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This supplementary document provides the details and results
of a simulation experiment illustrating the performance of the band-
width selection procedure proposed in the main text.

1. Simulations. In this section, we report a simulation experiment
which applies our bandwidth selection procedure as well as the bias cor-
rection, both proposed in the main text, and illustrates their finite sam-
ple performance. Three different data generating processes are considered.
Model I and model III, below, have been simulated in influential recent work
on inference for cointegrating regressions (Karlsen and Tjøstheim (2001) and
Wang and Phillips (2009)). Model II is a discrete-time counterpart of a pop-
ular, in the literature, specification in continuous time (i.e., a square root
diffusion). We experimented with an array of different parameter values. The
values that are reported are representative of our findings.

Model I As an example of a nonstationary autoregression, as in Karlsen
and Tjøstheim (2001) we simulate a unit root process (µ(x) = x and
σ(x) = 1). We choose x0 = 0, Dx = [−5, 5] and let ut be iid N(0, 1).

Model II The discrete-time square-root process is an autoregression with
µ(x) = (1− φ)θ + φx and σ(x) = σ

√
|x| whose parameters are chosen

to be θ = 1, φ = 0.8, σ = 1 and Dx = [0, 4]. We start the process at
its unconditional mean x0 = θ and, again, ut is iid N(0, 1).

Model III To illustrate our procedure in the case of cointegrating regres-
sions, we consider a simulation design similar to the one in Hall and
Horowitz (2005) and Wang and Phillips (2009) which specifies f(x) =∑4
j=1(−1)j+1j−2 sin(jπx) and a(x) = 1, viz. Yt = f(Xt) + εt, Xt =

Xt−1 + ut and εt = ηt+θut√
1+θ2

. (ut, εt, ηt)′ are iid N(0, I3), I3 a diagonal
matrix of ones, x0 = 0 and Dx = [0, 1]. We consider two scenarios: no
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endogeneity (θ = 0) and strong endogeneity (θ = 2).

To summarize, there are four simulation scenarios: model I, model II, and
two versions of model III, each of which is estimated using our point-wise and
uniform criteria for selecting the bandwidths. Even though cross-validation
has not been formally justified in a nonstationary framework, it is the clas-
sical paradigm in empirical work and we therefore consider it here as an
important benchmark.

1.1. Implementation Details. The conditional moments impose the same
requirements on the rate of divergence of the relevant bandwidth sequences.
However, the optimization to find

hn(x) = (hµn(x), hσn(x)) = arg inf
hn∈Hn(x,ς)

‖m̂n,hn(x)‖ ,

in the point-wise case and

hn = (hµn, h
σ
n) = arg inf

hn∈Hn(ς)
sup
x∈Dx

‖m̂n,hn(x)‖ ,

in the uniform case is performed with separate bandwidths for the first
and the second conditional moment in order to improve finite sample accu-
racy. Specifically, we implement a search over a grid of 5× 5 bandwidths on
[0.01, 1]2. The bias correction is instead implemented by virtue of a search
over a 100 × 100 grid on [0.01, 10]2. The supremum over x in the uniform
criterion is calculated over a grid of five equally spaced points in Dx. For
the point-wise criterion, Dx is partitioned into five parts of equal size. Five
bandwidths are calculated at the center of each of the five subsets of Dx.
Since determining the partition depends on the path and introduces extra-
neous randomness, we choose it to be the same for every simulated path
which, in turn, creates issues which are, admittedly, little understood in the
literature. For example, it could be the case that a given simulated path
does not visit a certain region of the domain at all, or only very few times,
so that estimation of a function in that region can be based only on certain
paths, but not on all. To minimize these effects, we restrict estimation of
the various functions to areas near the processes’ points of initialization and,
thus, all paths take values in at least some portion of those regions.

The remaining parameters are R = 200 and uniform weights π(u) = 1
over the interval U = [2, 3]. Throughout the experiment we use the Tukey-
Hanning kernel. The second-stage tests are performed at the 95% confidence
level. All results are based on 1, 000 Monte Carlo samples of length 500.
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1.2. Results. Tables 1 and 2 report the selected bandwidths for mod-
els I-III calculated using our point-wise and uniform procedures as well as
cross-validation (“CV”). We emphasize that the second-step cross-validated
bandwidths have been obtained by applying our bias correction to the orig-
inal cross-validated bandwidths. In other words, the bias correction is ap-
plied both to our selected bandwidths and to the classical cross-validated
bandwidths. Since the bias correction can, in principle, be applied to any
bandwidth, this is simply to give the reader indications about the poten-
tial usefulness of bias correcting starting from bandwidths which may not
be theoretically minimax optimal (such as the cross-validated bandwidths).
Importantly, however, when evaluating the relative performance of cross-
validation and our methods, being the bias correction an aspect of what
we propose, one should compare the first-step cross-validated bandwidths
(those that do not include a bias correction) to our bandwidths (the mini-
max optimal bandwidths inclusive – or not – of the bias correction).

Table 3 present the bias, standard deviation (“SD”) and root mean square
error (“RMSE”) of the estimated functions, averaged over 20 equally-spaced
points in their respective domains Dx.

Figures 1-4 show the corresponding estimates of the first and second con-
ditional moment functions, µ(x) and σ(x) or f(x) and α(x), respectively.
Included in the graphs are the true line (thick blue), the line based on
our uniform criterion (blue circles) and the cross-validated estimates (red
squares) as well as empirical (point-wise) 95% confidence bands. The graphs
corresponding to the point-wise criterion, which are similar to the reported
ones, are not shown to save space.

Figures 5-8 depict the kernel density estimates of the first conditional
moment estimates at the fixed points x = 0 for model I, x = 2 for model
II, and x = 0.5 for model III. These values constitute the center of Dx for
all three models. Specifically, we estimated the density of the centered and
re-scaled quantities√√√√ ĥµnL̂n,ĥµn(x)

K2σ(x)2
(
µ̂n,ĥµn(x)− µ(x)

)
and

√√√√ ĥfnL̂n,ĥfn
(x)

K2α(x)2
(
f̂
n,ĥfn

(x)− f(x)
)
,

respectively, where µ, σ, f and α are the true functions. Again, for brevity,
graphs are only shown for the uniform criterion and the first conditional
moment. The findings can be summarized as follows:

1. Our combined procedure outperforms cross-validation. In the first and
in the third model, the point-wise and the uniform criteria produce
comparable (relative to cross-validation), or slightly lower, RMSEs in
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both stages. In these two specifications, the second conditional moment
is flat and, since cross-validation tends to oversmooth in these models,
these are scenarios in favor of a uniform criterion like cross-validation.
In model II, however, the nonlinear second conditional moment of
the process reveals a dramatic difference in relative performance. The
bandwidths selected by cross-validation are much too small leading to
a large variance of the resulting estimates and an RMSE which is more
than twice as large as the ones produced by our combined procedure.

2. As discussed, the proposed bandwidth procedure optimally balances
the estimators’ biases and variances. This may, of course, be achieved
by choosing relatively large bandwidths hµn and hσn which have the po-
tential to cause some oversmoothing (see, e.g., model III). The reported
bias correction is designed to address this issue explicitly since it forces
the bandwidths to also satisfy the conditions (hµn)5L̂n,hµn(x) a.s.→ 0 and
(hσn)5L̂n,hσn(x) a.s.→ 0, which are necessary for a vanishing limiting bias.
These conditions require both bandwidths to be small enough. Tables 1
and 2 show significant reductions in the size of the bandwidths after
the second-stage procedure is applied. This effect can also be seen by
inspecting Figures 5-8 which show that the bias correction success-
fully re-adjust the distribution of the first moment estimator towards
the normal distribution – in model III strikingly so. Consistent with
theory, this bias reduction is generally accompanied by increases in
the estimators’ MSE, particularly when moving away from the mini-
max optimal solution. Hence, as emphasized, if MSE minimization is
the criterion of interest, one should simply find the minimax optimal
bandwidths. If a zero bias is the criterion, this goal can be achieved
by appropriately reducing the size of the optimal bandwidths at the
cost of larger statistical uncertainty.

3. The properties of cross-validated bandwidths in nonstationary frame-
works are unknown. However, the results in this section suggest that
they may not necessarily perform poorly in such scenarios (see models I
and III). Importantly, however, if cross-validated smoothing sequences
are used in practice, in light of their tendency to oversmooth, we find
that their performance can be further enhanced by applying to them
our proposed bias correction.

4. Table 2 and the lower half of Table 3 as well as Figures 3-4, 7-8 all
confirm our theoretical results on cointegrating regressions, namely
that – whether the regressor and the error are independent or not –
the distributions of the first and second conditional moment estimates
conform with a zero-mean normal distribution after applying our com-
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bined procedure. The results show no difference in performance with
or without dependence. Since the presence of this type of endogene-
ity is common in empirical work, this is an important feature of our
proposed method.

Remark 1. The fact that, in model II, the second stage adjusts the
average cross-validation bandwidths from about 0.3 down to about 0.15 while
some of the average point-wise and uniform bandwidths are not rejected at
levels of about 0.3 may seem puzzling at first glance. This effect is due to
the large variability in the bandwidths selected by cross-validation: it mostly
chooses bandwidths much smaller than 0.3, but also some huge ones (reflected
in the large standard deviation of the first stage). The second stage does not
reject the former, but adjusts downwards the latter to values around 0.3,
which in turn yields an average bandwidth smaller than 0.3. On the other
hand, the uniform and point-wise criteria tend to select bandwidths between
0.4 and 0.7 with a small standard deviation so that the second step decreases
most of them down to values near 0.3 leading to an average of that order of
magnitude.
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MODEL I
optimal bias correction

bandwidth SD bandwidth SD

pointwise hµ 0.5817 0.3585 0.3253 0.1793
0.6396 0.3063 0.3624 0.1393
0.6216 0.3198 0.3617 0.1571
0.6510 0.3191 0.3666 0.1632
0.5736 0.3597 0.3210 0.1755

hσ 0.6008 0.3541 0.3323 0.1752
0.6654 0.3051 0.3689 0.1370
0.5622 0.2974 0.3451 0.1276
0.6728 0.3111 0.3690 0.1503
0.5916 0.3547 0.3349 0.1850

uniform hµ 0.6971 0.3167 0.3705 0.1604
hσ 0.6495 0.3541 0.3463 0.1782

CV hµ 0.7634 0.4197 0.3333 0.2199
hσ 0.7582 0.4186 0.3295 0.2131

MODEL II
optimal bias correction

bandwidth SD bandwidth SD

pointwise hµ 0.4236 0.4429 0.2115 0.2182
0.4399 0.2109 0.3349 0.1186
0.6159 0.2429 0.3849 0.1073
0.7008 0.2626 0.3911 0.1206
0.7208 0.2609 0.3997 0.1314

hσ 0.3956 0.2849 0.2849 0.1340
0.4372 0.2304 0.3295 0.1214
0.6010 0.2499 0.3778 0.0988
0.6976 0.2587 0.3915 0.1005
0.7334 0.2542 0.3970 0.1039

uniform hµ 0.7567 0.2931 0.3933 0.1449
hσ 0.5565 0.2344 0.3695 0.0958

CV hµ 0.3367 0.4592 0.1494 0.2068
hσ 0.3360 0.4584 0.1487 0.2057

Table 1
Selected bandwidths and their standard deviation (“SD”).
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MODEL III (θ = 0)
optimal bias correction

bandwidth SD bandwidth SD

pointwise hf 0.5612 0.3124 0.3468 0.1419
0.5345 0.2678 0.3619 0.1219
0.5072 0.2812 0.3463 0.1176
0.5637 0.3149 0.3477 0.1198
0.6050 0.3000 0.3628 0.1294

ha 0.5815 0.3183 0.3516 0.1394
0.5939 0.2931 0.3574 0.0956
0.5602 0.2793 0.3617 0.1216
0.6189 0.2948 0.3701 0.1155
0.6929 0.3167 0.3689 0.1289

uniform hf 0.6292 0.3033 0.3731 0.1419
ha 0.7389 0.3200 0.3790 0.1693

CV hf 0.5622 0.3533 0.3165 0.1897
ha 0.7493 0.4218 0.3293 0.2176

MODEL III (θ = 2)
optimal bias correction

bandwidth SD bandwidth SD

pointwise hf 0.5372 0.3198 0.3323 0.1383
0.5218 0.2651 0.3602 0.1310
0.5236 0.2817 0.3493 0.1129
0.5701 0.3134 0.3520 0.1216
0.6161 0.3087 0.3631 0.1364

ha 0.5491 0.3233 0.3394 0.1452
0.6030 0.2921 0.3616 0.1004
0.5580 0.2781 0.3637 0.1242
0.5981 0.2933 0.3614 0.1049
0.6842 0.3127 0.3736 0.1369

uniform hf 0.6280 0.3137 0.3658 0.1448
ha 0.7218 0.3293 0.3703 0.1687

CV hf 0.5637 0.3537 0.3168 0.1901
ha 0.7409 0.4207 0.3293 0.2178

Table 2
Selected bandwidths and their standard deviation (“SD”).
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MODEL I
optimal bias correction

bias SD RMSE bias SD RMSE

pointwise µ(x) -0.0216 0.5101 0.5110 -0.0166 0.5575 0.5577

µ(2)(x) 0.1227 2.7806 2.7886 0.1186 3.1204 3.1251

uniform µ(x) -0.0096 0.5126 0.5141 -0.0091 0.5650 0.5652

µ(2)(x) -0.0249 2.6401 2.6446 -0.0020 3.0054 3.0065

CV µ(x) -0.0108 0.5167 0.5202 -0.0136 0.5651 0.5658

µ(2)(x) -0.0956 2.7128 2.7204 -0.0341 3.0783 3.0801

MODEL II
optimal bias correction

bias SD RMSE bias SD RMSE

pointwise µ(x) -0.0302 0.3498 0.3518 -0.0151 0.3993 0.3996

µ(2)(x) -0.1035 1.5338 1.5433 -0.0391 1.8316 1.8349

uniform µ(x) -0.0423 0.2775 0.2838 -0.0150 0.3386 0.3394

µ(2)(x) -0.0756 1.5944 1.6054 -0.0278 1.8256 1.8307

CV µ(x) -0.0247 0.8542 0.8547 -0.0053 0.8725 0.8724

µ(2)(x) -0.0703 4.2487 4.2506 0.0107 4.3597 4.3593

MODEL III (θ = 0)
optimal bias correction

bias SD RMSE bias SD RMSE

pointwise f(x) -0.1665 0.4886 0.5269 -0.0790 0.5120 0.5226

f (2)(x) 0.0022 0.7907 0.8241 -0.0036 0.9280 0.9420

uniform f(x) -0.2027 0.4420 0.5028 -0.0887 0.4938 0.5077

f (2)(x) -0.0193 0.6776 0.7407 -0.0070 0.8837 0.9022

CV f(x) -0.2072 0.4830 0.5445 -0.0787 0.5245 0.5357

f (2)(x) -0.0068 0.8164 0.8592 0.0100 0.9862 1.0009

MODEL III (θ = 2)
optimal bias correction

bias SD RMSE bias SD RMSE

pointwise f(x) -0.1321 0.4927 0.5182 -0.0419 0.5243 0.5286

f (2)(x) 0.0582 0.8864 0.9109 0.0753 1.0145 1.0268

uniform f(x) -0.1818 0.4573 0.5062 -0.0539 0.5139 0.5202

f (2)(x) 0.0347 0.7721 0.8226 0.0682 0.9620 0.9774

CV f(x) -0.1845 0.4804 0.5292 -0.0523 0.5356 0.5411

f (2)(x) 0.0382 0.9077 0.9427 0.0778 1.0869 1.1009

Table 3
Average bias, standard deviation (“SD”) and root mean square error (“RMSE”) of the

respective estimated functions.
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Fig 1. Model I, estimated moments based on uniform criterion (blue circles), CV (red
squares) and the true moments (thick blue lines).
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Fig 2. Model II, estimated moments based on uniform criterion (blue circles), CV (red
squares) and the true moments (thick blue lines).
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Fig 3. Model III (θ = 0), estimated moments based on uniform criterion (blue circles),
CV (red squares) and the true moments (thick blue lines).
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Fig 4. Model III (θ = 2), estimated moments based on uniform criterion (blue circles),
CV (red squares) and the true moments (thick blue lines).
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Fig 5. Model I, distribution of the first moment estimator at x = 0, based on uniform
bandwidths.
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Fig 6. Model II, distribution of the first moment estimator at x = 2, based on uniform
bandwidths.
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Fig 7. Model III (θ = 0), distribution of the first moment estimator at x = 0.5, based on
uniform bandwidths.
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Fig 8. Model III (θ = 2), distribution of the first moment estimator at x = 0.5, based on
uniform bandwidths.
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