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Motivation

▪ The theory has been developed around partial equilibrium analysis
Quasilinear preferences on wealth

▪ Only recently have income effects been taken into consideration
 (Saitoh & Serizawa 2008); (Sakai 2008); (Dastidar 2015);

▪ Even so, they present only the numeraire as an outside good

▪ Auctioned goods’ values and budget constraints are exogenously 
imposed

▪ A new benchmark model
A “well behaved” auction – Vickrey Auction (VA) – (Vickrey 1961)
With “well behaved” preferences
Allowing for General Equilibrium Effects (GEE) to appear



Base Assumptions
▪ Preferences represented by utility functions 

that are, unless otherwise specified:
 Continuous 
 Smooth
 Smoothly monotone
 Smoothly quasiconcave
 Bounded from below

▪ Goods are always Normal and Gross 
Substitutes

▪ All divisible goods are essential for 
positive utility, but not the auctioned good

▪ Outside goods (𝑥𝑥𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿) are divisible, 
but auctioned good (𝐾𝐾) is indivisible

▪ Agents have strictly positive endowments 
of every divisible good (𝝎𝝎−𝑲𝑲≫ 𝟎𝟎)

▪ Non-cooperative behaviour

▪ Imply that Demand Functions are:
▪ Homogenous of Degree 0
▪ Smooth
▪ Possess a Smooth inverse
▪ Bounded from below
▪ Satisfy Walra’s Law
▪ Satisfy Desirability 
▪ ND and Symmetry of Slutsky matrix

𝑢𝑢𝑖𝑖 = 𝑓𝑓(𝒙𝒙𝒍𝒍𝑖𝑖 ,𝐾𝐾𝑖𝑖)



Exchange Economy

Introducing a new good

𝑍𝑍0
↓
𝒑𝒑𝑳𝑳,𝟎𝟎
𝑵𝑵

▪ 𝑝𝑝𝐿𝐿,0
𝑁𝑁 = 𝑝𝑝𝐿𝐿,1

𝑁𝑁 ?
Always equal
Not always equal

Existence and Uniqueness of Equilibrium

▪ IF Base Assumptions ⇒ Existence and 
Uniqueness when 𝐾𝐾 is not traded

Never optimal to bid total non-𝐾𝐾
wealth**

Since non-K goods are divisible, the 
buyer can always find a combination 
of endowments such that 
(𝝎𝝎−𝑲𝑲−�𝛚𝛚−𝑲𝑲 ≫ 𝟎𝟎)

▪ THEN Base Assumptions ⇒ Existence and 
Uniqueness when 𝐾𝐾 is traded

𝐾𝐾𝑖𝑖 ,𝑝𝑝𝐾𝐾
↑

→ (𝑉𝑉𝑉𝑉)

→ 𝑍𝑍1
↓
𝒑𝒑𝑳𝑳,𝟏𝟏
𝑁𝑁



The (𝑳𝑳 = 𝟏𝟏 + 𝑲𝑲 = 𝟏𝟏) goods case

The Model

▪ 𝑛𝑛 ≥ 3 agents – including the seller

▪ 𝑢𝑢𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝑥𝑥1,𝑖𝑖 ,𝐾𝐾𝑖𝑖) with:

𝑥𝑥1,𝑖𝑖 > 0 ⇔ 𝑢𝑢𝑖𝑖 > 0
𝑥𝑥1,𝑖𝑖 = 0 ⇔ 𝑢𝑢𝑖𝑖 = 0

▪ With Budget Constraint:  𝑝𝑝1,𝑡𝑡 ∗ 𝑥𝑥1,𝑖𝑖 − 𝜔𝜔1,𝑖𝑖 + 𝑝𝑝𝐾𝐾,𝑡𝑡 ∗ 𝐾𝐾𝑖𝑖 − 𝜔𝜔𝐾𝐾,𝑖𝑖 ≤ 0

▪ 𝜔𝜔𝐾𝐾,𝑖𝑖 = �1, 𝑖𝑖 = 𝑠𝑠
0, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and 𝝎𝝎𝟏𝟏 ≫ 𝟎𝟎

▪ For 𝑖𝑖 = 1, … ,𝑛𝑛 and later re-labelled accordingly as seller (𝑠𝑠), non-buyers 
(𝑛𝑛𝑏𝑏1, … ,𝑛𝑛𝑏𝑏𝑗𝑗) and buyer (𝑏𝑏) if the winner is different from the seller;

▪ Demand for K not capped at unity, but limited supply



▪ Z1 =

𝑝𝑝1,1𝜔𝜔1,𝑏𝑏−𝑝𝑝𝐾𝐾,0(1−0)
𝑝𝑝1,1

− 𝜔𝜔1,𝑏𝑏 1

⋮
𝑝𝑝1,1𝜔𝜔1,𝑛𝑛𝑛𝑛(𝑛𝑛−2)−𝑝𝑝𝐾𝐾,0(0−0)

𝑝𝑝1,1
− 𝜔𝜔1,𝑛𝑛𝑛𝑛(𝑛𝑛−2)

⋮
0

𝑝𝑝1,1𝜔𝜔1,𝑠𝑠−𝑝𝑝𝐾𝐾,0(0−1)
𝑝𝑝1,1

− 𝜔𝜔1,𝑠𝑠 −1

▪ 𝑧𝑧1,1 𝑝𝑝1,1 = 𝑝𝑝𝐾𝐾,0∗1
𝑝𝑝1,1

− 𝑝𝑝𝐾𝐾,0∗1
𝑝𝑝1,1

= 0
No-trade equilibrium: +transfer - transfer
𝑝𝑝1,1

𝑁𝑁 = 1

▪ Z0 =

𝑝𝑝1,0𝜔𝜔1,𝑛𝑛𝑛𝑛𝑛−𝑝𝑝𝐾𝐾,0(0−0)
𝑝𝑝1,0

− 𝜔𝜔1,𝑛𝑛𝑛𝑛𝑛 0

⋮
𝑝𝑝1,0𝜔𝜔1,𝑛𝑛𝑛𝑛(𝑛𝑛−1)−𝑝𝑝𝐾𝐾,0(0−0)

𝑝𝑝1,0
− 𝜔𝜔1,𝑛𝑛𝑛𝑛(𝑛𝑛−1)

⋮
0

𝑝𝑝1,0𝜔𝜔1,𝑠𝑠−𝑝𝑝𝐾𝐾,0(1−1)
𝑝𝑝1,0

− 𝜔𝜔1,𝑠𝑠 1 − 1

▪ 𝑧𝑧1,0 𝑝𝑝1,0 = ∑𝑖𝑖=1𝑛𝑛 𝑝𝑝1,0𝜔𝜔1,𝑖𝑖
𝑝𝑝1,0

− ∑𝑖𝑖=1𝑛𝑛 𝜔𝜔1,𝑖𝑖 = 0
No-trade equilibrium
𝑝𝑝1,0

𝑁𝑁 = 1

The (𝑳𝑳 = 𝟏𝟏 + 𝑲𝑲 = 𝟏𝟏) goods case

Before the Auction After the Auction

▪ Find:
 𝑥𝑥1,𝑖𝑖

∗ given (𝐾𝐾𝑖𝑖= 0)

 𝑥𝑥1,𝑖𝑖
∗∗ given 𝐾𝐾𝑖𝑖 = 1

▪ Set 𝐾𝐾𝑖𝑖 = 𝜔𝜔𝐾𝐾,𝑖𝑖: no trade on 𝐾𝐾

▪ Find:
 𝑥𝑥1,𝑖𝑖

∗ given (𝐾𝐾𝑖𝑖= 0)

 𝑥𝑥1,𝑖𝑖
∗∗ given 𝐾𝐾𝑖𝑖 = 1

▪ Set 𝐾𝐾𝑏𝑏 = 1,𝐾𝐾−𝑏𝑏 = 0



The (𝑳𝑳 ≥ 𝟏𝟏 + 𝑲𝑲 = 𝟏𝟏) goods case

The Model

▪ 𝑛𝑛 ≥ 3 agents – including the seller

▪ 𝑢𝑢𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝒙𝒙𝑳𝑳,𝒊𝒊,𝐾𝐾𝑖𝑖) with:

𝑥𝑥𝑙𝑙,𝑖𝑖 > 0 ⇔ 𝑢𝑢𝑖𝑖 > 0,∀𝑙𝑙 ∈ 𝐿𝐿
𝑥𝑥𝑙𝑙,𝑖𝑖 = 0 ⇔ 𝑢𝑢𝑖𝑖 = 0,∀𝑙𝑙 ∈ 𝐿𝐿

▪ With Budget Constraint:  𝒑𝒑𝑳𝑳,𝒕𝒕 ∗ 𝒙𝒙𝑳𝑳,𝒊𝒊 − 𝝎𝝎𝑳𝑳,𝒊𝒊 + 𝑝𝑝𝐾𝐾,𝑡𝑡 ∗ 𝐾𝐾𝑖𝑖 − 𝜔𝜔𝐾𝐾,𝑖𝑖 ≤ 0

▪ 𝜔𝜔𝐾𝐾,𝑖𝑖 = �1, 𝑖𝑖 = 𝑠𝑠
0, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and 𝝎𝝎−𝑲𝑲 ≫ 𝟎𝟎

▪ For 𝑖𝑖 = 1, … ,𝑛𝑛 and later re-labelled accordingly as seller (𝑠𝑠), non-buyers 
(𝑛𝑛𝑏𝑏1, … ,𝑛𝑛𝑏𝑏𝑗𝑗) and buyer (𝑏𝑏) if the winner is different from the seller;

▪ Demand for K not capped at unity, but limited supply



The (𝑳𝑳 ≥ 𝟏𝟏 + 𝑲𝑲 = 𝟏𝟏) goods case
Before the Auction

After the Auction

Z0 =

𝑥𝑥1,𝑛𝑛𝑛𝑛𝑛
∗ (𝒑𝒑𝑳𝑳,𝟎𝟎,𝝎𝝎𝒏𝒏𝒏𝒏𝒏𝒏) −𝜔𝜔1,𝑛𝑛𝑛𝑛𝑛

⋮
𝑥𝑥1,𝑛𝑛𝑛𝑛(𝑛𝑛−1)
∗ (𝒑𝒑𝑳𝑳,𝟎𝟎,𝝎𝝎𝒏𝒏𝒏𝒏(𝒏𝒏−𝟏𝟏)) −𝜔𝜔1,𝑛𝑛𝑛𝑛(𝑛𝑛−1)

𝑥𝑥1,𝑠𝑠
∗∗ (𝒑𝒑𝑳𝑳,𝟎𝟎,𝝎𝝎𝒔𝒔)−𝜔𝜔1,𝑠𝑠

𝑥𝑥2,𝑛𝑛𝑛𝑛𝑛
∗ (𝒑𝒑𝑳𝑳,𝟎𝟎,𝝎𝝎𝒏𝒏𝒏𝒏𝒏𝒏)−𝜔𝜔2,𝑛𝑛𝑛𝑛𝑛

⋮
𝑥𝑥2,𝑛𝑛𝑛𝑛(𝑛𝑛−1)
∗ (𝒑𝒑𝑳𝑳,𝟎𝟎,𝝎𝝎𝒏𝒏𝒏𝒏(𝒏𝒏−𝟏𝟏)) −𝜔𝜔2,𝑛𝑛𝑛𝑛(𝑛𝑛−1)

𝑥𝑥2,𝑠𝑠
∗∗ (𝒑𝒑𝑳𝑳,𝟎𝟎,𝝎𝝎𝒔𝒔)−𝜔𝜔2,𝑠𝑠

…
⋮…

…

0
⋮
0

1 − 1

▪ �
𝑧𝑧1,0 𝒑𝒑𝑳𝑳,𝟎𝟎

𝑵𝑵 = 0
⋮

𝑧𝑧𝐿𝐿−1,0 𝒑𝒑𝑳𝑳,𝟎𝟎
𝑵𝑵 = 0

Z1 =

𝑥𝑥1,𝑏𝑏
∗∗ (𝒑𝒑𝑳𝑳,𝟏𝟏,𝝎𝝎𝒃𝒃)− 𝜔𝜔1,𝑏𝑏

⋮
𝑥𝑥1,𝑛𝑛𝑛𝑛(𝑛𝑛−1)
∗ (𝒑𝒑𝑳𝑳,𝟏𝟏,𝝎𝝎𝒏𝒏𝒏𝒏(𝒏𝒏−𝟏𝟏)) − 𝜔𝜔1,𝑛𝑛𝑛𝑛(𝑛𝑛−1)

𝑥𝑥1,𝑠𝑠
∗ (𝒑𝒑𝑳𝑳,𝟏𝟏,𝝎𝝎𝒔𝒔) −𝜔𝜔1,𝑠𝑠

𝑥𝑥2,𝑏𝑏
∗∗ (𝒑𝒑𝑳𝑳,𝟏𝟏,𝝎𝝎𝒃𝒃)− 𝜔𝜔2,𝑏𝑏

⋮
𝑥𝑥2,𝑛𝑛𝑛𝑛(𝑛𝑛−1)
∗ (𝒑𝒑𝑳𝑳,𝟏𝟏,𝝎𝝎𝒏𝒏𝒏𝒏(𝒏𝒏−𝟏𝟏)) − 𝜔𝜔2,𝑛𝑛𝑛𝑛(𝑛𝑛−1)

𝑥𝑥2,𝑠𝑠
∗ (𝒑𝒑𝑳𝑳,𝟏𝟏,𝝎𝝎𝒔𝒔) −𝜔𝜔2,𝑠𝑠

…
⋮…
…

1
⋮
0
−1

▪ �
𝑧𝑧1,1 𝒑𝒑𝑳𝑳,𝟏𝟏

𝑵𝑵 = 0
⋮

𝑧𝑧𝐿𝐿−1,1 𝒑𝒑𝑳𝑳,𝟏𝟏
𝑵𝑵 = 0



Set-ups of Interest
▪ Seller participates, but does not conduct the 

auction
 Fear of cheating?

 Reserve price?

 Not always the winner

▪ (𝐿𝐿 ≥ 1 + 𝐾𝐾 = 1) goods case

▪ Non-Quasilinear utility on divisible goods
 Quasilinearity makes all divisible goods perfect 

substitutes. Existence in divisible goods’ markets is no 
longer assured.

 Quasilinearity on wealth reduces the model to the (𝐿𝐿 =
1 + 𝐾𝐾 = 1) goods case

▪ Heterogeneous agents
 If the seller has the same preferences/endowments as 

everyone else, no auction

 All bidders the same: only ties

 Sellers preferences identical to buyer’s preferences: 
transfer from auction never affects Aggregate 
Demand for divisible goods

Always

𝑝𝑝𝐿𝐿,0
𝑁𝑁 = 𝑝𝑝𝐿𝐿,1

𝑁𝑁

•Seller is ALWAYS the winner

•(𝐿𝐿 = 1 + 𝐾𝐾 = 1) goods case

•Quasilinear preferences on 
wealth

•Homogeneous agents

•NO GEE

NOT always
𝑝𝑝𝐿𝐿,0
𝑁𝑁 = 𝑝𝑝𝐿𝐿,1

𝑁𝑁

•Seller NOT ALWAYS the 
winner

•(𝐿𝐿 > 1 + 𝐾𝐾 = 1) goods case

•Non-quasilinear preferences 
on wealth

•Heterogeneous agents

•Possible GEE
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▪ More general case (NOT necessarily 𝑝𝑝𝐿𝐿,0
𝑁𝑁 = 𝑝𝑝𝐿𝐿,1

𝑁𝑁 )

▪ But under the simplifying assumption 𝑬𝑬 𝒑𝒑𝑳𝑳,𝟏𝟏
𝑵𝑵 = 𝒑𝒑𝑳𝑳,𝟎𝟎

𝑵𝑵

 Divisible goods’ Market is deep
 Best guess

▪ Then, find indirect utility functions for 𝐾𝐾𝑖𝑖 = 0 and 𝐾𝐾𝑖𝑖 = 1, respectively 𝑣𝑣𝑖𝑖0 and 𝑣𝑣𝑖𝑖1
 For Non-sellers

N1. 𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖 = 0 ⟺ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑙𝑙 = 0. Then, utility given no 
consumption of 𝐾𝐾: 𝑣𝑣−𝑠𝑠0 𝑝𝑝𝐾𝐾 > 0; and 𝜕𝜕𝜕𝜕−𝑠𝑠

0

𝜕𝜕𝑝𝑝𝐾𝐾
= 0

N2. Buying 𝐾𝐾 for exactly its non-𝐾𝐾 wealth, will leave no budget 
for any essential goods, bringing utility to zero

𝑝𝑝𝐾𝐾,𝐵𝐵𝐵𝐵−𝑠𝑠 = 𝒑𝒑𝑳𝑳,𝟎𝟎 ∗ 𝝎𝝎−𝑲𝑲,−𝒔𝒔 ⟹ 𝑣𝑣𝑠𝑠1 𝑝𝑝𝐾𝐾,𝐵𝐵𝐵𝐵−𝑠𝑠 = 0 < 𝑣𝑣𝑠𝑠0 𝑝𝑝𝐾𝐾,𝐵𝐵𝐵𝐵𝐵𝐵

N3a. 𝐱𝐱𝑳𝑳 are normal, so  𝜕𝜕𝜕𝜕−𝑠𝑠
1

𝜕𝜕𝑝𝑝𝐾𝐾
< 0

N3b. At 𝑝𝑝𝐾𝐾= 0, the buyer consumes 𝐾𝐾 for free; thus, 𝑣𝑣−𝑠𝑠1 0 ≥
𝑣𝑣−𝑠𝑠0 0

N4. Hence, by applying the Intermediate Value Theorem, 
∃ �𝑝𝑝𝐾𝐾𝑠𝑠 ∈ 𝑝𝑝𝐾𝐾 ,𝑝𝑝𝐾𝐾,𝐵𝐵𝐵𝐵𝐵𝐵 , 𝑠𝑠. 𝑡𝑡.𝒱𝒱−𝑠𝑠 �𝑝𝑝𝐾𝐾𝑠𝑠 = 0, where  𝓥𝓥−𝒔𝒔 = 𝒗𝒗𝒊𝒊𝟏𝟏- 𝒗𝒗𝒊𝒊𝟎𝟎N1

𝑝𝑝𝐾𝐾

𝑣𝑣−𝑠𝑠0

𝑢𝑢−𝑠𝑠

Solving the VA 
Incremental Pay-off Function

N2

�𝑝𝑝𝐾𝐾

𝑣𝑣−𝑠𝑠1



▪ More general case (NOT necessarily 𝑝𝑝𝐿𝐿,0
𝑁𝑁 = 𝑝𝑝𝐿𝐿,1

𝑁𝑁 )

▪ But under the simplifying assumption 𝑬𝑬 𝒑𝒑𝑳𝑳,𝟏𝟏
𝑵𝑵 = 𝒑𝒑𝑳𝑳,𝟎𝟎

𝑵𝑵

 Divisible goods’ Market is deep
 Best guess

▪ Then, find indirect utility functions for 𝐾𝐾𝑖𝑖 = 0 and 𝐾𝐾𝑖𝑖 = 1, respectively 𝑣𝑣𝑖𝑖0 and 𝑣𝑣𝑖𝑖1
 For Non-sellers

N1. 𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖 = 0 ⟺ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑙𝑙 = 0. Then, utility given no 
consumption of 𝐾𝐾: 𝑣𝑣−𝑠𝑠0 𝑝𝑝𝐾𝐾 > 0; and 𝜕𝜕𝜕𝜕−𝑠𝑠

0

𝜕𝜕𝑝𝑝𝐾𝐾
= 0

N2. Buying 𝐾𝐾 for exactly its non-𝐾𝐾 wealth, will leave no budget 
for any essential goods, bringing utility to zero

𝑝𝑝𝐾𝐾,𝐵𝐵𝐵𝐵−𝑠𝑠 = 𝒑𝒑𝑳𝑳,𝟎𝟎 ∗ 𝝎𝝎−𝑲𝑲,−𝒔𝒔 ⟹ 𝑣𝑣𝑠𝑠1 𝑝𝑝𝐾𝐾,𝐵𝐵𝐵𝐵−𝑠𝑠 = 0 < 𝑣𝑣𝑠𝑠0 𝑝𝑝𝐾𝐾,𝐵𝐵𝐵𝐵𝐵𝐵

N3a. 𝐱𝐱𝑳𝑳 are normal, so  𝜕𝜕𝜕𝜕−𝑠𝑠
1

𝜕𝜕𝑝𝑝𝐾𝐾
< 0

N3b. At 𝑝𝑝𝐾𝐾= 0, the buyer consumes 𝐾𝐾 for free; thus, 𝑣𝑣−𝑠𝑠1 0 ≥
𝑣𝑣−𝑠𝑠0 0

N4. Hence, by applying the Intermediate Value Theorem, 
∃ �𝑝𝑝𝐾𝐾𝑠𝑠 ∈ 𝑝𝑝𝐾𝐾 ,𝑝𝑝𝐾𝐾,𝐵𝐵𝐵𝐵𝐵𝐵 , 𝑠𝑠. 𝑡𝑡.𝒱𝒱−𝑠𝑠 �𝑝𝑝𝐾𝐾𝑠𝑠 = 0, where  𝓥𝓥−𝒔𝒔 = 𝒗𝒗𝒊𝒊𝟏𝟏- 𝒗𝒗𝒊𝒊𝟎𝟎

𝑝𝑝𝐾𝐾

𝑢𝑢−𝑠𝑠

Solving the VA 
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▪ More general case (NOT necessarily 𝑝𝑝𝐿𝐿,0
𝑁𝑁 = 𝑝𝑝𝐿𝐿,1

𝑁𝑁 )

▪ But under the simplifying assumption 𝑬𝑬 𝒑𝒑𝑳𝑳,𝟏𝟏
𝑵𝑵 = 𝒑𝒑𝑳𝑳,𝟎𝟎

𝑵𝑵

 Divisible goods’ Market is deep
 Best guess

▪ Then, find indirect utility functions for 𝐾𝐾𝑖𝑖 = 0 and 𝐾𝐾𝑖𝑖 = 1, respectively 𝑣𝑣𝑖𝑖0 and 𝑣𝑣𝑖𝑖1
 For the Seller

S1. 𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖 = 0 ⟺ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑙𝑙 = 0. Then, upon utility maximization 
given consumption of 𝐾𝐾, the utility level must be: 𝑣𝑣𝑠𝑠1 𝑝𝑝𝐾𝐾 > 0; 
and 𝜕𝜕𝜕𝜕𝑠𝑠

1

𝜕𝜕𝑝𝑝𝐾𝐾
= 0

S2. Selling 𝐾𝐾 for exactly its non-𝐾𝐾 wealth, the seller would 
have twice as much non-K wealth at initial price levels to 
spend on the normal divisible goods; Therefore, at:

𝑝𝑝𝐾𝐾,𝐵𝐵𝐵𝐵𝐵𝐵 = 𝒑𝒑𝑳𝑳,𝟎𝟎 ∗ 𝝎𝝎−𝑲𝑲,𝒔𝒔 ⟹ 𝑣𝑣𝑠𝑠1 𝑝𝑝𝐾𝐾,𝐵𝐵𝐵𝐵𝐵𝐵 < 𝑣𝑣𝑠𝑠0 𝑝𝑝𝐾𝐾,𝐵𝐵𝐵𝐵𝐵𝐵

S3a. 𝐱𝐱𝑳𝑳 are normal, so  𝜕𝜕𝜕𝜕𝑠𝑠
0

𝜕𝜕𝑝𝑝𝐾𝐾
> 0

S3b. At 𝑝𝑝𝐾𝐾= 0, the seller gets no extra revenue from selling 𝐾𝐾; 
thus, 𝑣𝑣𝑠𝑠1 0 ≥ 𝑣𝑣𝑠𝑠0 0

S4. Hence, by applying the Intermediate Value Theorem, 
∃ �𝑝𝑝𝐾𝐾𝑠𝑠 ∈ 𝑝𝑝𝐾𝐾 ,𝑝𝑝𝐾𝐾,𝐵𝐵𝐵𝐵𝐵𝐵 , 𝑠𝑠. 𝑡𝑡.𝒱𝒱𝑠𝑠 �𝑝𝑝𝐾𝐾𝑠𝑠 = 0, where  𝓥𝓥𝒔𝒔 = 𝒗𝒗𝒊𝒊𝟏𝟏- 𝒗𝒗𝒊𝒊𝟎𝟎

S1

𝑝𝑝𝐾𝐾

𝑣𝑣𝑠𝑠1

𝑢𝑢𝑠𝑠
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▪ More general case (NOT necessarily 𝑝𝑝𝐿𝐿,0
𝑁𝑁 = 𝑝𝑝𝐿𝐿,1

𝑁𝑁 )

▪ But under the simplifying assumption 𝑬𝑬 𝒑𝒑𝑳𝑳,𝟏𝟏
𝑵𝑵 = 𝒑𝒑𝑳𝑳,𝟎𝟎

𝑵𝑵

 Divisible goods’ Market is deep
 Best guess

▪ Then, find indirect utility functions for 𝐾𝐾𝑖𝑖 = 0 and 𝐾𝐾𝑖𝑖 = 1, respectively 𝑣𝑣𝑖𝑖0 and 𝑣𝑣𝑖𝑖1
 For the Seller

S1. 𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖 = 0 ⟺ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑙𝑙 = 0. Then, upon utility maximization 
given consumption of 𝐾𝐾, the utility level must be: 𝑣𝑣𝑠𝑠1 𝑝𝑝𝐾𝐾 > 0; 
and 𝜕𝜕𝜕𝜕𝑠𝑠

1

𝜕𝜕𝑝𝑝𝐾𝐾
= 0

S2. Selling 𝐾𝐾 for exactly its non-𝐾𝐾 wealth, the seller would 
have twice as much non-K wealth at initial price levels to 
spend on the normal divisible goods; Therefore, at:

𝑝𝑝𝐾𝐾,𝐵𝐵𝐵𝐵𝐵𝐵 = 𝒑𝒑𝑳𝑳,𝟎𝟎 ∗ 𝝎𝝎−𝑲𝑲,𝒔𝒔 ⟹ 𝑣𝑣𝑠𝑠1 𝑝𝑝𝐾𝐾,𝐵𝐵𝐵𝐵𝐵𝐵 < 𝑣𝑣𝑠𝑠0 𝑝𝑝𝐾𝐾,𝐵𝐵𝐵𝐵𝐵𝐵

S3a. 𝐱𝐱𝑳𝑳 are normal, so  𝜕𝜕𝜕𝜕𝑠𝑠
0

𝜕𝜕𝑝𝑝𝐾𝐾
> 0

S3b. At 𝑝𝑝𝐾𝐾= 0, the seller gets no extra revenue from selling 𝐾𝐾; 
thus, 𝑣𝑣𝑠𝑠1 0 ≥ 𝑣𝑣𝑠𝑠0 0

S4. Hence, by applying the Intermediate Value Theorem, 
∃ �𝑝𝑝𝐾𝐾𝑠𝑠 ∈ 𝑝𝑝𝐾𝐾 ,𝑝𝑝𝐾𝐾,𝐵𝐵𝐵𝐵𝐵𝐵 , 𝑠𝑠. 𝑡𝑡.𝒱𝒱𝑠𝑠 �𝑝𝑝𝐾𝐾𝑠𝑠 = 0, where  𝓥𝓥𝒔𝒔 = 𝒗𝒗𝒊𝒊𝟏𝟏- 𝒗𝒗𝒊𝒊𝟎𝟎

S1
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𝑢𝑢𝑠𝑠

𝑣𝑣𝑠𝑠1

𝑣𝑣𝑠𝑠0

𝒱𝒱𝑠𝑠



▪ 𝒱𝒱𝑖𝑖 is the Incremental pay-off function (IPF) and has a similar shape for sellers 
and non-sellers, conditional on winning

▪ If the agent does not consume 𝐾𝐾, then the incremental pay-off is, by 
definition, zero.

▪ The Expected Value of Incremental Pay-off for the VA will be:
 Sum of the value of the IPF at a point �𝑝𝑝𝐾𝐾, or 𝒱𝒱𝑖𝑖 �𝑝𝑝𝐾𝐾 ,times the probability the second 

highest bid takes exactly that value, 𝑃𝑃[�𝑝𝑝𝐾𝐾 = 𝑋𝑋𝑛𝑛 �𝑝𝑝𝐾𝐾−𝑖𝑖 ], for all possible values of 
𝑝𝑝𝐾𝐾 from zero up to �𝑝𝑝𝐾𝐾𝑖𝑖

+
ZERO times the probability the second highest bid is some value above �𝑝𝑝𝐾𝐾𝑖𝑖, for all 

values from �𝑝𝑝𝐾𝐾𝑖𝑖 onwards

argmax
�𝑝𝑝𝐾𝐾𝑖𝑖

𝐸𝐸 𝒱𝒱𝑖𝑖 𝑝𝑝𝐾𝐾 �𝑝𝑝𝐾𝐾 ≤ �𝑝𝑝𝐾𝐾𝑖𝑖 + 𝐸𝐸 𝒱𝒱𝑖𝑖 𝑝𝑝𝐾𝐾 �𝑝𝑝𝐾𝐾 > �𝑝𝑝𝐾𝐾𝑖𝑖

argmax
�𝑝𝑝𝐾𝐾𝑖𝑖

�
0

�𝑝𝑝𝐾𝐾𝑖𝑖

𝒱𝒱𝑖𝑖 𝑝𝑝𝐾𝐾 � 𝜋𝜋 𝑝𝑝𝐾𝐾 ∗ 𝑑𝑑𝑝𝑝𝐾𝐾 + �
�𝑝𝑝𝐾𝐾𝑖𝑖

+∞

0 � 𝜋𝜋 𝑝𝑝𝐾𝐾 ∗ 𝑑𝑑𝑝𝑝𝐾𝐾

Solving the VA 
Expected Incremental Pay-off Function



▪ THEOREM:
Agent 𝑖𝑖’s “true value”, �𝑝𝑝𝐾𝐾𝑖𝑖, always belongs to the set of values that maximize 
the Expected IPF, irrespective of the shape of the 𝑝𝑝.𝑑𝑑. 𝑓𝑓. �𝑝𝑝𝐾𝐾−𝑖𝑖 ;
Hence, bidding one’s true value is a weakly dominant strategy, or σ �pKi ≥
σ �pKi

Solving the VA 
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𝒱𝒱𝑖𝑖 𝑝𝑝𝐾𝐾

𝜋𝜋 𝑝𝑝𝐾𝐾

𝑝𝑝𝐾𝐾
�𝑝𝑝𝐾𝐾𝑖𝑖/𝑞𝑞0 + 𝜀𝜀 �𝑝𝑝𝐾𝐾𝑖𝑖 �𝑝𝑝𝐾𝐾𝑖𝑖

𝑝𝑝𝐾𝐾
�𝑝𝑝𝐾𝐾𝑖𝑖/𝑞𝑞0 + 𝜀𝜀

𝒱𝒱𝑖𝑖 𝑝𝑝𝐾𝐾 ∗ 𝜋𝜋 𝑝𝑝𝐾𝐾

�(𝒱𝒱𝑖𝑖 𝑝𝑝𝐾𝐾 ∗ 𝜋𝜋 𝑝𝑝𝐾𝐾 ) � 𝑑𝑑𝑝𝑝𝐾𝐾



▪ THEOREM:
Agent 𝑖𝑖’s “true value”, �𝑝𝑝𝐾𝐾𝑖𝑖, always belongs to the set of values that maximize 
the expected IPF, irrespective of the shape of the 𝑝𝑝.𝑑𝑑. 𝑓𝑓. �𝑝𝑝𝐾𝐾−𝑖𝑖 ;
Hence, bidding one’s true value is a weakly dominant strategy, or σ �pKi ≥
σ �pKi
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𝒱𝒱𝑖𝑖 𝑝𝑝𝐾𝐾

𝜋𝜋 𝑝𝑝𝐾𝐾

𝑝𝑝𝐾𝐾
𝑞𝑞 ∗ �𝑝𝑝𝐾𝐾𝑖𝑖 𝑟𝑟 ∗ �𝑝𝑝𝐾𝐾𝑖𝑖�𝑝𝑝𝐾𝐾𝑖𝑖

�𝑝𝑝𝐾𝐾𝑖𝑖
𝑝𝑝𝐾𝐾

𝑞𝑞 ∗ �𝑝𝑝𝐾𝐾𝑖𝑖 𝑟𝑟 ∗ �𝑝𝑝𝐾𝐾𝑖𝑖

𝒱𝒱𝑖𝑖 𝑝𝑝𝐾𝐾 ∗ 𝜋𝜋 𝑝𝑝𝐾𝐾

�(𝒱𝒱𝑖𝑖 𝑝𝑝𝐾𝐾 ∗ 𝜋𝜋 𝑝𝑝𝐾𝐾 ) � 𝑑𝑑𝑝𝑝𝐾𝐾



▪ THEOREM:
Agent 𝑖𝑖’s “true value”, �𝑝𝑝𝐾𝐾𝑖𝑖, always belongs to the set of values that maximize 
the expected IPF, irrespective of the shape of the 𝑝𝑝.𝑑𝑑. 𝑓𝑓. �𝑝𝑝𝐾𝐾−𝑖𝑖 ;
Hence, bidding one’s true value is a weakly dominant strategy, or σ �pKi ≥
σ �pKi
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𝒱𝒱𝑖𝑖 𝑝𝑝𝐾𝐾

𝜋𝜋 𝑝𝑝𝐾𝐾

𝑝𝑝𝐾𝐾

�𝑝𝑝𝐾𝐾𝑖𝑖/𝑞𝑞 𝑟𝑟 ∗ �𝑝𝑝𝐾𝐾𝑖𝑖�𝑝𝑝𝐾𝐾𝑖𝑖 �𝑝𝑝𝐾𝐾𝑖𝑖

𝑝𝑝𝐾𝐾
�𝑝𝑝𝐾𝐾𝑖𝑖/𝑞𝑞

𝑟𝑟 ∗ �𝑝𝑝𝐾𝐾𝑖𝑖

𝒱𝒱𝑖𝑖 𝑝𝑝𝐾𝐾 ∗ 𝜋𝜋 𝑝𝑝𝐾𝐾

�(𝒱𝒱𝑖𝑖 𝑝𝑝𝐾𝐾 ∗ 𝜋𝜋 𝑝𝑝𝐾𝐾 ) � 𝑑𝑑𝑝𝑝𝐾𝐾



▪ “True value” is conditional on agent’s expectations regarding final price levels
 𝑣𝑣𝑖𝑖1 𝐸𝐸0 𝒑𝒑𝑳𝑳,𝟏𝟏

𝑵𝑵 ,𝑝𝑝𝐾𝐾,0 , 𝑣𝑣𝑖𝑖0 𝐸𝐸0 𝒑𝒑𝑳𝑳,𝟏𝟏
𝑵𝑵 ,𝑝𝑝𝐾𝐾,0

Maximum feasible bid is still conditional on initial price levels

▪ Winner’s curse MIGHT happen in case 𝒑𝒑𝑳𝑳,𝟏𝟏
𝑵𝑵 ≠ 𝒑𝒑𝑳𝑳,𝟎𝟎

𝑵𝑵

 𝑣𝑣𝑏𝑏1 𝒑𝒑𝑳𝑳,𝟏𝟏
𝑵𝑵 ,𝑝𝑝𝐾𝐾,0 < 𝑣𝑣𝑏𝑏1 𝐸𝐸0 𝒑𝒑𝑳𝑳,𝟏𝟏

𝑵𝑵 ,𝑝𝑝𝐾𝐾,0

Or, under simplifying assumption: 𝑣𝑣𝑏𝑏1 𝒑𝒑𝑳𝑳,𝟏𝟏
𝑵𝑵 ,𝑝𝑝𝐾𝐾,0 < 𝑣𝑣𝑏𝑏1 𝒑𝒑𝑳𝑳,𝟎𝟎

𝑵𝑵 ,𝑝𝑝𝐾𝐾,0

▪ It can only truly be avoided if agents were able to account for how different 
prices and allocations would affect the aggregate demand for divisible goods

▪ Perfect foresight?

 𝑣𝑣𝑖𝑖1 𝐸𝐸𝑡𝑡[𝒑𝒑𝑳𝑳,𝟏𝟏
𝑵𝑵 𝑝𝑝𝐾𝐾 ] �

𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
, 𝑝𝑝𝐾𝐾 ,𝑣𝑣𝑖𝑖,𝑗𝑗0 𝐸𝐸𝑡𝑡[𝒑𝒑𝑳𝑳,𝟏𝟏

𝑵𝑵 𝑝𝑝𝐾𝐾 ] �𝑗𝑗 ≠ 𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ,𝑝𝑝𝐾𝐾

𝒱𝒱𝑖𝑖,𝑗𝑗−1 0 could now be a set

Winner’s curse and Efficiency
Dropping the simplifying assumption



▪ Perfect foresight:

 An adjusted 𝑣𝑣𝑖𝑖1 - expected change in prices 
given 𝑖𝑖 wins

 A set of up to (𝑛𝑛 − 1) curves 𝑣𝑣𝑖𝑖,𝑗𝑗0 - expected 
change in prices given 𝑗𝑗 wins

 Tying bids can escape foresight!

▪ Which true value?
 Infimum of the set to avoid a negative pay-off?

 Attach subjective probabilities to each outcome?

Modify the auction in a way so that lowest 
bidders are eliminated?

Winner’s curse and Efficiency
Dropping the simplifying assumption
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▪ How to assess whether the allocation has been efficient?
If prices remain the same: Efficient

If prices change, valuations may change ex-post: is the allocation stable?
▪ Indirect verification: (Harstad, 2011) hypothetical costless aftermarket

▪ New endowment matrix Ω𝑎𝑎 ≡ Α1 latest allocation matrix

▪ aVA keeping the same expectations’ formation assumptions

▪ Would 𝐾𝐾 change hands?

▪ YES: VA is ex-post Inefficient – but the hypothetical transaction may not be Pareto 
improving for the whole economy! This would indicate that the current allocation is Pareto 
optimal

▪ NO: VA is ex-post Efficient

▪ VA no longer, necessarily, efficient
Values become interdependent through income/substitution effects
“Common value” vs “Private value” may be inadequate concepts

Winner’s curse and Efficiency
Dropping the simplifying assumption



▪ Solving auctions by finding the Expected Incremental Pay-off functions and 
their pre-images will yield “true values” conditional on expectations

▪ It allows to revisit Auction Theory in a more general setting, and it nests 
traditional outcomes when GEE are not present

▪ This is a first step to modelling more complex auction rules and scenarios, 
such as:
Asymmetric equilibria

Uncertain value, conditional on different states of the world

 “Background risk”

Competition-dependent valuations

Analysing the shocks to expectations and risk attitude etc.

▪ Because it incorporates value theory, exogenously imposed valuations, 
“common values” and budget constraints can be revisited

Discussion and Other applications



Thank you!

▪ Motivation

▪ Base Assumptions

▪ Exchange Economy
▪ Effect of an Auction
▪ Existence  and Uniqueness of Equilibrium

▪ The (𝐿𝐿 = 1 + 𝐾𝐾 = 1) goods case
▪ The model

▪ The (𝐿𝐿 ≥ 1 + 𝐾𝐾 = 1) goods case
▪ The model

▪ Set-ups of interest – when will GE effects come into 
play?

▪ Solving the Vickrey Auction
▪ Simplifying assumption

▪ Winner’s Curse and Efficiency – Dropping the 
simplifying assumption

▪ Discussion and Other applications 

Questions?
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