
Principles and Practice of Data Analysis

for Reproducible Research in R

Introduction to R

Heather Turner

Department of Statistics, University of Warwick

2017�09�11

Why R?

Free.

Open source.

Software for data science:

I experiment/survey design

I data retrieval

I data wrangling

I data analysis

I reporting

A programming language, so we can

I use existing functions to code up our data science tasks

I write new functions for customised/novel tasks

The R Ecosystem

Base R

base package recommended packages

create R objects statistics
summaries graphics

mathematical functions example data

Contributed Packages

CRAN Bioconductor GitHub

cran.r-project.org bioconductor.org github.com

main repos bioinformatics devel pkgs
> 11000 pkgs > 2000 pkgs GitHub-only pkgs

https://cran.r-project.org/
https://www.bioconductor.org/
https://github.com/

R Demo

We can type commands directly into the R console

3 + 4

?"+" #look up help for "+"

x <- 3 + 4 ; y <- log(x)

ls() # list of objects in the current workspace

rm(x)

data() # find out what standard data sets there are

plot(iris) # plot Fisher's iris data

RStudio IDE

RStudio Features

Features provided by RStudio include:

I syntax highlighting, code completion, smart indentation

I interactively send code chunks from editor to R

I organise multiple scripts, help �les, plots

I search code and help �les

RStudio Shortcuts from the R Console

RStudio provides a few shortcuts to help write code in the R console

Up/Down go back/forward through history one command at a time

Ctrl+Uparrow review recent history and select command

Tab view possible completions for part-written expression

Code completion is also provided in the source editor

R Scripts

Text �les saved with a .R su�x are recognised as R code.

Code can be sent directly from the source editor as follows

current line Ctrl+Enter or Run button

multiple lines highlight lines, then run as above

whole �le Ctrl+Shirt+Enter or Source button. Can also check the
Source on Save box.

R Studio Demo

View(iris)

showing code completion, running code, indentation

sum(3, 4)

summary(iris, maxsum = 2,

digits = 2)

Vectors

A single number is a special case of a numeric vector. Vectors of length
greater than one can be created using the concatenate function, c

x <- c(1, 3, 6)

The elements of the vector must be of the same type: common types are
numeric, character and logical

y <- c("red", "yellow", "green")

z <- c(TRUE, FALSE)

Missing values (of any type) are represented by the symbol NA.

Data Frames

Data sets are stored in R as data frames. These are structured as a list
of objects, typically vectors, of the same length

str(iris)

'data.frame': 150 obs. of 5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

Here Species is a factor, a special data structure for categorial
variables.

Numeric Summaries
Applying summary to a data frame will give a summary of each variable

summary(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width

Min. :4.30 Min. :2.00 Min. :1.00 Min. :0.1

1st Qu.:5.10 1st Qu.:2.80 1st Qu.:1.60 1st Qu.:0.3

Median :5.80 Median :3.00 Median :4.35 Median :1.3

Mean :5.84 Mean :3.06 Mean :3.76 Mean :1.2

3rd Qu.:6.40 3rd Qu.:3.30 3rd Qu.:5.10 3rd Qu.:1.8

Max. :7.90 Max. :4.40 Max. :6.90 Max. :2.5

Species

setosa :50

versicolor:50

virginica :50

##

##

##

This is returned as the table of characters shown, so only suitable for
printing.

Single Column
We can refer to a single column from the data frame by name.

Thus we can obtain summaries for a single variable as follows

head(iris$Sepal.Length, 4)

[1] 5.1 4.9 4.7 4.6

fivenum(iris$Sepal.Length)

[1] 4.3 5.1 5.8 6.4 7.9

quantile(iris$Sepal.Length, 0.25)

25%

5.1

Other useful summary functions for single variables include min, mean
and range.

Contingency Tables
A one-way table can be created as follows

table(iris$Species)

##

setosa versicolor virginica

50 50 50

To illustrate a two way table, we �rst create a new factor using the
function cut to cut the Petal.Width variable into three levels

petalCat <- cut(iris$Petal.Width, breaks = c(0, 1, 2, 3))

table(iris$Species, petalCat)

petalCat

(0,1] (1,2] (2,3]

setosa 50 0 0

versicolor 7 43 0

virginica 0 27 23

Graphs

In RStudio, graphs are displayed in the Plots window. The plot is sized to
�t the window and will be rescaled if the size of the window is changed.

Back and forward arrows allow you to navigate through graphs that have
been plotted.

Graphs can be saved in various formats using the Export drop down
menu, which also has an option to copy to the clipboard.

Here we consider "no-frills" plots, for quick exploratory plots.

Boxplots

boxplot(iris$Petal.Width)

with(iris, boxplot(Petal.Width ~ Species))

0.
5

1.
0

1.
5

2.
0

2.
5

setosa versicolor virginica

0.
5

1.
0

1.
5

2.
0

2.
5

Histogram/Density

hist(iris$Petal.Width)

plot(density(iris$Petal.Width))

Histogram of iris$Petal.Width

iris$Petal.Width

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0 2.5

0
5

10
15

20
25

30
35

0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

density.default(x = iris$Petal.Width)

N = 150 Bandwidth = 0.2518

D
en

si
ty

Scatterplots
Here we use the underlying numeric representation of the Species factor
to index a colour vector for colouring the data points.

mycol <- c("blue", "orange", "green")

with(iris, plot(Petal.Width ~ Petal.Length,

col = mycol[Species]))

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Petal.Length

P
et

al
.W

id
th

See Colors in R for a display of all named colours in R.

http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf

Line chart

By default the type argument is "p" (points), use "l" for lines or "b"
for both.

with(pressure, plot(pressure ~ temperature, type = "l"))

with(pressure, plot(pressure ~ temperature, type = "b"))

0 50 100 150 200 250 300 350

0
20

0
40

0
60

0
80

0

temperature

pr
es

su
re

0 50 100 150 200 250 300 350

0
20

0
40

0
60

0
80

0

temperature

pr
es

su
re

Packages
At installation, a library will have been created with the base and
recommend packages.

A selection of these packages are loaded by default at the start of an R
session. These packages are then on the search path for R to �nd
functions

search()

[1] ".GlobalEnv" "tools:rstudio" "package:stats"

[4] "package:graphics" "package:grDevices" "package:utils"

[7] "package:datasets" "package:methods" "Autoloads"

[10] "package:base"

If we try to use a function in a package that is not loaded, we get an
error

truehist(iris$Species)

Error in truehist(iris$Species): could not find function

"truehist"

Packages

Using the help search in RStudio, or ?? we can discover if the function is
in an installed package. If so, we simply need to load the package �rst

library(MASS)

truehist(iris$Species)

If it's not in an installed package, we can try searching on
Rdocumentation.org or RSeek.org to �nd the relevant package and
install it.

www.Rdocumentation.org
http://rseek.org/

	R Orientation
	R Studio
	Data Structures
	Numeric Summaries
	Graphical Summaries
	Packages

