ..................: 6 Doctor's :88 Women:132

## 1972-73 ..................: 6 Master's :88

## 1973-74 ..................: 6

## 1974-75 ..................: 6

## 1975-76 ..................: 6

## (Other) :228



Factors

The order of factor levels matters

visualisation geometric objects (bars/lines) displayed in order of levels

modelling �rst level taken as reference level

Levels and their labels can be speci�ed as arguments to factor.

mutate(compsci2, Gender = factor(Gender, levels = c("Men", "Women"),

labels = c("M", "F")))

The forcats package provides useful functions to reorder levels, e.g.

library(forcats)

dat %>%

mutate(Degree = fct_inorder(Degree),

Gender = fct_relevel(Gender, "Men"))

summary(dat)

Other functions in forcats help to change levels, combine factors, etc.



Saving/Exporting (Processed) Data

The rio package also has an export function to export data, e.g to share
with collaborators

export(compsci2, "compsci2.csv")

However, if the processed data is only saved as an intermediate step, it is
better to save in the binary .rds format. This requires less memory, is
quicker to load and will retain the tibble class

saveRDS(compsci2, "compsci_tidy.rds")

genderbalance <- readRDS("compsci_tidy.rds")

print(genderbalance, n = 2)
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