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volatility experiences over time–the “volatility of volatility.” Instead, the volatility of volatility relates to10

the business cycle. Finally, volatility risk-premiums are strongly countercyclical, even more so than stock11

volatility, and are partially responsible for the large swings the VIX index experienced during the 2007-200912
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1. Introduction1

Understanding the origins of stock market volatility has long been a topic of considerable interest2

to both policy makers and market practitioners. Policy makers are interested in the main determi-3

nants of volatility and in its spillover effects on real activity. Market practitioners are interested4

in the effects volatility exerts on the pricing and hedging of plain vanilla options and more exotic5

derivatives. In both cases, forecasting stock market volatility constitutes a formidable challenge but6

also a fundamental instrument to manage the risks faced by these institutions.7

Many available models use latent factors to explain the dynamics of stock market volatility.8

For example, in the celebrated Heston’s (1993) model, stock volatility is exogenously driven by9

some unobservable factor correlated with the asset returns. Yet such an unobservable factor does10

not bear an economic interpretation. Moreover, the model implies, by assumption, that volatility11

cannot be forecasted by macroeconomic factors such as industrial production or inflation. This12

circumstance is counterfactual. Indeed, there is strong evidence that stock market volatility has13

a very pronounced business cycle pattern, being higher during recessions than during expansions;14

see, e.g., Schwert (1989a,b), Hamilton and Lin (1996), or Brandt and Kang (2004).15

In this paper, we develop a no-arbitrage model where stock market volatility is explicitly related16

to a number of macroeconomic and unobservable factors. The distinctive feature of this model17

is that stock volatility is linked to these factors by no-arbitrage restrictions. The model is also18

analytically convenient: under fairly standard conditions on the dynamics of the factors and risk-19

aversion corrections, our model is solved in closed-form, and is amenable to empirical work.20

We use the model to quantitatively assess how market volatility and volatility-related risk-21

premiums change in response to business cycle conditions. Our model fully captures the procyclical22

nature of aggregate returns and the countercyclical behavior of stock volatility that we have been23

seeing in the data for a long time. It makes a fundamental prediction: macroeconomic factors can24

explain nearly 75% of the variation in the overall stock volatility. At the same time, our model,25

rigorously estimated through simulation-based inference methods, shows that the presence of some26

unobservable and persistent factor is needed to sustain the level of stock volatility that matches its27

empirical counterpart. Moreover, our model reveals that macroeconomic factors substantially help28
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explain the variability of stock volatility around its level–the volatility of volatility. That such a1

“vol-vol” might be related to the business cycle is indeed a plausible hypothesis, although clearly,2

the ups and downs stock volatility experiences over the business cycle are a prediction of the model3

in line with the data, not a restriction imposed while estimating the model. Such a new property4

we uncover, and model, brings practical implications. For example, business cycle forecasters might5

learn that not only does stock market volatility have predicting power, as discussed below; “vol-vol”6

is also a potential predictor of the business cycle.7

Our second set of results relates to volatility-related risk-premiums. The volatility risk-premium8

is the difference between the expectation of future market volatility under the risk-neutral and the9

true probability. It quantifies how a representative agent is willing to pay to be ensured against the10

event that volatility will raise beyond his own expectations. Thus, it is a very intuitive and general11

measure of risk-aversion. We find that this volatility risk-premium is strongly countercyclical, even12

more so than stock volatility. Precisely, volatility risk-premiums are typically not very volatile,13

although in bad times, they may increase to extremely high levels, and quite quickly. We undertake14

a stress test of the model over a particularly uncertain period, which includes the 2007-2009 subprime15

turmoil. Ours is a stress test, as (i) we estimate the model using post-war data up to 2006, and16

(ii) feed the previously estimated model with macroeconomic data related to the subprime crisis.17

We compare the model’s predictions for the crisis with the actual behavior of both stock volatility18

and the new VIX index, maintained by the Chicago Board Options Exchange (CBOE), which is,19

theoretically, the risk-adjusted expectation of future volatility within one month. The model tracks20

the dramatic movements in this index, and predicts that countercyclical volatility risk-premiums21

are largely responsible for the large swings in the VIX occurred during the crisis. In fact, we show22

that over this crisis, as well as in previous recessions, movements in the VIX index are determined23

by changes in such countercyclical risk-premiums, not by changes in the expected volatility.24

Related literature25

Stock volatility and volatility risk-premiums The cyclical properties of aggregate stock mar-26

ket volatility have been the focus of recent empirical research, although early work relating stock27

volatility to macroeconomic variables dates back to King, Sentana and Wadhwani (1994), who rely28
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on a no-arbitrage model. In a comprehensive international study, Engle and Rangel (2008) find that1

high frequency aggregate stock volatility has both a short-run and long-run component, and suggest2

that the long-run component is related to the business cycle. Adrian and Rosenberg (2008) show3

that the short- and long- run components of aggregate volatility are both priced, cross-sectionally.4

They also relate the long-run component of aggregate volatility to the business cycle. Finally,5

Campbell, Lettau, Malkiel and Xu (2001), Bloom (2009), Bloom, Floetotto and Jaimovich (2009)6

and Fornari and Mele (2010) show that capital market uncertainty helps explain future fluctuations7

in real economic activity. Our focus on volatility risk-premiums relates, instead, to the seminal8

work of Dumas (1995), Bakshi and Madan (2000), Britten-Jones and Neuberger (2000), and Carr9

and Madan (2001), which has more recently stimulated an increasing interest in these premiums10

dynamics and determinants (see, for example, Bakshi and Madan (2006) and Carr and Wu (2009)).11

Notably, in seminal work, Bollerslev and Zhou (2006) and Bollerslev, Gibson and Zhou (2011) unveil12

a strong relation between volatility risk-premiums and a number of macroeconomic factors.13

Our contribution hinges upon, and expands, over this growing literature, in that we formulate14

and estimate a fully-specified no-arbitrage model relating the dynamics of stock volatility and15

volatility risk-premiums to business cycle, and additional unobservable, factors. With the exception16

of King, Sentana and Wadhwani (1994) and Adrian and Rosenberg (2008), who still have a focus17

different from ours, the predicting relations in the previous papers, while certainly useful, are still18

part of reduced-form statistical models. In our out-of-sample experiments of the subprime crisis,19

we shall show that our no-arbitrage framework is considerably richer than that based on predictive20

linear regressions. We show, for example, that compared to our model’s predictions about stock21

volatility and the VIX index, predictions from linear regressions are substantially flat over the22

subprime crisis.23

The only antecedent to our paper is Bollerslev, Tauchen and Zhou (2009), who develop a24

consumption-based rationale for volatility risk-premiums, although then, the authors use this ra-25

tionale only as a guidance to the estimation of reduced-form predictability regressions conditioned26

on the volatility risk-premium. In recent independent work discussed below, Drechsler and Yaron27

(2011) investigate the properties of the volatility risk-premium, implied by a calibrated consumption-28

based model with long-run risks. The authors, however, are not concerned with the cross-equation29
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restrictions relating the volatility risk-premium to state variables driving low frequency stock market1

fluctuations which, instead, constitute the central topic of our paper.2

No-arbitrage regressions In recent years, there has been a significant surge of interest in3

consumption-based explanations of aggregate stock market volatility (see, for example, Campbell4

and Cochrane (1999), Bansal and Yaron (2004), Tauchen (2005), Mele (2007), or the two surveys in5

Campbell (2003) and Mehra and Prescott (2003)). These explanations are important because they6

highlight the main economic mechanisms through which markets and preferences affect equilibrium7

asset prices and, hence, stock volatility. In our framework, cross-equations restrictions arise through8

the weaker requirement of absence of arbitrage opportunities. In this respect, our approach is simi-9

lar in spirit to the “no-arbitrage” vector autoregressions introduced in the term-structure literature10

by Ang and Piazzesi (2003) and Ang, Piazzesi and Wei (2006). Similarly as in those papers, we11

specify an analytically convenient pricing kernel affected by some macroeconomic factors, although12

we do not directly relate these to, say, markets, preferences or technology.13

Our model works quite simply. We exogenously specify the joint dynamics of a number of14

macroeconomic and unobservable factors. We assume that the asset payoffs and the risk-premiums15

required by agents to be compensated for the fluctuations of the factors, are essentially affine16

functions of these factors, along the lines of Duffee (2002). We show that the resulting no-arbitrage17

stock price is affine in the factors. Our model does not allow for jumps or other market micro-18

structure effects, as our main focus is to model low frequency movements in the aggregate stock19

volatility and volatility risk-premiums, through the use of macroeconomic and unobservable factors.20

Our estimation results, obtained through data sampled at monthly frequency, are unlikely to be21

affected by measurement noise or jumps, say. In related work, Carr and Wu (2009), Todorov22

(2010), Drechsler and Yaron (2011), and Todorov and Tauchen (2011) do allow for the presence of23

jumps, although they do not analyze the relations between macroeconomic variables and aggregate24

volatility or volatility risk-premiums, which we do here.25
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Estimation strategy, and plan of the paper1

In standard stochastic volatility models such as that in Heston (1993), volatility is driven by2

factors, which are not necessarily the same as those affecting the stock price–volatility is exogenous3

in these models. In our no-arbitrage model, volatility is endogenous, relating to a number of risks4

affecting (i) macroeconomic developments, (ii) unobserved factors and (iii) the very same asset5

returns–these risks affect both asset returns and volatility. To identify the premium required to6

bear the risk of volatility, we exploit derivative data, related to the new VIX index.7

We implement a three-step estimation procedure that relies on simulation-based inference meth-8

ods. In the first step, we estimate the parameters underlying the macroeconomic factors. In the9

second step, we use data on a broad stock market index, and the macroeconomic factors, and es-10

timate reduced-form parameters linking the stock market index to the macroeconomic factors and11

the third unobservable factor, as well as the parameters underlying the dynamics of the unobserv-12

able factor. In the third step, we use data on the new VIX index, and the macroeconomic factors,13

and estimate the risk-premiums parameters. We implement these steps by matching model-based14

moments and impulse response functions to their empirical counterparts, relating to macroeconomic15

factors, realized returns, realized volatility and the VIX index. We develop, and utilize, a theory to16

consistently estimate the standard errors through block-bootstrap methods.17

The remainder of the paper is organized as follows. In Section 2 we develop a no-arbitrage18

model for the stock price, stock volatility and volatility-related risk-premiums. Section 3 illustrates19

the estimation strategy. Section 4 presents our empirical results. Section 5 concludes, and the20

Supplemental material contains an appendix with technical details omitted from the main text.21

2. The model22

We develop a model where aggregate stock returns and volatility are tied up to macroeconomic23

developments and one unobservable factor. It is a three-factor model solved in closed form, a special24

case of a general multifactor model in Appendix A of the Supplemental material.25



Macroeconomic Determinants of Stock Market Volatility and Volatility Risk-Premiums 7

2.1. The macroeconomic environment1

We consider a model with one unobservable factor, and two additional factors affecting the2

development of two aggregate macroeconomic variables, inflation and industrial production growth,3

and the stock market. Let y () = (1 () 2 () 3 ()) be a vector-valued process, where 1 () and4

2 () denote two observable factors, defined as ln (CPI/CPI−12) = ln 1 () and ln (IP/ IP−12) =5

ln 2 (), where CPI and IP are the consumer price index and industrial production as of month ,6

as further explained in Section 4.1. In Section 4.1, we also discuss the role these two macroeconomic7

factors have played in asset pricing. We also assume that a third, and unobservable, factor, 3 (),8

affects the stock price, but not the two macroeconomic aggregates, CPI and IP. Finally, we9

assume the two macroeconomic factors do not affect the unobservable factor 3, although we allow10

for simultaneous feedback effects between inflation and industrial production growth, as explained11

below. The factors  are solution to,12

d () =
£

¡
 −  ()

¢
+ ̄

¡
̄ − ̄ ()

¢¤
d+

q
 +  ()d ()   = 1 2 3 (1)13

where  () are standard Brownian motions, ̄1 ≡ 2, ̄1 () ≡ 2 (), ̄2 ≡ 1, ̄2 () = 1 (),14

̄3 ≡ ̄3 ≡ ̄3 () ≡ 0 and, finally, Greek letters denote constant parameters. The two parameters,15

1 and 2, are the speed of adjustment of inflation and industrial production growth towards their16

long run means, 1 and 2, and ̄1 and ̄2 are the feedback parameters. Appendix A of the17

Supplemental material reviews conditions guaranteeing Eq. (1) is well-defined, which we use as18

constraints whilst estimating the model.19

We assume that asset prices, (i) respond to movements in the factors affecting macroeconomic20

conditions, and (ii) reflect a long-run trend in the asset payoffs. Precisely, we model the instanta-21

neous dividends paid off by the asset at time , Div () say, as the product of a stochastic trend,22

times a stationary component, as follows:23

Div () =  ()  (y ())  (2)24

where  (y) satisfies, for four constants 0 and ()
3

=1
,25

 (y) = 0 + 11 + 22 + 33 (3)26
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and  () is a geometric Brownian motion with drift  and volatility ,1

 ()

 ()
= +  ()   (0) ≡ 1 (4)2

and  () is a Brownian motion uncorrelated with the Brownian motions in Eq. (1). The ratio-3

nale behind the assumption in Eq. (2) is to disentangle secular, yet stochastic, dividend growth,4

captured by  (), from short-run fluctuations of the dividend process, arising from business cy-5

cles, and captured by  (y ()). This assumption implies the asset price displays a similar property,6

being driven by a secular, growth component, and an additional, short-run component related to7

macroeconomic developments, as we now explain.8

2.2. No-arbitrage9

We model the pricing kernel, or the Arrow-Debreu price density, in the economy. Let F ( ) be10

the sigma-algebra generated by the Brownian motion [W ()
>

 ()]
>,  ≤  , where W () =11

(1 () 2 () 3 ()), and let  the associated physical probability. The Radon-Nikodym derivative12

of the risk-neutral probability  with respect to  on F ( ) is,13

( ) ≡ d
d

= exp

µ
−
Z 

0

Λ ()
>
dW ()− 1

2

Z 

0

kΛ ()k2 d
¶
· exp

µ
− ( )− 1

2
2

¶
 (5)14

for some risk-premium process Λ () and constant . The interpretation of Λ () is that of a15

risk-premium required to compensate for the fluctuations of the factors y (). The constant  is,16

instead, the unit-risk premium for the stochastic fluctuations of secular growth,  (). While we17

model Λ () to be time-varying, we assume  to be constant for analytical convenience.18

We assume the risk-premium process satisfies an “essentially affine” specification, viz19

Λ (y ()) ≡ Λ () = V (y ())λ1 + V
− (y ())λ2y ()  (6)20

where λ1 =
¡
1(1) 1(3) 1(3)

¢
is a parameter vector, λ2 is a diagonal matrix of parameters with21

diagonal elements equal to 2(),  = 1 2 3, V (y) is a diagonal matrix with
p
 +  on its22

diagonal, and V − (y) : V − (y)V (y) = I3×3, for all y, which it does under regularity conditions23

spelled out in Appendix A of the Supplemental material.24

The functional form forΛ echoes that suggested by Duffee (2002) in the term-structure literature.25

If λ2 = 03×3, Λ collapses to the “completely affine” specification introduced by Duffie and Kan26
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(1996), where the risk-premiums in Λ are tied up to the volatility of the fundamentals, V (y).1

While it is reasonable to assume that risk-premiums link to the volatility of fundamentals, the2

specification in Eq. (6) also allows risk-premiums to relate to the level of the fundamentals, through3

the additional term λ2y. Including this term is, indeed, critical to our empirical results. Consider4

the total risk-premiums process, defined as,5

π (y) =

⎛⎜⎜⎜⎜⎝
1 (1)

2 (2)

3 (3)

⎞⎟⎟⎟⎟⎠ ≡ V (y)Λ (y) =
⎛⎜⎜⎜⎜⎝

11(1) +
¡
11(1) + 2(1)

¢
1

21(2) +
¡
21(2) + 2(2)

¢
2

31(3) +
¡
31(3) + 2(3)

¢
3

⎞⎟⎟⎟⎟⎠  (7)6

Each component of π (y),  (), depends on factor  due to the volatility of this factor (i.e.7

through ) and, also, due to the additional parameter 2(). Without 2(), we could not model the8

level of the risk-premiums separately from their sensitivities to changes in –a sensible issue we9

have experienced whilst estimating our model. Consider, for example, the total risk premium for10

growth, 2 (2). The coefficient 1(2) affects both the intercept and the slope of 2. The inclusion11

of 2(2) allows to achieve flexibility in modeling the level of 2 (2) and its sensitivity with respect12

to changes in 2.13

Finally, we assume that the safe asset is elastically supplied such that the short-term rate 14

(say) is constant. Whilst real rates are not as volatile as stock returns in the data, many existing15

models might likely predict rates to be too volatile. For example, models with habit formation16

predict the short-term rate is a function of the state, primarily due to intertemporal substitution17

effects. Campbell and Cochrane (1999) mitigate this issue with a well-known trick–they impose18

that intertemporal substitution effects are exactly offset by precautionary savings, thereby making19

the short-term rate constant. Additional models that cope with this challenge include those relying20

on non-expected utility, as in Bansal and Yaron (2004), or those with heterogeneous agents, as in21

Guvenen (2009), to cite a few. In this paper, we impose  to be constant for the purpose of keeping22

stock volatility tractable, as this facilitates the actual estimation of the model. How important is23

this assumption, quantitatively? Mele (2007) finds that in realistically calibrated models of habit24

formation, large countercyclical swings of stock volatility mainly arise due to risk-premiums effects,25

rather than interest rate volatility. It is an open question, however, whether such a result would26
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still hold in the economy we consider in the current paper.11

We are ready to determine the no-arbitrage stock price. As it turns out, the previous assumption2

on the pricing kernel and the assumption that  (·) in Eq. (3) is affine in y implies that the stock3

price is also affine in y. Precisely, we have:4

 (y) =  ·
³
0 +

X3

=1


´
 (8)5

where

0 =
1

 −  + 

h
0 +

P3

=1 
¡
 + ̄̄ − 1()

¢i
 (9)

 =

¡
 −  +  +  + 1() + 2()

¢− ̄Q2

=1

¡
 −  +  +  + 1() + 2()

¢− ̄1̄2
 for   ∈ {1 2} and  6=  (10)

3 =
3

 −  +  + 3 + 1(3)3 + 2(3)
 (11)

In the standard stochastic volatility literature, the asset price and, hence, its volatility, is taken6

as given, and volatility and volatility risk-premiums are modeled separately, as for example in the7

celebrated Heston’s (1993) model, which many empirical studies take as a benchmark (e.g., Chernov8

and Ghysels (2000), Corradi and Distaso (2006), Garcia, Lewis, Pastorello and Renault (2011)).9

Moreover, a recent focus in this literature is to relate volatility risk-premiums the to business cycle10

(e.g., Bollerslev, Gibson and Zhou (2011)). Yet, while the empirical results in these papers are11

ground breaking, the Heston’s model is not meant to capture, theoretically, the interplay between12

stochastic volatility, volatility risk-premiums and the business cycle.13

Our model works differently, as it places restrictions on the asset price process directly, through14

our assumptions on the fundamentals of the economy, and absence of arbitrage. For our model, it15

is the asset price that determines, endogenously, volatility, which by Eq. (1) and Eq. (8) is:16

 (y ()) ≡  () =

vuuut2 +

P3

=1 
2


¡
 +  ()

¢³
0 +

P3

=1  ()
´2  (12)17

Note that the model predicts that stock volatility embeds information about risk-corrections that18

agents require to invest in the stock market. We shall make use of this observation in the empirical19

1Our model has, however, implications for the nominal rate, which is  − lnE
³

CPI
CPI+12

¯̄̄
F
´
(for one year, say),

where E is the expectation under . Evaluating this expression in steady state, through the estimates we obtain in
Section 4, and assuming  = 1%, yields 4.7%. In the data, the nominal rate for one year is, instead, 5.4%.
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part of the paper. We now describe which measure of stock volatility we use to proceed with such1

a critical step of our analysis.2

2.3. Arrow-Debreu adjusted volatility3

In September 2003, the CBOE changed its volatility index VIX, to reflect recent advances in4

the option pricing literature. Given an asset price process  () that is continuous in time (as that5

predicted by our model, in Eq. (8)), and all available information F () at time , consider the6

economic value of the future integrated variance on a given interval [ 0], 0, say, which is the7

sum of the future variances, weighted with the Arrow-Debreu state prices:8

E [0|F ()] ≡
Z 0



E
∙µ

d

d
var [ ln ()|F ()]

¯̄̄̄
=

¶¯̄̄̄
F ()

¸
d (13)9

where E is the expectation under . The new VIX index relies on the work of Dumas (1995),10

Bakshi and Madan (2000), Britten-Jones and Neuberger (2000), and Carr and Madan (2001), who11

showed that the risk-neutral expectation of the future integrated variance is a functional of put and12

call options written on the asset:13

E [0|F ()] = 2(0−)
"Z  ()

0

 (0 )

2
d +

Z ∞

 ()

 (0)

2
d

#
≡ (0 − ) ·VIX2  (14)14

where  () = (0−) () is the forward price,  (0) and  (0) are the prices as of time 15

of call and put options expiring at 0 and struck at , and VIX is the new VIX index. In contrast,16

our model, which relies on the Arrow-Debreu state prices in Eq. (5), predicts that the risk-neutral17

expectation of the integrated variance is:18

E [0|y () = y] =
Z 0



E
£
2 (y ())

¯̄
y () = y

¤
d ≡ (0 − ) ·VIX2 (y)  (15)19

where 2 (y ()) is given in Eq. (12). We shall estimate the risk-premium parameters in Eq. (7)20

so as to match the VIX index predicted by the model, VIX (y ()) in Eq. (15), to its empirical21

counterpart, VIX in Eq. (14). Finally, our model makes predictions about how the volatility22

risk-premium, VRP (y ()) say, changes with the factors y () in Eq. (1)23

VRP(y ()) ≡
r

1

0 − 

µq
E [0|y () = y]−

q
 [0|y () = y]

¶
 (16)24

where  denotes the expectation taken under  .25
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3. Statistical inference1

We rely on a three-step procedure. In the first step, we estimate the parameters of the process2

underlying the dynamics of the two macroeconomic factors, φ> =
¡
    ̄  = 1 2

¢
. In3

the second step, we estimate the parameters in Eq. (4), θ> = ( ), the reduced-form parameters4

that link the asset price to the three factors in Eq. (8), and the parameters of the process for5

the unobserved factor, θ> =
³
3 3 3 3 ()

3

=0

´
, while imposing the identifiability condition6

that 3 = 1, as explained below. In the third step, we estimate the risk-premiums parameters7

λ> =
¡
1(1) 2(1) 1(2) 2(2) 1(3) 2(3)

¢
, relying on a simulation-based approximation of the model-8

implied VIX, which we match to the VIX index. At each of these steps, we do not have a closed form9

expression for the likelihood function, or for selected sets of moment conditions. For this reason,10

we need to rely on a simulation-based approach. Our estimation strategy relies on an hybrid11

of Indirect Inference (Gouriéroux, Monfort and Renault (1993)) and the Simulated Generalized12

Method of Moments (Duffie and Singleton (1993)).213

3.1. Moment conditions for the macroeconomic factors14

To simulate the factor dynamics in Eq. (1), we rely on a Milstein approximation scheme, with15

discrete interval ∆, say. We simulate  paths of length  of the two observable factors, and16

sample them at the same frequency as the available data, obtaining 

1∆ and 


2∆, where17



∆ is the value at time  taken by the -th factor, at the -th simulation performed with φ–the18

parameter vector relating to the process underlying the macroeconomic factors. Then, we estimate19

the following auxiliary models on both historical and simulated data,320

y = w +Ay−1 + ²

  (17)21

2The estimators we develop are not as efficient as Maximum Likelihood. Under some conditions, the methods

put forward by Gallant and Tauchen (1996), Fermanian and Salanié (2004), Carrasco, Chernov, Florens and Ghysels

(2007), Äıt-Sahalia (2008), or Altissimo and Mele (2009), are asymptotic equivalent to Maximum Likelihood. In our

context, they deliver asymptotically efficient estimators for the parameters in the first step. However, hinging upon

these approaches in the remaining steps would make the two issues of unobservability of volatility and, especially,

parameter estimation error considerably beyond the scope of this paper.
3The choice of lags for all the auxiliary models in the present section relies on the BIC criterion, and our additional

concern to have non-overlapping regressors–with the exception of Eqs. (17), and a lag 6 in Eq. (23), which revealed

to be empirically important. Appendix C.2 of the Supplemental material reports parameter estimates and 2 for all

these auxiliary models–both those referring to data and those implied by the model.
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and1

y

∆ = w +Ay


−1∆ + ²


 (18)2

where y = (1 2)
>
, w and A denote a vector and a matrix of constants, ²


 is a vector of3

normally distributed errors with zero mean and (diagonal) variance-covariance matrix C, and the4

notation for Eq. (18) for simulated data follows the same rationale as that in Eq. (17).5

Next, let ϕ̃ =
¡
ϕ̃1  ϕ̃2  ̄1 ̄2 ̂1 ̂2

¢>
where ϕ̃1 and ϕ̃2 denote the ordinary least squares6

(OLS, henceforth) estimators of the parameters in Eq. (17), and ̄ and ̂ are the sample mean7

and standard deviation of the macroeconomic factors. Let ϕ̂∆ (φ) be the simulated counterpart8

to ϕ̃ at simulation , including the OLS estimator of the parameters in Eq. (18), and the sample9

means and standard deviations of the macroeconomic factors. The estimator of φ is:10

φ̂ ≡ arg min
∈Φ0

°°°°° 1
X
=1

ϕ̂∆ (φ)− ϕ̃

°°°°°
2

 (19)11

where Φ0 is some compact set. Appendix B in the Supplemental material develops the asymptotic12

theory relating to this estimator.13

3.2. Moment conditions for realized returns and volatility14

Data on macroeconomic factors and stock returns do not allow us to identify the structural15

parameters of the model. In particular, there are many combinations of δ = ()
3

=0
and λ =16 ¡

1() 2()
¢3
=1

in Eqs. (9)-(11), giving rise to the same asset price. In this second step, we estimate17

the parameters θ = ( ) in Eq. (4), the reduced-form parameters, ()
3

=0
in Eqs. (9)-(11), and18

the parameters for the unobservable factor, (3 3 3 3). The parameters λ shall be estimated in19

a third and final step, described in the next section. Note that, theoretically, it might be possible to20

collapse the second and third steps of our estimation procedure into a single one, where a combined21

use of data on dividends and volatility derivatives might help identify δ and λ. We do not pursue22

this approach because it revealed to be computationally prohibitive. Note, then, that our three-23

step methodology leads to identify the model’s parameters through data relating to macroeconomic24

factors, and market data relating to stock returns and risk-neutral volatility. However, Appendix25

C.1 of the Supplemental material describes a calibration procedure relying on both the aggregate26
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asset price and dividends, which leads us to find our three-step estimation methodology has quite1

reasonable implications for the dividends dynamics.2

Even proceeding in this way, we cannot tell apart the loading on the unobservable factor, 3,3

from the parameters underlying the dynamics of this factor, (3 3 3 3), as this is independent4

of the observable ones. We impose the normalization 3 ≡ 1. We estimate θ using the time-series5

of the low-frequency component of the real stock price growth, extracted through the Hodrick-6

Prescott filter with smoothing parameter equal to 14400, given we are using monthly data (Hodrick7

and Prescott (1997)). We simulate  paths of length  of the unobservable factor 3 (), and the8

secular growth,  (), using a Milstein approximation with discrete interval ∆, and sample them9

at the same frequency as the data, obtaining for θ = (3 3 3 3) and θ̂ = (̂  ̂ ), and10

simulation , the series 3∆ and 
̂
∆. Likewise, let 


∆(θ̂ ) be the simulated series of the11

stock price, when the parameters are fixed at θ = (θ ()
3

=0
) and θ̂ :12

ln
∆(θ̂ ) = ln

̂
∆ + ln

¡
0 + 11 + 22 + 3


3∆

¢
 (20)13

where 
̂
0∆ ≡ 1, as in Eq. (4). We fix the intercept, 0, so as to make the model-implied average14

of the detrended stock price match its empirical counterpart: 0 = ̄ − 1̄1 − 2̄2 − 3, where ̄


15

denotes the sample mean of the detrended stock price 
 ≡ −̂ ,  is the real stock price index16

observed at time , and finally, ̄1 and ̄2 are the sample means of the two macroeconomic factors17

1 and 2. Note, we simulate the stock price using the observed samples of 1 and 2, a feature18

of the estimation strategy that results in improved efficiency, as discussed below.19

Following Mele (2007) and Fornari and Mele (2010), we measure the volatility of the monthly20

continuously compounded price changes, as:21

Vol =
√
6 · 1

12

12X
=1

¯̄̄̄
ln

µ
+1−
−

¶¯̄̄̄
 (21)22

Next, define yearly returns as  = ln (−12), and let 
∆(θ̂ ) and Vol


∆(θ̂ ) be the23

simulated counterparts to  and Vol.
4

24

4Our asymptotics are not affected by the property that the returns 
∆(·) are driven by both a  (0) and a

 (−1) components, as our laws of large numbers or central limit theorems still apply–similarly as in the realized
volatility literature, for instance, where  (−1) terms arise due to microstructure effects (see, e.g., Barndorff-Nielsen,
Hansen, Lunde and Shephard (2008), or Äıt-Sahalia, Mykland and Zhang (2011)). Campbell and Cochrane (1999)

model of habit formation or Bansal and Yaron (2004) long-run risks model are instances of models predicting a

similar property for asset returns.



Macroeconomic Determinants of Stock Market Volatility and Volatility Risk-Premiums 15

Our estimator relies on two auxiliary models that capture the main statistical facts about stock1

returns and return volatility in our dataset. The auxiliary model for returns is:2

 = R + R1121−12 + R2122−12 + R  (22)3

and that for return volatility is:4

Vol = V +
X

∈{61218243648}
V Vol− +

X
∈{12243648}

V11− +
X

∈{12243648}
V22− + V  (23)5

Let ϑ̃ =
³
ϑ̃1  ϑ̃2  ̄, Vol ̂Vol

´>
, where ϑ̃1 is the OLS estimate of the parameters in Eq.6

(22), ϑ̃2 is the OLS estimate of the parameters in Eq. (23), ̄ is the sample mean of the real7

stock price, and, finally, Vol and ̂Vol are the sample mean and standard deviation of stock return8

volatility. Let ϑ̂∆(θ, θ̂ ) be the simulated counterpart to ϑ̃ at simulation , using 

∆(θ̂ )9

and Vol∆(θ̂ ). The estimator of θ = (θ ()
3

=0
) is:10

θ̂ = arg min
∈Θ0

°°°°° 1
X
=1

ϑ̂∆(θ, θ̂ )− ϑ̃

°°°°°
2

 (24)11

where Θ0 is a compact set. As shown in detail in Appendix B of the Supplemental material,12

the structure of the asymptotic covariance matrix of this estimator differs from that of φ̂ in Eq.13

(19), due to two reasons. First, stock price paths are simulated through Eq. (20), with secular14

growth parameters fixed at their estimates, θ̂ , leading to parameter estimation error, which is15

asymptotically accounted for. Second, ours is, in fact, a conditional simulated inference estimator, in16

that the simulations in Eq. (20) occur conditionally upon the sample realizations of the observable17

factors, 1 and 2. This feature of the method results in a correlation among the auxiliary18

parameter estimates obtained over all the simulations, and leads to an efficiency improvement over19

unconditional (simulated) inference.20

3.3. Estimation of the risk-premium parameters21

We estimate the risk-premium parameters, λ, by matching moments and impulse response22

functions of the model-based VIX, VIX (y ()) in Eq. (15), to those of the model-free VIX index,23

VIX in Eq. (14), with 0 −  equal to one month. Since the new VIX index is available only since24

1990, we use a sample of T observations in this step, with T   . Whilst VIX (y ()) is not known25
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in closed-form, it can be accurately approximated through simulations, as explained in Appendix1

B of the Supplemental material. Note, also, that in the actual computation of Eq. (15), we replace2

the unknown parameters, 0
¡
   

¢3
=1
, (̄ )

2
=1 and , with their estimated counterparts3

computed in the previous two steps: θ̂ , φ̂ and ̂ . As in the previous step, we use the observed4

samples of the macroeconomic factors 1 2, and simulate samples for the latent factor only. We5

rely on the following auxiliary model:6

VIX = VIX + VIXVIX−1 +
X

∈{3648}
VIX1 1− +

X
∈{3648}

VIX2 2− + VIX  (25)7

Define, ψ̃T =
³
ψ̃1T VIX ̂VIX

´>
, where ψ̃1T is the OLS estimator of the parameters in Eq.8

(25), and VIX and ̂VIX are the sample mean and standard deviation of the VIX index. Likewise,9

define ψ̂T ∆(θ̂  φ̂  ̂ λ), the simulated counterpart to ψ̃T at simulation , obtained through10

simulations of the model-implied index, VIX∆(θ̂  φ̂  ̂ λ) say, where the paths of the two11

macroeconomic factors, 1 and 2, are fixed at their sample values. The estimator of λ is:12

λ̂T = arg min
∈Λ0

°°°°° 1
X
=1

ψ̂T ∆(θ̂  φ̂  ̂ λ)− ψ̃T

°°°°°
2

 (26)13

for some compact set Λ0. This estimator is, similarly as θ̂ in Eq. (24), affected by parameter14

estimation error, arising because VIX∆(θ̂  φ̂  ̂ λ), the model-implied VIX index, is simu-15

lated using parameters estimated in the previous two steps, φ̂ , θ̂ and ̂ . At the same time,16

the estimator λ̂T in Eq. (24) is a conditionally simulated one, in that it relies on the observations17

of the macroeconomic factors 1 and 2, thereby resulting in efficiency gains.18

3.4. Bootstrap Standard Errors19

The limiting variance-covariance matrices for φ̂ in Eq. (19), θ̂ in Eq. (24), and λ̂T in20

Eq. (26) are characterized in Appendix B.1 of the Supplemental material. They are not known21

in closed form, and must be estimated through the computation of several numerical derivatives.22

Moreover, our sample sizes are relatively small, compared to those we usually have access to in23

empirical finance, and in particular such is that available for the estimation of the risk premium24

parameters. We rely on bootstrap standard errors consistent for those implied by the asymptotic25

variance-covariance matrices for φ̂ , θ̂ and λ̂T . Bootstrap standard errors are not only easier26
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to compute, but also less prone to numerical errors, and likely to be more accurate than those1

based on asymptotic approximations, in finite samples. Finally, the auxiliary models we utilize2

are potentially misspecified, and they likely lead to a score that is not a martingale difference3

sequence. We appeal to the “block-bootstrap” to address this technical issue. Appendix B.2 of the4

Supplemental material develops results and algorithms that allow us to make use of this method5

within the simulation-based estimation procedure of this section.6

4. Empirical analysis7

4.1. Data8

Our security data include the S&P 500 Compounded index, and the VIX index maintained9

by the CBOE. The VIX index is available daily, but only after January 1990. Our macroeconomic10

variables include the consumer price index (CPI), and the seasonally adjusted industrial production11

(IP) index for the US. Information related to the CPI and the IP indexes is made available to the12

market between the 19-th and the 23-th of every month. To possibly avoid overreaction to releases13

of information, we sample the S&P Compounded index and the VIX index every 25-th of the month.14

We compute the real stock price as the ratio between the S&P index and the CPI. Our dataset,15

then, includes (i) monthly observations of the VIX index, from January 1990 to December 2006,16

for a total of 204 observations; and (ii) monthly observations of the real stock price, the CPI and17

the IP indexes, from January 1950 to December 2006, for a total of 672 observations.18

Our dataset also includes monthly observations of the University of Michigan Consumer Sen-19

timent index, from January 1978 to December 2006 (for a total of 336 observations), Finally, we20

utilize additional data, from January 2007 to March 2009, to implement a stress test of how the21

previously estimated model would have performed over a particularly critical period. This out-22

of-sample period is critical for at least three reasons: first, the NBER determined that the US23

economy entered in a recession in December 2007, which is the third NBER-dated recession since24

the creation of the new VIX index; second, this period includes the quite unique events leading to25

the subprime crisis; third, both realized stock market volatility and the VIX index reached record26

highs, and possibly pose challenges to rational models of asset prices. Note that our out-of-sample27
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experiments are not intended to forecast the market, stock market volatility, and the level of the1

VIX index. Rather, we feed the model estimated up to December 2006, with macroeconomic data2

(the CPI and IP indexes) available from January 2007, and compare the predictions of the model3

with the actual movements of the market, stock market volatility and the VIX index.4

Many theoretical explanations and, in fact, the empirical evidence, would lead us to expect that5

asset prices are, indeed, related to variables tracking business cycles (see, e.g., Cochrane (2005)),6

such as the CPI and the IP growth. For example, in their seminal article relating stock returns to7

the macroeconomy, Chen, Roll and Ross (1986) find that industrial production growth and inflation8

are among the most prominent priced factors. Theoretically, in standard theories of external habit9

formation, the pricing kernel volatility is driven by the surplus consumption ratio, defined as the10

percentage deviation of current consumption, , from some habit level, , i.e. ( −) , which11

highly correlates with procyclical variables such as industrial production growth. Likewise, standard12

asset pricing models predict that compensation for inflation risk relates to variables that are highly13

correlated with inflation (e.g., Bakshi and Chen (1996), Buraschi and Jiltsov (2005)). Mainly for14

computational reasons, we refrain from considering additional factors to model the linkages of the15

pricing kernel to the business cycle.16

Figure 1 depicts the two series 1 (year-to-year gross inflation) and 2 (year-to-year indus-17

trial production growth) along with NBER-dated recession events. Gross inflation is procyclical,18

although it peaked up during the 1975 and the 1980 recessions, as a result of the geopolitical driven19

oil crises that occurred in 1973 and 1979. Its volatility during the 1970s was large until the Mon-20

etary experiment of the early 1980s, although it dramatically dropped during the period following21

the experiment, usually referred to as the Great Moderation (e.g., Bernanke (2004)). At the same22

time, inflation is persistent: a Dickey-Fuller test rejects the null hypothesis of a unit root in 1,23

although the rejection is at the marginal 95% level. The inclusion of inflation as a determinant of24

the pricing kernel displays one attractive feature. An old debate exists upon whether stocks provide25

a hedge against inflation (see, e.g., Danthine and Donaldson (1986)). While our no-arbitrage model26

is silent about the general equilibrium forces underlying inflation-hedge properties of asset prices,27

its data-driven structure allows us to assess quite directly the relations between inflation and the28

stock price, returns, volatility and volatility risk-premiums.29
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Figure 1 also shows that while the volatility of industrial production growth dropped during the1

Great Moderation, growth is still persistent, although less so than gross inflation: here, a Dickey-2

Fuller test rejects the null hypothesis of a unit root in 2 at any conventional level. Finally, the3

properties of inflation and industrial production growth over our out-of-sample period, from January4

2007 to March 2009, are discussed in Section 4.2.4.5

4.2. Estimation results6

4.2.1. Macroeconomic drivers7

Table 1 reports parameter estimates and block-bootstrap standard errors for the joint process8

of the two macroeconomic variables, 1 and 2, as set forth in Section 3.1. The estimates are9

all largely significant, and confirm our discussion of Figure 1: inflation is more persistent than IP10

growth, as both its speed of adjustment in the absence of feedbacks, 1, and its feedback parameter,11

̄1, are much lower than the counterparts for IP growth, 2 and ̄2. Finally, the estimates of 112

and 2 are both negative, implying that the volatility of these two macroeconomic variables are13

countercyclical, an interesting property, from an asset pricing perspective. However, we note that14

the estimate of 1, albeit statistically significant, is also economically very small.
5

15

4.2.2. Aggregate stock returns and volatility16

Table 2 reports estimates and block-bootstrap standard errors for (i) the parameters affecting17

secular growth, (ii) the parameters linking the two macroeconomic factors and the unobservable18

factor to the asset price, and (iii) the parameters for the unobservable factor process, as explained in19

Section 3.1. The estimates are all largely significant and point to two conclusions. First, the stock20

price is positively related to IP growth and negatively related to inflation. Second, the unobservable21

factor is quite persistent, displaying high volatility, as the estimate of the speed of mean reversion,22

3, is low. Note, the literature on long run risks started by Bansal and Yaron (2004) emphasizes23

5It is known since at least Friedman (1977) that high variability of inflation might link to high inflation. For

example, Engle (1982) finds that inflation volatility increases during the middle 1970s. We have constructed measures

of inflation volatility similar to that in Eq. (21), relating to the first difference of inflation, which confirm these

findings. We also find that after the 1970s, inflation slowdowns tend to occur more rapidly than inflation increases

although overall, a clear relation between inflation and inflation volatility is hard to establish. The estimate of 1
for our continuous time model is likely to reflect these facts.
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the asset pricing implications of long-run risks affecting the expected consumption growth rate.1

Interestingly, the presence of a persistent factor affecting stock returns and volatility emerges quite2

neatly from our estimation. Note, however, that in long-run risk models, expected consumption3

growth is unlikely to affect the dynamics of stock volatility which, instead, are inherited by those4

of the volatility of consumption growth. In our model, our unobservable factor does, instead, affect5

stock volatility, and substantially, as explained below.6

Figure 2 shows the dynamics of stock returns and volatility predicted by the model, along with7

their sample counterparts, calculated as described in Section 3.2. These predictions are obtained by8

feeding the model with sample data for the two macroeconomic factors, 1 and 2, in conjunction9

with simulations of the third unobservable factor, using all the estimated parameters. For each10

point in time, we average over the cross-section of 1000 simulations, and report returns (in the top11

panel of Figure 2) and volatility (in the bottom panel). Returns are computed as we do with the12

data, and volatility is obtained through Eq. (12).13

The model appears to capture the procyclical nature of stock returns and the countercyclical14

behavior of stock volatility. It generates all the market drops as well as all the volatility upward15

swings occurred during the NBER recessions, including the dramatic spike of the 1975 recession. In16

the data, average stock volatility is about 11.50%, with a standard deviation of about 4.0%. The17

model predicts an average volatility of about 13%, with a standard deviation of about 3.1%.18

How much of the variation in volatility can be attributable to macroeconomic factors? It is a19

natural question, as the key innovation of our model is the introduction of these factors for the20

purpose of explaining volatility, on top of a standard unobservable factor. We address this issue21

and calculate: (i) the ratio of the instantaneous return variance due to factor , 
2


¡
 +  ()

¢
,22

to the total instantaneous variance, 2 () in Eq. (12), as well as (ii) the ratio of the instantaneous23

variance of secular growth, 2, to 
2 (), as follows,24

 () 
2 (y ()) ≡ 2

¡
 +  ()

¢
2 ()

  = 1 2 3 and  () ≡ 2
2 ()

 (27)25

where  (y) ≡ 0 +
P3

=1 . Figure 3 depicts the time series of  () and  () implied by our26

estimated model, obtained, as usual, by feeding the model with the observed samples of 1 () and27

2 (), and averaging across 1000 simulations of 3 (). The clear finding is that industrial production28
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growth makes the most important contribution to stock volatility: the time series average of 2 ()1

is above 73%, more than four times higher than 3 (), the contribution made by the unobserved2

factor. Panel A of Table 3 reports averages and standard deviations of the contributions made by all3

factors, and secular growth. Variations in industrial production growth and the unobserved factor4

are responsible, alone, for more than 90% of the variation in stock volatility. It is a striking result,5

as one challenge we face is to explain why we have observed a sustained stock market volatility, in6

spite of the Great Moderation. Our estimated model entails two clear conclusions.7

First, as Figure 3 makes clear, the 73% average contribution of industrial production growth to8

stock volatility seems to be rather stable over time, at least once we exclude the 1950s–a period9

of sustained volatility for growth (see Figure 1). Accordingly, the Great Moderation does merely10

appear to have affected the variability of the linkages between industrial production growth and11

aggregate stock volatility, not the very same linkages. To illustrate, Panel A of Table 3 shows av-12

erages and standard deviations of the factors’ contributions across different sampling periods. We13

take 1982 to be the year that marks the beginning of the Great Moderation, characterized by the14

inauguration of the Federal Reserve monetary policy turning point and a lower volatility of real15

macroeconomic variables (e.g., Blanchard and Simon (2001)). As is clear, whilst the average contri-16

butions are stable, the variability of these contributions has decreased over the Great Moderation.17

For example, the average of 2 () is between 73% - 75%, across all sampling periods, whereas its18

standard deviation decreases to 3.47% during the 1982-2006 sample, from 9.65% (1950-1981) and19

5.03% (1960-1981).20

Second, the contribution of industrial production growth to volatility, albeit crucial, is not ex-21

haustive. Our model predicts that stock volatility cannot be explained by macroeconomic variables22

only, as the unobserved factor accounts for about 17% of the fluctuations in 2 (). Equally impor-23

tant is the observation that the contribution of industrial production to stock volatility is strongly24

countercyclical, exhibiting large upward swings starting at, and sometimes, anticipating, turning25

points, as in the case of the 1970s recessions and the most recent, 2001 recession. Instead, the26

contribution of the unobserved factor to stock volatility, 3 (), is procyclical, for the simple reason27

that the instantaneous volatility of 3 () does not obviously link to the business cycle, thereby mak-28

ing the ratio 3 () in Eq. (27) procyclical, due to the countercyclical nature of its denominator,29
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2 (). All in all, our empirical results suggest that while unobserved factors are needed to explain1

the level of stock volatility, industrial production is needed to explain the countercyclical swings of2

stock volatility that we have in the data–the volatility of volatility.3

Finally, the contribution of secular growth to stock volatility is limited, being approximately 8%,4

and that of gross inflation plays an even more marginal role, being less than 1%. Note, however,5

that our model predicts that inflation links to asset returns and volatility in a manner comparable6

to that in the data. For example, it is well-known since at least Fama (1981) that real stock returns7

are negatively correlated with inflation, a property that hinders the ability of stocks to hedge against8

inflation. In our sample, this correlation is -35%, while the correlation our model generates is -24%.9

Finally, the correlation between stock volatility and inflation is about 20% in the data, while that10

implied by the model is about 25%.11

The predictions of the model discussed so far rely on cross-sectional averages of simulations of12

the unobserved factor, 3. Yet what is the interpretation of this unobserved factor? Let us invert13

the price function in Eq. (8), for 3, and for each month, as follows:14

−̂3 ≡ − 1
̂3

µ


̂

− ̂0 − ̂11 − ̂22

¶
 (28)15

where  is the real stock price at time , (̂)
3
=0 are estimates of the pricing function coefficients,16

as reported in Table 2, and ̂ is the cross-sectional average of 1000 simulations of secular growth.17

Figure 4 (top panel) depicts −̂3 (in bold), along with 100 simulated trajectories of the un-18

observed factor performed with the parameter estimates in Table 2. Reinsuringly, the range of19

variation of the model-implied factor roughly falls within that of the simulated trajectories of this20

factor. Note that the estimate of 3 is negative, such that −̂3 positively affects the real stock21

price–higher realizations of −̂3 amount to good pieces of news to the stock market. There are22

episodes where −̂3 comes close to the edges of the realized range of variation experienced by the23

unobserved factors during the simulations. These episodes are interesting, as they correspond to: (i)24

the lows of the late 1970s and the early 1980s, and (ii) the highs of the dotcom bubble that occurs in25

the late 1990s. The extracted factor oscillates between (about) its minimum and its maximum over26

those approximate twenty years. The rise and fall over this period have a clear economic interpreta-27

tion, with the late 1970s and early 1980s being particularly bad times, marked by the occurrence of a28
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double dip recession, and the extraordinary market boom over the dotcom bubble being notoriously1

suspected to be one of exuberance (e.g., Shiller (2005)). These observations motivate us to explore2

the extent to which our extracted factor links to indexes of “sentiment,” following a recent strand3

of the literature that attempts to link asset price movements to factors such as investors uncer-4

tainty (as in David and Veronesi (2006)), confidence risk (as in Bansal and Shaliastovich (2010)), or5

Knightian uncertainty (as in Drechsler (2010) or Mele and Sangiorgi (2011)). The bottom panel of6

Figure 4 compares the time series behavior of the model-implied unobserved factor, −̂3, with that7

of an index of consumer confidence–the University of Michigan Consumer Sentiment (UMCSENT)8

index, available from January 1978.9

Note how the UMCSENT index tracks the lows and the highs of the market that have so slowly10

occurred over the last thirty years: the bad times of the late 1970s and early 1980s, the rise occurring11

over the late 1980s and culminating with the dotcom bubble of the late 1990s and, finally, the drop12

of the late 2000s, corresponding to the subprime crisis–a period we study in detail in the next13

section. Interestingly, our extracted factor, −̂3, co-moves positively with the UMCSENT index,14

correlating with it at about 50%. In contrast, its correlation with the macroeconomic factors is15

modest (10% with inflation and 30% with industrial production growth). Interestingly, then, the16

pattern our extracted factor exhibits is one that mostly tracks long-run movements of the market,17

even more so than the short-term movements relating to business cycles. In Appendix C.3 of18

the Supplemental material, we produce variance decompositions statistics, obtained by feeding the19

model with both ̂3 in Eq. (28) and the UMCSENT index, instead of relying on simulations of 3,20

and document results similar to those summarized by Figure 3 and Table 3.21

4.2.3. Volatility risk-premiums and the dynamics of the VIX index22

Table 4 reports parameter estimates and block-bootstrap standard errors for the vector of the23

risk-premiums coefficients λ in Eq. (7), as set forth in Section 3.3. The estimates, all significant,24

imply that the risk-premiums processes are all positive, and quite large, especially those relating25

to the two macroeconomic factors. Moreover, the risk compensation for inflation increases with26

inflation and that for industrial production is countercyclical, given the sign of the estimated values27

for the loadings of inflation,
¡
11(1) + 2(1)

¢
(positive), and industrial production,

¡
21(2) + 2(2)

¢
28
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(negative), in the risk-premium process of Eq. (7). While gross inflation does receive compensation,1

the countercyclical behavior of the risk-premium for industrial production growth is even more2

critical, as we explain below. Our estimated model predicts that in bad times, the risk-premium3

for industrial production growth goes up, and future expected economic conditions even worsen,4

under the risk-neutral probability, which boosts future expected volatility, under the same risk-5

neutral probability. In part because of these effects, the VIX index predicted by the model is6

countercyclical. This reasoning is quantitatively sound. Figure 5 (top panel) depicts the VIX7

index, along with the VIX index predicted by the model and the (square root of the) model-implied8

expected integrated variance. The model appears to track the swings the VIX index has undergone9

over the 1991 and the 2001 recession episodes.10

The top panel of Figure 5 also shows the dynamics of volatility expected under the physical11

probability. This expected volatility is certainly countercyclical, although it does not display the12

large variations the model predicts for its risk-neutral counterpart, the VIX index. The VIX index13

predicted by the model is countercyclical because, as explained, the risk-premiums required to bear14

the fluctuations of the macroeconomic factors are (i) positive and (ii) countercyclical, and, also,15

because (iii) current volatility is countercyclical. Under the physical probability, expected volatility16

is countercyclical only because of the third effect. However, quantitatively, movements of volatility17

risk-premiums account for variations in the VIX index sensibly more than those of the volatility18

expected under the physical probability, as clearly summarized by Figure 5.19

Which factors mostly contribute to the dynamics of the VIX? Panel B of Table 3 reports averages20

and standard deviations of the contributions of each factor, as predicted by our estimated model.21

We calculate each of these contributions by evaluating  and  in Eq. (27) under the risk-neutral22

probability and, then, aggregating the average paths of  and  for every month, and, finally,23

taking cross-sectional averages over 1000 simulations of the unobserved factor. Similarly as for the24

results in Section 4.2.2 on realized volatility, we find, again, that our model predicts industrial25

production growth to account for the bulk of variation of the VIX index. The unobserved factor26

accounts for less than 10%, and inflation and secular growth play a quite marginal role, explaining27

no more than 5%, of the model-implied VIX. Interestingly, Stock and Watson (2003) find that the28

linkages of asset prices to growth are stronger than for inflation. Our results further qualify this29
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finding: inflation does not seem to affect too much the dynamics of neither realized volatility nor1

future expected volatility under the risk-neutral probability.2

Finally, the bottom panel in Figure 5 plots the volatility risk-premium, defined as in Eq. (16).3

This risk-premium is countercyclical, and this property arises for exactly the same reasons we put4

forward to explain the swings the model predicts for the VIX index: positive compensation for risk,5

combined with countercyclical variation of the premiums required to compensate for the risk of6

fluctuations of the macroeconomic factors.7

4.2.4. Out-of-sample predictions of the model, and the subprime crisis8

We undertake out-of-sample experiments to investigate the model’s predictions over a quite9

exceptional period, that from January 2007 to March 2009. This sample covers the subprime10

turmoil, and features unprecedented events, both for the severity of capital markets uncertainty11

and the performance of the US economy. The market witnessed to a spectacular drop accompanied12

by an extraordinary surge in volatility. In March 2009, yearly returns plummeted to -58.30%, a13

performance even worse than that experienced in October 1974 (-58.10%). Furthermore, according14

to our estimates, obtained through Eq. (21), aggregate stock volatility reached 28.20% in March15

2009, the highest level ever experienced in our sample. Finally, the VIX index hit its highest value16

in our sample in November 2008 (72.67%), and remained stubbornly high for several months. The17

time series behavior of stock returns, stock volatility and the VIX index during our out-of-sample18

period are depicted over the shaded areas in Figures 2 and 5.19

Macroeconomic developments over our out-of-sample period (the shaded area in Figure 1) were20

equally extreme, with yearly inflation rates achieving negative values in 2009, and yearly industrial21

production growth being as low as -13%, in March 2009. Under such macroeconomic conditions, we22

expect our model to produce the following predictions: (i) stock returns drop, (ii) stock volatility23

rises, (iii) the VIX index rises, and more than stock volatility. The mechanism is, by now, clear.24

Asset prices and, hence, returns, plummet, as they are positively related to growth, which crashed.25

(Note that inflation also decreased but the (negative) price sensitivity to it is much smaller than26

that of growth.) Moreover, volatility increases, with the VIX index increasing even more, due to27

our previous finding of (i) sizeable macroeconomic risk-premiums and (ii) strong countercyclical28
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variation in these premiums.1

Figures 2 and 5 confirm our reasoning, and reveal that the model is able to trace out the dynamics2

of stock returns and volatility (Figure 2), and the VIX index (Figure 5), over the out-of-sample3

period. The market literally crashes, as in the data, although only less than a half as much as in the4

data: the lowest value for yearly stock returns the model predicts, out-of-sample, is -21.77%, which5

is the second lowest figure our model produces, since after the quite volatile periods occurring over6

the 1950s and the early 1960s. (The lowest level the model predicts after those periods is -29.91%,7

for March 1975, the last month of the second severe recession of the 1970s.) Instead, the model8

predicts that stock volatility and the VIX index surge even more than in the data, reaching record9

highs of 26.68% (volatility) and 61.27% (VIX).10

Figure 6 provide additional details about the period from January 2000 to March 2009. It11

compares stock volatility and the VIX index with the predictions of the model and those of a OLS12

regression. The OLS for volatility is that in Eq. (23), excluding the lag for six months, related13

to the autoregressive term. The OLS for the VIX index is that in Eq. (25). OLS predictions are14

obtained by feeding the OLS predictive part with its regressors, using parameter estimates obtained15

with data up to December 2006. The following table reports Root Mean Squared Errors (RMSE)16

for both our model and OLS, calculated over the out-of-sample period.17

RMSE for the model and OLS

Model OLS

Volatility 0.0478 0.0700

VIX Index 0.1119 0.1319

Overall, OLS predictions do not seem to capture the countercyclical behavior of stock volatility.18

As for the VIX index, the OLS model (in fact, by Eq. (25), an autoregressive, distributed lag model)19

produces predictions that are not as accurate as the model, and generate overfit. The model, instead,20

predicts the swings we see in the data, in both the last two recession episodes. The RMSEs clearly21

favour the model against OLS, although it appears to do so more with realized volatility than with22

the VIX index, as Figure 6 informally reveals. Appendix C.3 of the Supplemental material confirms23

these findings in additional experiments, performed by feeding the model with both ̂3 in Eq. (28)24

and the UMCSENT index, rather than by simulations of 3.25
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5. Conclusion1

How does aggregate stock market volatility relate to the business cycle? This old question2

has been formulated at least since Officer (1973) and Schwert (1989a,b). We learnt from recent3

theoretical explanations that the countercyclical behavior of stock volatility can be understood as4

the result of a rational valuation process. However, how much of this countercyclical behavior is5

responsible for the sustained level aggregate volatility has experienced for centuries? This paper6

develops a model where approximately 75% of the variations in stock volatility can be explained7

by macroeconomic factors, and where some unobserved component is also needed to make stock8

volatility consistent with rational asset valuation.9

We show that risk-premiums arising from fluctuations in this volatility are strongly countercycli-10

cal, certainly more so than stock volatility alone. In fact, the risk-compensation for the fluctuation11

of the macroeconomic factors is large and countercyclical, and helps explain the swings in the VIX12

index that we observe during recessions. We undertake out-of-sample experiments that cover the13

2007-2009 subprime crisis, when the VIX reached a record high of more than 70%, which our model14

can at least partially track, through a countercyclical variation in the volatility risk-premiums.15

Again, our model predicts that a business cycle factor such as industrial production growth can16

explain more than 85% of the variations of the VIX index.17

The key aspect of our model is that the relations among the market, stock volatility, volatility18

risk-premiums and the macroeconomic factors, are consistent with no-arbitrage. In particular,19

volatility is endogenous in our framework: the same variables driving the payoff process and the20

volatility of the pricing kernel, and hence, the asset price, are those that drive stock volatility21

and volatility-related risk-premiums. A question for future research is to explore whether the no-22

arbitrage framework in this paper can be used to improve forecasts of real economic activity. In23

fact, stock volatility and volatility risk-premiums are driven by business cycle factors, as this paper24

clearly demonstrates. A challenging and fundamental question is to explore the extent to which25

business cycle, stock volatility and volatility risk-premiums do endogenously develop.26



Macroeconomic Determinants of Stock Market Volatility and Volatility Risk-Premiums 28

References1

Adrian, T. and J. Rosenberg, 2008. “Stock Returns and Volatility: Pricing the Short-Run and Long-Run2

Components of Market Risk,” Journal of Finance 63, 2997-3030.3
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Tables1

Table 12

Parameter estimates and block-bootstrap standard errors for the joint process of the two

macroeconomic factors, gross inflation, 1 ≡ CPI/CPI−12 ≡ 1 () and gross industrial

production growth, 2 ≡ IP/ IP−12 ≡ 2 (), where CPI is the Consumer price index as of

month , IP is the real, seasonally adjusted industrial production index as of month , and:∙
d1 ()

d2 ()

¸
=

∙
1 ̄1

̄2 2

¸ ∙
1 − 1 ()

2 − 2 ()

¸
d+

∙ p
1 + 11 () 0

0
p
2 + 22 ()

¸ ∙
d1 ()

d2 ()

¸


where  (),  = 1 2, are two independent Brownian motions, and the parameter vector is3

φ> =
¡
        ̄   = 1 2

¢
. Parameter estimates are obtained through the first step of4

the estimation procedure set forth in Section 3.1, relying on Indirect Inference and Simulated5

Method of Moments. Matching conditions relate to (i) parameter estimates for the auxiliary6

Vector Autoregressive models in Eq. (17), and (ii) the sample mean and standard deviation of7

1 and 2. The sample covers monthly data for the period from January 1950 to December8

2006.9

Estimate Std error

1 0.0231 0.0095

1 1.0375 0.3784

1 2.4408·10−4 1.0918·10−4
1 −1.0005·10−6 0.3374·10−6
2 0.9025 0.4037

2 1.0386 0.3962

2 0.0253 0.0126

2 −0.0198 0.0084

̄1 −0.2995 0.1293

̄2 1.3723 0.6423

10
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Table 21

Parameter estimates and block-bootstrap standard errors for stochastic secular growth, the

real stock price and the unobservable factor:

 () =  ()

µ
0 +

3P
=1

 ()

¶


 ()

 ()
= +  () 

where  () is the real stock price,  () is stochastic secular growth, is a standard Brownian

motion, 1 () and 2 () are the observed gross inflation and gross industrial production growth,

as defined in Table 1, 3 () is an unobserved factor, with the following dynamics:

d3 () = 3 (3 − 3 ()) d+
p
3 + 33 ()d3 () 

and 3 () a standard Brownian motion. The parameter vector to be estimated is θ> =2

(θ ()
3
=0), where θ = (3 3 3 3), and the long run mean of the unobservable factor,3

3, is set equal to one for the purpose of model’s identification. Parameter estimates are4

obtained through the second step of the estimation procedure set forth in Section 3.2, relying5

on Indirect Inference and Simulated Method of Moments, with parameters θ> =
¡
 2

¢
6

estimated on the low frequency component of secular growth of the real stock price, extracted7

through the Hodrick-Prescott filter with smoothing parameter 1600. Matching conditions8

relate to (i) parameter estimates for the auxiliary model for stock returns, Eq. (22), and for9

the auxiliary model for stock volatility, Eq. (23), and (ii) the sample mean and standard10

deviation of the real stock price, the real and return volatility. The sample covers monthly11

data for the period from January 1950 to December 2006.12

Estimate Std error

 0.0264 0.0171

2 0.0012 5.2089·10−4
0 0.2272 0.1154

1 −0.8956 0.4426

2 1.8925 0.8873

3 −0.0560 0.0292

3 0.0101 0.0043

3 1 restricted

3 1.2009 0.4699

3 0.0201 0.0106

13
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Table 31

Variance decomposition statistics for (i) realized volatility as calculated in Section 4.2.2 (Panel

A) and expected volatility under the risk-neutral probability as calculated in Section 4.2.2

(Panel B). Panel A reports averages and standard deviations of the contributions  () and

 () to the total variance, 
2 () in Eq. (12), made by: (i) the two macroeconomic factors,

gross inflation, 1 (), and gross industrial production growth, 2 (), as defined in Table 1, (ii)

the unobserved factor, 3 (), and (iii) secular growth, defined respectively, as:

 () 
2 (y ()) ≡ 2

¡
 +  ()

¢
2 ()

  = 1 2 3 and  () ≡ 2
2 ()



where  (y) ≡ 0 +
P3

=1  . Paths for the contributions  () and  () are generated by2

feeding the model with the two macroeconomic factors 1 () and 2 () and by averaging over3

the cross-section of 1000 simulations of the unobserved factor. The sample covers monthly4

data for the period from January 1950 to December 2006. Panel B reports statistics for the5

risk-neutral counterparts to the average paths of  () and  (). The sample covers monthly6

data for the period from January 1990 to December 2006.7

Panel A: Contributions of factors to stock volatility

Averages

1950-2006 1950-1981 1960-1981 1982-2006

Gross inflation 0.87% 0.92% 0.88% 0.83%

Gross growth 73.47% 71.97% 73.57% 75.10%

Unobserved factor 17.23% 18.10% 17.41% 16.27%

Secular growth 8.43% 9.01% 8.13% 7.78%

Standard deviations

1950-2006 1950-1981 1960-1981 1982-2006

Gross inflation 0.18% 0.23% 0.12% 0.08%

Gross growth 7.53% 9.65% 5.03% 3.47%

Unobserved factor 3.69% 4.67% 2.46% 1.71%

Secular growth 3.67% 4.75% 2.40% 1.68%
8

Panel B: Contributions of factors to the VIX Index

Averages Standard deviations

Gross inflation 1.55% 0.03%

Gross growth 86.91% 1.28%

Unobserved factor 8.79% 0.56%

Secular growth 2.75% 0.17%
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Table 41

Parameter estimates and block-bootstrap standard errors for the risk-premium parameters of2

the total risk-premium process in Eq. (7):3

1 (1 ()) = 11(1) +
¡
11(1) + 2(1)

¢
1 () (inflation)

2 (2 ()) = 21(2) +
¡
21(2) + 2(2)

¢
2 () (industrial production)

3 (3 ()) = 31(3) +
¡
31(3) + 2(3)

¢
3 () (unobservable factor)

where 1 () and 2 () are gross inflation and gross industrial production growth, as defined in4

Table 1, and 3 () is the unobserved factor. The parameter vector is λ> =5 ¡
1(1) 2(1) 1(2) 2(2) 1(3) 2(3)

¢
. Parameter estimates are obtained through the third step6

of the estimation procedure set forth in Section 3.3, relying on Indirect Inference and Simulated7

Method of Moments. Matching conditions relate to (i) parameter estimates for the auxiliary8

model for the VIX index, Eq. (25), and (ii) the sample mean and standard deviation of the9

VIX index. The sample covers monthly data for the period from January 1990 to December10

2006.11

Estimate Std error

Inflation
1(1)

2(1)

−2.1533·103
32.0141

0.9683·103
15.5655

Ind. Prod.
1(2)

2(2)

5.6760·102
5.5717

2.7643·102
2.7952

Unobs.
1(3)

2(3)

0.0019

5.9837·10−4
0.0008

2.9526·10−4

12



Figures

Figure 1 { Industrial production growth and ination, with NBER dated re-

cession periods. This �gure plots the one-year, monthly gross ination, de�ned as y1;t �
CPIt/CPIt�12, and the one-year, monthly gross industrial production growth, de�ned as

y2;t � IPt/ IPt�12, where CPIt is the Consumer price index as of month t, and IPt is the real,

seasonally adjusted industrial production index as of month t. The sample covers monthly

data for the period from January 1950 to December 2006. Vertical solid lines (in black) track

the beginning of NBER-dated recessions, and vertical dashed lines (in red) indicate the end

of NBER-dated recessions. The shaded area (in yellow) covers the out-of-sample period, from

January 2007 to March 2009.
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Figure 2 { Stock returns and volatility along with the model predictions, with

NBER dated recession periods, and out-of-sample predictions. This �gure plots

one-year ex-post price changes and one-year return volatility, along with their counterparts

predicted by the model. The top panel depicts continuously compounded price changes,

de�ned as Rt � ln (St/St�12), where St is the real stock price as of month t. The bottom

panel depicts smoothed return volatility, de�ned as Volt �
p
6� �12�1

P12
i=1 jln (St+1�i=St�i)j,

along with the instantaneous standard deviation predicted by the model, obtained through

Eq. (12). Each prediction at each point in time is obtained by feeding the model with the

two macroeconomic factors depicted in Figure 1 (ination and growth) and by averaging over

the cross-section of 1000 simulations of the unobserved factor. The sample covers monthly

data for the period from January 1950 to December 2006. Vertical solid lines (in black) track

the beginning of NBER-dated recessions, and vertical dashed lines (in red) indicate the end

of NBER-dated recessions. The shaded area (in yellow) covers the out-of-sample period, from

January 2007 to March 2009.
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Figure 3 { Contributions to total stock volatility made by macroeconomic and

unobservable factors, with NBER dated recession periods. This �gure plots the

contributions to stock volatility, Cj (t) and CG (t) in Eq. (27), obtained as the ratios of

the instantaneous stock return variance due to factor yj to the total instantaneous variance,

�2 (t), Cj (t) (j = 1; 2; 3), as well as the ratio of the instantaneous variance of secular growth to

�2 (t), CG (t). From top to bottom, \Industrial Production" is C2 (t), \Unobservable factor"

is C3 (t), \Secular Growth" is CG (t), and \Ination" is C1 (t). Each prediction at each point

in time is obtained by feeding the model with the two macroeconomic factors depicted in

Figure 1 (ination and growth) and by averaging over the cross-section of 1000 simulations of

the unobserved factor. The sample covers monthly data for the period from January 1950 to

December 2006. Vertical solid lines (in black) track the beginning of NBER-dated recessions,

and vertical dashed lines (in red) indicate the end of NBER-dated recessions. The shaded

area (in yellow) covers the out-of-sample period, from January 2007 to March 2009.
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Figure 4 { The dynamics of the unobserved factor implied by the estimated

model, with NBER dated recession periods. This �gure plots the dynamics of the

unobserved factor as implied by the estimated model, and a comparison with an index of

consumer con�dence|the University of Michigan Consumer Sentiment (UMCSENT) index.

The top panel plots: (i) 100 simulated trajectories of the unobserved factor, obtained using

the parameter estimates in Table 2, and (ii) (minus) the model-implied unobserved factor

(the bold line), estimated as �ŷ3;t � �ŝ�13
�
St
Ĝt
� ŝ0 � ŝ1y1;t � ŝ2y2;t

�
, where St is the real

stock price as of month t, y1;t and y2;t are gross ination and gross industrial production

growth as of month t, as de�ned in Figure 1, St is the observed real stock price as of month

t, Ĝt is the cross-sectional average of 1000 simulations of secular growth, and (ŝj)
3
j=0 are

coe�cient estimates, as reported in Table 2. The bottom panel depicts the time series of the

UMCSENT index, de-meaned and standardized by its own standard deviation, together with

the negative of the model-implied unobserved factor, �ŷ3;t, de-meaned and standardized by
its own standard deviation. The sample covers monthly data for the period from January 1950

to December 2006. The UMCSENT index is available for the sample period starting from

January 1978. Vertical solid lines (in black) track the beginning of NBER-dated recessions,

and vertical dashed lines (in red) indicate the end of NBER-dated recessions. The shaded

area (in yellow) covers the out-of-sample period, from January 2007 to March 2009.
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Figure 5 { The VIX Index and volatility risk-premia, with NBER dated recession
periods, and out-of-sample predictions. This �gure plots the VIX index along with
model's predictions. The top panel depicts (i) the VIX index, (ii) the VIX index predicted
by the model, and (iii) the VIX index predicted by the model in an economy without risk-
aversion, i.e. the expected integrated volatility under the physical probability. The bottom
panel depicts the volatility risk-premium predicted by the model, de�ned as the di�erence
between the model-generated expected integrated volatility under the risk-neutral and the
physical probability,

VRP (y (t)) �
r

1

T � t

 r
E
�R T

t
�2 (y (u)) du

���y (t)��rE �R Tt �2 (y (u)) du���y (t)�
!
;

where T � t = 12�1, E is the conditional expectation under the risk-neutral probability, E is
the conditional expectation under the true probability, �2 (y) is the instantaneous variance
predicted by the model, obtained through Eq. (12), and y is the vector of three factors: the
two macroeconomic factors depicted in Figure 1 (ination and growth) and one unobservable
factor. Each prediction at each point in time is obtained by feeding the model with the two
macroeconomic factors depicted in Figure 1 (ination and growth) and by averaging over the
cross-section of 1000 simulations of the unobserved factor. The sample covers monthly data
for the period from January 1990 to December 2006. Vertical solid lines (in black) track the
beginning of NBER-dated recessions, and vertical dashed lines (in red) indicate the end of
NBER-dated recessions. The shaded area (in yellow) covers the out-of-sample period, from
January 2007 to March 2009.
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Figure 6 { Out of sample predictions and the subprime crisis. This �gure plots
one-year return volatility and the VIX index, along with its counterparts predicted by the
model and by an OLS regression. The left panel depicts smoothed return volatility, de�ned as
Volt �

p
6� �12�1

P12
i=1 jln (St+1�i=St�i)j, where St is the real stock price as of month t, along

with the instantaneous standard deviation predicted by (i) the model, through Eq. (12), and
(ii) the predictive part of an OLS regression of Volt on to past values of Volt, ination and
industrial production growth. The right panel depicts the VIX index, along with the VIX
index predicted by (i) the model; and (ii) the predictive part of an OLS regression of the VIX
index on to past values of the VIX index, ination and industrial production growth. Each
prediction is obtained by feeding the model and the predictive part of the OLS regression
with the two macroeconomic factors depicted in Figure 1 (ination and growth) and, for
the model, by averaging over the cross-section of 1000 simulations of the unobserved factor.
The sample depicted in the �gure spans the period from January 2000 to March 2009. The
estimation of both the model and the OLS regressions relates to the period from January
1950 to December 2006. Vertical solid lines (in black) track the beginning of NBER-dated
recessions, and the vertical dashed line (in red) indicates the end of the NBER-dated recession,
occurred in November 2001. The shaded area (in yellow) covers the out-of-sample period, from
January 2007 to March 2009, which includes the NBER recession announced to have occurred
in December 2007, and the subprime crisis, which started in June 2007.
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Supplemental material: Appendix1

[Not for publication]2

A. Supplemental material for Section 23

A multifactor model4

The model we consider differs from those in Bekaert and Grenadier (2001), Ang and Liu (2004) or Mamaysky5

(2002), for a number of reasons. First, we consider a continuous-time framework, which avoids theoretical challenges6

pointed out by Bekaert and Grenadier (2001). Furthermore, Ang and Liu (2004) consider a discrete-time setting7

in which expected returns are exogenous, while in our model, expected returns are endogenous. Finally, our model8

works differently from Mamaysky’s because it endogenously determines the price-dividend ratio.9

We consider a multifactor model where a vector-valued process y () is solution to a -dimensional affine diffusion,10

dy () = κ (μ− y ()) d+ΣV (y ()) dW ()  (29)11

where W () is a -dimensional Brownian motion ( ≤ ), Σ is a full rank ×  matrix, and V is a full rank × 
diagonal matrix with elements,

 (y)() =

q
 + β> y  = 1 · · · 

for some scalars  and vectors β. We assume that the Brownian motion driving secular growth,  () in Eq. (4),12

is uncorrelated with W () in Eq. (29). We shall review soon sufficient conditions known to ensure that Eq. (29)13

has a strong solution with V (y ())()  0 almost surely for all .14

The model we estimate, Eq. (1) in Section 2 of the main text, is a special case of Eq. (29), with  =  = 3, the
matrix κ given by:

κ =

"
1 ̄1 0
̄2 2 0
0 0 3

#


and with Σ = I3×3 and the vectors β being such that  ≡  .15

While one does not necessarily observe every single component of y (), we do observe discretely sampled paths16

of macroeconomic variables such as industrial production, unemployment or inflation. Let {M}=12··· be the17

discretely sampled path of the macroeconomic variable M where, for example, M can be the industrial production18

index available for month , and  = 1 · · · M, where M is the number of observed macroeconomic factors. We19

assume, without loss of generality, that these observed macroeconomic factors are strictly positive, and that they are20

related to the state vector process in Eq. (29) by:21

ln (M/M−12) =  (y ())   = 1 · · · M (30)22

where the collection of functions {} determines how the factors dynamics impinge upon the observed macroeconomic23

variables. In terms of the model in the main text, the functions in Eq. (30) are  (y) ≡ ln  .24

We now turn to model asset prices. We assume that asset prices are related to the vector of factors y () in25

Eq. (29), and that some of these factors affect developments in macroeconomic conditions, through Eq. (30). For26

analytical convenience, we rule out that asset prices can feed back the real economy, although we acknowledge that27

the presence of frictions can make capital markets and the macroeconomy intimately related, as in the financial28

accelerator hypothesis reviewed by Bernanke, Gertler and Gilchrist (1999), or in the static model analyzed by29

Angeletos, Lorenzoni and Pavan (2008), where feedbacks arise due to asymmetric information and learning between30

agents acting within the real and the financial spheres of the economy.31

The Arrow-Debreu density we consider is exactly that in Eq. (5), with the sole exception that the vector Brownian
motion W is the -dimensional one in Eq. (29). Consider, then, the following “essentially affine” specification for

the dynamics of the factors in Eq. (29), and the risk-premiums. Let V − (y) be a × diagonal matrix with elements

 − (y)() =
½

1
 ()()

if Pr{ (y ())()  0 all } = 1
0 otherwise

and set, Λ (y) = V (y)λ1 + V
− (y)λ2y, for some -dimensional vector λ1 and some ×  matrix λ2.32

By the definition of the dividends in Eq. (2), the stock price follows:33

d ()

 ()
=

µ
 −  ()  (y ())

 (y ())

¶
d+

 (y ())
>
ΣV (y ())

 (y ())
dŴ () + d̂ ()  (31)34
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where Ŵ and ̂ are Brownian motions defined under the risk-neutral probability . Under regularity conditions1

provided below, and in the absence of bubbles, Eq. (31) implies that the stock price is,2

 (y) = E
∙Z ∞



−(−) ()  (y ()) d
¯̄̄̄
 () = y () = y

¸
 (32)3

where E is the expectation taken under the risk-neutral probability .4

We are only left with specifying how the instantaneous dividend relates to the state vector y. Let5

 (y) = 0 + δ>y (33)6

for some scalar 0 and some vector δ.7

We have:8

9

Proposition A1: Let the risk-premiums be as in Eq. (6), and the instantaneous dividend rate be as in Eqs. (2) and10

(33). Then, under a technical regularity condition (condition (38)), we have that: (i) Eq. (32) holds; and (ii) the11

rational stock price function  (y) =  ·  (y), where  (y) is affine in the state vector y, viz12

 (y) =
0 + δ> (D + ( −  + ) I×)

−1
c

 −  + 
+ δ> (D + ( −  + ) I×)

−1
y (34)13

where

c = κμ−Σ ( 11(1) · · · 1() )
>

(35)

D = κ+Σ
h¡

1(1)β
>
1 · · · 1()β

>


¢>
+ I−λ2

i
 (36)

I− is a ×  diagonal matrix with elements −
()

= 1 if Pr{ (y ())()  0 all } = 1 and 0 otherwise; and, finally14

{1()}=1 are the components of λ1.15

16

Existence of a strong solution to Eq. (29)17

Consider the following conditions: for all ,18

(i) For all y :  (y)() = 0, β
>
 (−κy + κμ)  1

2
β> ΣΣ

>β19

(ii) For all , if
³
β> Σ

´

6= 0, then  =  .20

Then, by Duffie and Kan (1996) (unnumbered theorem, p. 388), there exists a unique strong solution to Eq.21

(29) for which  (y ())()  0 for all  almost surely.22

We apply these conditions to the diffusion in Eq. (1). Condition (i) collapses to,

For all  :  +  = 0 
£
 ( − ) + ̄

¡
 − 

¢¤

1

2
2   6= 

with ̄3 ≡ 0. That is, ruling out the trivial case  = 0,23

 ( + ) + ̄

µ
 +





¶

1

2
2   6=  (37)24

Proof of Proposition A125

The technical condition in Proposition A1 is,26



"Z 



°°°°η>ΣV (y ()) + η>y ()
−Λ ()>

°°°°2 d
#
∞ (38)27

for some constants  and η in Eq. (47) below.28

We proceed as follows. First, we determine the solution to the stock price, in the absence of secular growth, i.e.29

when30

 =  ≡ 0 (39)31



Macroeconomic Determinants of Stock Market Volatility and Volatility Risk-Premiums 43

Then, we generalize, by elaborating on Eq. (32), as in Eq. (48) below.1

When Eq. (39) holds true, define the Arrow-Debreu adjusted asset price process as,  () ≡ − ()  (y ()),2

  0. By Itô’s lemma, it satisfies,3

d ()

 ()
= Dr (y ()) d+

³
Q (y ())

> −Λ (y ())>
´
dW ()  (40)4

where5

Dr (y) = − + A (y)
 (y)

−Q (y)>Λ (y) 

A (y) =  (y)
>
κ (μ− y) + 1

2
Tr
³
[ΣV (y)] [ΣV (y)]

>
 (y)

´
 Q (y)

>
=

 (y)
>
ΣV (y)

 (y)


and  and  denote the gradient and the Hessian of  with respect to y. By absence of arbitrage opportunities,6

for any  ∞,7

 () = 

"Z 



 () d

¯̄̄̄
¯F ()

#
+[ ( ) | F ()] (41)8

where  () is the current Arrow-Debreu value of the dividend to be paid off at time , viz  () = − ()  ().9

Below, we show that the following transversality condition holds,10

lim
→∞

[ ( ) | F ()] = 0 (42)11

from which Eq. (32) follows, once we show that
R∞

[ ()]d ∞.12

Next, by Eq. (41),13

0 =
d

d
[ () | F ()]

¯̄̄̄
=

+  ()  (43)14

Below, we show that15

[ ( ) | F ()] =  () +

Z 



D(y ())  () d (44)16

Therefore, by the assumptions on Λ, Eq. (43) can be rearranged to yield the following ordinary differential equation,17

For all y,  (y)
>
(c−Dy) + 1

2
Tr
³
[ΣV (y)] [ΣV (y)]

>
 (y)

´
+  (y)−  (y) = 0 (45)18

where c and D are defined in the proposition.19

Assume that the price function is affine in y,20

 (y) =  + η>y (46)21

for some scalar  and some vector η. By plugging this guess back into Eq. (45) we obtain,

For all y, η>c+ 0 −  −
h
η> (D + I×)− δ>

i
y = 0

That is,

η>c+ 0 −  = 0 and
h
η> (D + I×)− δ>

i
= 01×

The solution to this system is,22

 =
0 + η>c


and η> = δ> (D + I×)

−1
 (47)23

We are left to show that Eq. (42) and (44) hold true, when Eq. (39) also holds true.24
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As for Eq. (42), we have:

lim
→∞

[ ( ) | F ()] = lim
→∞

[−(−) ( )  (y ( )) | F ()]
=  lim

→∞
−(−)[ ( ) | F ()] + lim

→∞
−(−)[ ( )η>y ( ) | F ()]

=  () lim
→∞

−(−)E[η>y ( ) | F ()]

where the second line follows by Eq. (46), and the third line holds because [ ( ) | F ()] = 1 for all  , and by a1

change of measure. Eq. (42) follows because y is stationary mean-reverting under the risk-neutral probability.2

To show that Eq. (44) holds, we need to show that the diffusion part of  in Eq. (40) is a martingale, not only
a local martingale, which it does whenever for all  ,



"Z 



°°°Q (y ())> −Λ ()>°°°2 d# ∞

which is the condition in (38). This ends the proof of Proposition A1, in the case  =  ≡ 0.3

For the general case of Proposition A1, note that by Eq. (32):

 (y)

=  · E
∙Z ∞



−(−)E
µ
 ()


 (y ()) d

¯̄̄̄
 () = 

¶¯̄̄̄
 () = y () = y

¸
=  · E

∙Z ∞


−(−)E
³
(−

1
2
2−)(−)+(̃()−̃())

¯̄̄
 () = 

´
 (y ()) d

¯̄̄̄
y () = y

¸
=  · E

∙Z ∞


−(−+)(−) (y ()) d
¯̄̄̄
y () = y

¸
 (48)

where the first equality follows by the law of iterated expectations, the second by the independence of  and y, and4

the definition of  in Eq. (4), and the third from a simple computation. The term in the brackets is the same as the5

RHS of Eq. (32), for  () ≡ 1,  ∈ (∞). Therefore, the solution for the term in the brackets is the same as that6

provided in the case of absence of secular growth, i.e. when Eq. (39) holds true, but with − +  replacing .7

B. Supplemental material for Section 38

Remarks on notation: Hereafter, we let Avar and Acov denote the limits of the variance and covariance operators,9

respectively. Let u be a  × 1 vector, where each element depends on some  × 1 parameter vector θ. We define:10

the ×  matrix ∇u =
>

; kuk =

³√
u>u

´
, for some scalar   0; and |u|2 = uu>, the outer product of u.11

Finally, for any × matrix A, we set |A| =P
=1

P
=1 | |.12

B.1. Asymptotic theory for the estimators in Section 313

The sets Φ and Θ in Sections 3.1 and 3.2 are defined as:

Φ = {φ : The inequality in (37) holds,   0 and  − ̄̄  0   = 1 2 and  6= } 
and

Θ = {θ : The inequality in (37) holds for  = 3, and 3  0} 
Furthermore, we let φ0 and θ0 be the solutions to the two limit problems,14

φ0 = arg min
∈Φ0

plim
→∞∆→0

°°°°° 1
X
=1

ϕ̂∆ (φ)− ϕ̃

°°°°°
2

 (49)15

and16

θ0 = arg min
∈Θ0

plim
→∞∆→0

°°°°° 1
X
=1

ϑ̂∆ (θ)− ϑ̃
°°°°°
2

 (50)17
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where Φ0 and Θ0 are compact sets of Φ and Θ, respectively. Finally, we define the limit problem for the estimator18

of the risk-premium parameters,1

λ0 = arg min
∈Λ0

plim
T→∞∆→0

°°°°° 1
X
=1

ψ̂T ∆(φ̂  θ̂ λ)− ψ̃T
°°°°°
2

 (51)2

We are now ready to analyze the asymptotic behavior of these estimators. The following assumption summarizes3

the properties of the data generating mechanism we rely on.4

5

Assumption B1: (i) Conditions (i) and (ii) in Appendix A hold for  = 1 2 3; (ii) The sample observations for the6

macroeconomic factors 1() 2() are generated by Eq. (1) for  = 1 2; (iii) As for Eq. (1), for   = 1 2  6= 7

 − ̄̄  0 and for all  = 1 2 3   0; (iv) The sample observations for the stock market index () are8

generated by Eq. (8); (v) The risk-premium vector π (y) and the dividend vector  (y) are defined as in Eqs. (7)9

and (3).10

The estimator of φ̂ in Eq. (19)11

We have:12

13

Proposition B1: Under regularity conditions (Assumption B1(i)-(iii) in Appendix B), as  →∞ and ∆
√
 → 0

√

³
φ̂ − φ0

´
−→ N(0V 1)  V 1 =

µ
1 +

1



¶³
D>
1D1

´−1
D>
1 J1D1

³
D>
1D1

´−1


where φ0 is as in Eq. (49), and the two matrices, D1 and J1, are defined in the proof below.14

15

Proof : By the conditions in Assumptions B1(i) and B1(ii), (1() 2()) admits a unique strong solution, and16

has a positive-definite covariance matrix with probability one. Assumption B1(iii) ensures that (1() 2()) is17

geometrically ergodic and the skeleton (1 2) is geometrically -mixing. Further, by Glasserman and Kim (2010),18

the stationary distribution of (1() 2()) and (1 2) has exponential tails, which ensures that there are enough19

finite moments for the uniform law of large numbers and the central limit theorem to apply. By the same argument,20

for any φ ∈ Φ0, the simulated skeleton (1∆ 2∆) is also geometrically -mixing, with stationary distribution21

having exponential tails. Finally, given Eq. (1), (

1∆ 


2∆) is at least twice continuously differentiable in any22

open neighborhood of φ0.23

We have that φ̂ −φ0 = (1), because of the uniform law of large numbers and unique identifiability. Next, by
the first order conditions and a mean-value expansion around φ0,

0 = ∇

³
1


P
=1 ϕ̂∆(φ̂ )

´> ³
1


P
=1 ϕ̂∆(φ̂ )− ϕ̃

´
= ∇

³
1


P
=1 ϕ̂∆(φ̂ )

´> ³
1


P
=1 ϕ̂∆ (φ0)− ϕ̃

´
+∇

³
1


P
=1 ϕ̂∆(φ̂ )

´>
∇

³
1


P
=1 ϕ̂∆(φ̄ )

´³
φ̂ − φ0

´


where φ̄ is some convex combination of φ̂ and φ0. Let

D1 (φ0) ≡D1 = plim ∇

³
1


P
=1 ϕ̂∆ (φ0)

´


By the uniform law of large numbers, sup∈Φ0

¯̄̄
∇

³
1


P
=1 ϕ̂∆ (φ)

´
−D1 (φ)

¯̄̄
= (1), and as φ̂−φ0 = (1),

∇

³
1


P
=1 ϕ̂∆(φ̄ )

´
−D1 = (1). Hence,

√

³
φ̂ − φ0

´
= −

³
D>
1D1

´−1
D>
1

³√

³
1


P
=1 ϕ̂∆ (φ0)−ϕ0

´
−
√
 (ϕ̃ −ϕ0)

´
+ (1)

Let ϕ̂ (φ0) be the unfeasible estimator, obtained by simulating continuous paths for  (), i.e. 
0
,  = 1 2. We

claim that for  = 1 · · · , √

¡
ϕ̂∆ (φ0)− ϕ̂ (φ0)

¢
= (1)

Let Y
0
∆ be the vector containing all the regressors in Eq. (18), and let ϕ̂1∆ (φ0) be the parameter estimator
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of the OLS regression of 
0
1∆ on Y

0
∆. We have:

√

¡
ϕ̂1∆ (φ0)− ϕ̂1 (φ0)

¢
=

Ã
1



X
=25

Y
0
Y

0>


!−1√


Ã
1



X
=25

³
Y

0
∆

0
1∆ − Y 0


0
1

´!

+
√


⎛⎝Ã 1


X
=25

Y
0
∆Y

0>
∆

!−1
−
Ã
1



X
=25

Y
0
Y

0>


!−1⎞⎠Ã 1


X
=25

Y
0
∆

0
1∆

!
 (52)

As for the first term on the RHS of (52),
³
1


P
=25 Y

0
Y

0>


´−1
= (1), and by Theorem 2.3 in Pardoux and

Talay (1985), we have, for   0 and
√
∆→ 0,

Pr

Ã¯̄̄̄
¯ 1√

X
=25

³
Y

0
∆

0
1∆ − Y 0


0
1

´¯̄̄̄¯  

!

1



√
E

³¯̄̄
Y

0
∆

0
1∆ − Y 0


0
1

¯̄̄´
=
√
 (∆) = (1)

The second term on the RHS of Eq. (52) can be dealt with similarly. Thus, we have:

Avar
³√


³
φ̂ − φ0

´´
=
³
D>
1D1

´−1
D>
1 Avar

³√

³
1


P
=1 ϕ̂ (φ0)−ϕ0

´
−
√
 (ϕ̃ −ϕ0)

´
D1

³
D>
1D1

´−1


where,
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The last term of the RHS of this equality is zero, because the simulated paths are independent of the sample paths.
Moreover, the simulated paths are independent and identically distributed across all simulation replications and,
hence,
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Finally, given Assumption B1(ii),
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and so
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The proposition follows by the central limit theorem for geometrically strong mixing processes.24

The estimator of θ̂ in Eq. (24)1

We have:2

3

Proposition B2: Under regularity conditions (Assumption B1(i)-(iv) in Appendix B), as  →∞ and ∆
√
 → 0,
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where θ0 is as in Eq. (50), and the four matrices, D2, J2, K2 and P 2, are defined in the proof below.4

5

As discussed in the main text, the matrix P 2 arises due to parameter estimation error, as the stock price in Eq.6

(20), is simulated with parameters θ fixed at their estimates, θ̂ . Moreover, the matrixK2 captures the covariance7

of the structural parameter estimates over all the simulation replications, as well as the covariance between actual8

and simulated paths, thereby resulting in an improved efficiency, if compared to estimators based on unconditional9

(simulated) inference.10

11
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Proof of Proposition B2 : By the same arguments utilized in the proof of Proposition B1,

√

³
θ̂ − θ0

´
= −

³
D>
2D2

´−1
D>
2

³√

³
1


P
=1 ϑ̂∆ (θ0θ)− ϑ0

´
+C>

2

√

³
θ̂ − θ

´
−
√

³
ϑ̃ − ϑ0

´´
+ (1)

where for θ̄ ∈ (θ̂ θ),

D2 = plim ∇

³
1


P
=1 ϑ̂∆

¡
θ0 θ̄

¢´
 C2 = plim ∇

³
1


P
=1 ϑ̂∆

¡
θ0 θ̄

¢´


Therefore:
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Let ϑ̂ (θ0θ) be the infeasible estimator, obtained by simulating continuous paths for the unobservable factor

3 () and for 
̂ (). By the same arguments as those in the proof of Proposition B1,
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Paths of the model-implied stock price are obtained through the sample paths of the observable factors 1 and 2.
Therefore, simulated paths are not independent across simulations, and are not independent of the actual sample
paths of stock price and volatility. We have:
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Therefore, using the fact that Avar
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= J2, letting P 2 denoting the

sum of the third, fourth and sixth terms in Eq. (53), and exploiting the expression for J0, we obtain:
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and, hence:
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Details on the simulations of the VIX index predicted by the model12

We construct a simulated series of length T for the VIX index, at a monthly frequency. Since we do not have
a closed-form formula for the VIX index, we need to resort to numerical methods aiming to approximate it. We
address this issue by simulating the three factors at a daily frequency, which we then use to numerically integrate
the daily volatilities. For each simulation draw  = 1 · · ·, we initialize each monthly path at the values taken by
the observable macroeconomic factors, i.e. at 1, 2,  = ∗ · · · ∗ + T − 1, where ∗ is the first date where the
VIX is available, and at the monthly unconditional mean of the unobservable factor. In the additional experiments
of Appendix C, we initialize each monthly path of the unobservable factor at the values taken by (i) the model-
implied factor and (ii) the University of Michigan Consumer Sentiment index to generate the statistics, as defined,

respectively, by Eq. (28) and by Eq. (64) below. For  = 1 2 3  = 1 · · ·  = 0 · · · ∆̂−1− 1, let ̂
+∆̂

be the

value of the -th factor, at time  + ∆̂, for the -th simulation under the risk-neutral probability, performed with
parameter λ ∈ Λ0 and remaining parameters fixed at their estimates obtained in the first and second step of our
estimation procedure. ∆̂ will be defined in a moment. Simulations are obtained through a Milstein approximation
to the risk-neutral version of Eq. (1),

d () = [ ( −  ()) + ̄ (̄ − ̄ ())−  ()] d+
p
 +  ()d̃ ()   = 1 2 3

where  () denotes the -th element of the vector π (y) in Eq. (7), and ̃ is a standard Brownian motion under1

the risk-neutral probability. We use the discretization step ∆̂ = ∆22, where ∆ is the discretization step used in2

the first and the second step of our estimation procedure Given Eqs. (8)-(11), the model-based volatility under the3

risk-neutral measure, at the -th simulation, is:4

2
+∆̂

(θ̂  φ̂  ̂ λ) = ̂2 +

P3
=1 ̂

2


³
̂ + ̂ ̂
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´
̃2
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(θ̂  φ̂  ̂ λ)
 (54)5

where6

̃+∆̂(θ̂  φ̂  ̂ λ) = ̂0 +

3X
=1

̂ ̂


+∆̂
 (55)7

and ̂ and ̂  = 0 ··· 3 are the standard deviation of stochastic secular growth and the reduced-form parameters8

obtained in the second step of the estimation procedure. Finally, we compute the simulated value of the model-based9

VIX, VIX∆̂(θ̂  φ̂ λ), by integrating volatility over each month, as follows:10

VIX∆̂(θ̂  φ̂  ̂ λ) =

vuut 1

∆̂

∆̂−1−1X
=0

2
+(+1)∆̂

(θ̂  φ̂  ̂ λ) (56)11

By repeating the same procedure outlined above  times, we can then generate  paths of length T . From now on,12

we simplify notation and index all parameter estimators and simulated factors by ∆, rather than ∆̂.13

The estimator of λ̂T in Eq. (26)14

We have:15

16

Proposition B3: Under regularity conditions (Assumption B1 in Appendix B), if for some  ∈ (0 1),  T 
∆
√
 → 0, ∆ →∞ and T  → , then:
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where λ0 is as in Eq. (51), and the four matrices, D3, J3, K3 and P 3, are defined in the proof below.17

18
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Proof : Given Assumptions B1(i) and B1(iii), for any λ in a compact set Λ0, 

+(+1)∆

,  = 1 2 3,  = 1 ···,19

is geometrically -mixing, and has a stationary distribution with exponential tails. Thus, by Eqs. (54), (55) and (56),1

VIX∆ (θ0φ0 λ0) is also geometrically -mixing with exponential tails. Therefore, VIX∆ (θ0φ0 λ0)2

has enough finite moments to satisfy sufficient conditions for the law of large numbers and the central limit theorem3

to apply. Next, note that VIX∆ (θφ λ) is continuously differentiable in the interior of Φ0 ×Θ0 ×Σ ×Λ04

(for some compact set Σ) and, hence, the uniform law of large numbers also applies. Similarly as in the proof of5

Propositions B2, we take into account the contribution of parameter estimation error, arising because the risk-neutral6

paths of the factors are generated using φ̂ ,θ̂ and ̂ , instead of the unknown φ0, θ0 and .7

By an argument similar to that in the proof of Proposition B1,

√
T
³
λ̂T − λ0

´
= −

³
D>
3D3

´−1
D>
3

³√
T
³
1


P
=1 ψ̂T ∆(φ̂  θ̂  ̂ λ0)−ψ0

´
−
√
T
³
ψ̃T −ψ0

´´
+ (1)

where

D3 = plim
T→∞

∇

³
1


P
=1 ψ̂T ∆ (φ0θ0 λ0)

´


and along the same lines as those in the proof of Proposition B2,
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where  = limT→∞ T  , and, with θ̄ ,φ̄ and ̄ denoting convex combinations of (θ̂ θ0), (φ̂ φ0) and
(σ̂  ), respectively,
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with F>0 and F
>

defined analogously. Therefore, by the same argument as those in the proofs of Propositions B1

and B2,
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B.2. Bootstrap estimates of the standard errors8

We develop bootstrap standard errors consistent for V 1, V 2, and V 3 of Propositions B1, B2, and B3. We draw
 overlapping blocks of length , with  = , of

X = (1 · · · 1−1  2 · · · 2−2 · · · −3)
where 1 2 3 depend on the lags we use in the auxiliary models. The resampled observations are:

X∗ = (
∗
1 · · · ∗1−1  ∗2 · · · ∗2−2∗  · · · ∗−3)

Let  ∗ be the probability measure governing the resampled series, X∗ , and let E
∗ var∗ denote the mean and the1

variance taken with respect to  ∗, respectively. Further ∗(1) and ∗(1) denote, respectively, a term bounded in2

probability, and converging to zero in probability, under  ∗, conditional on the sample and for all samples but a set3

of probability measure approaching zero.4

For the implementation, we use block sizes of approximately  14 and  13 (see Lahiri (2003)), which give similar5

results. The standard errors reported in the main text are based on block sizes of approximately  14. (Note: Whilst6

∗ does not not necessarily mimic the dependence of , we just use 
∗
 to compute 

∗
 and Vol

∗
 , which indeed mimic7

the dependence of  and Vol.)8

Bootstrap Standard Errors for φ9

The simulated samples for 1 and 2 are independent of the actual samples and are also independent across10

simulation replications. Also, as stated in Proposition B1, the estimators of the auxiliary model parameters, based on11

actual and simulated samples, have the same asymptotic variance. Hence, there is no need to resample the simulated12

series.13

Given that the number of auxiliary model parameters and moment conditions is larger than the number of14

parameters to be estimated, we need to use an appropriate re-centering term. In the over-identified case, even if the15

population moment conditions have mean zero, the bootstrap moment conditions do not have mean zero, and hence16

a proper re-centering term is necessary (see, e.g., Hall and Horowitz (1996)).17

Let ϕ̃∗ be the bootstrap analog to ϕ̃ at draw , and define:

φ̂
∗
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∈Φ0

°°°°°
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³
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  = 1 · · · 

We compute the bootstrap covariance matrix, as follows:

V̂ 1 =




X
=1

¯̄̄̄
¯φ̂∗ − 1



X
=1

φ̂
∗


¯̄̄̄
¯
2



The next proposition shows that
¡
1 + 1



¢
V̂ 1, is a consistent estimator of V 1, thereby allowing to compute18

asymptotically valid bootstrap standard errors.19
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Proposition B4: Under the same assumptions of Proposition B1, if  12 → 0 as  →∞, then for all   0,
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Proof: By the first order conditions and a mean value expansion around φ̂ ,
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where φ̄
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 is some convex combination of φ̂
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The Proposition follows, once we show that:20
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Indeed, under conditions (57)-(58), we have that by the uniform law of large numbers,¯̄̄
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Given (59), the statement follows by Theorem 1 in Goncalves and White (2005).5

Let us show (57), (58) and (59). We have,
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. Let Y  be the vector containing all the regressors in Eq. (17), and Y
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as 1
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This proves (57). Next,6
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By Lemma 2.1 in Goncalves and White (2005), E
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follows by Markov inequality.2

Bootstrap Standard Errors for θ3

The model-based stock price series is simulated using the actual samples of the observable factors, and simulated

samples for the unobservable factor and secular growth, ln
̂
∆. Thus, we need to take into account the contribution

of K2, the covariance between simulated and sample paths, as well as the contribution of
√

³
θ̂ − θ

´
. To

construct the resampled simulated stock prices through Eq. (20), we need to resample secular growth, ln
∆

through θ̂
∗
 , the bootstrap analog to θ̂ . As secular growth is a geometric Brownian motion, we cannot use

the block bootstrap to obtain θ̂
∗
 . Instead, we rely on the residual-based bootstrap of Paparoditis and Politis

(2003). Let ̂ =
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Hodrick-Prescott filter, as discussed in the main text. Resample from ̂ − 1
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Use ln∗ to get the bootstrap estimator, θ̂
∗
 =

¡
̂∗  ̂

∗


¢
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from it, to obtain ln
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∗
 ) = ln

∗̂∗
∆ + ln

³
0 + 1

∗
1 + 2

∗
2 + 

∗
∆

´
 (60)6

where 
∗
∆ is resampled from the simulated unobservable process 

∆, and use ∗∆(θ̂
∗
 ) to construct

∗∆(θ, θ̂
∗
 ) and Vol

∗
∆(θ, θ̂

∗
 ). Define,

ϑ̃
∗
 =

³
ϑ̃
∗
1  ϑ̃

∗
2  ̄

∗Vol
∗´>



where ϑ̃
∗
1  ϑ̃

∗
2 are the estimators of the auxiliary models obtained using resampled observations, and 

∗
, Vol

∗
are

the sample means of ∗ = ln(
∗
 

∗
−12) and Vol

∗
 =
√
6 · 1

12

P12
=1

¯̄
ln
¡
∗+1−

∗
−
¢¯̄
, with ∗ being the resampled
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series of the observable stock price process , and

ϑ̂
∗
∆(θ, θ̂

∗
 ) =

³
ϑ̂
∗
1∆(θ, θ̂

∗
 ) ϑ̂

∗
2∆(θ, θ̂

∗
 ) ̄

∗
∆(θ, θ̂

∗
 )Vol

∗
∆(θ, θ̂

∗
 )

´>


where ϑ̂
∗
1∆(θ, θ̂

∗
 ) and ϑ̂

∗
2∆(θ, θ̂

∗
 ) are the parameters of the auxiliary models estimated using resam-

pled simulated observations, and 
∗
∆(θ, θ̂

∗
 ), Vol

∗
∆(θ, θ̂

∗
 ) are the sample means of 

∗
∆(θ, θ̂

∗
 ) and

Vol∗∆(θ, θ̂
∗
 ). Define:

θ̂
∗
 = arg min

∈Θ0

°°°°° 1
X
=1

³
ϑ̂
∗
∆(θ, θ̂

∗
)− ϑ̂

∆

(θ̂  θ̂)
´
−
³
ϑ̃
∗
 − ϑ̃

´°°°°°
2

  = 1 · · · 

where ϑ̂
∗
∆(θ, θ̂

∗
) and ϑ̃

∗
 denote the values of ϑ̂

∗
∆

³
θ, θ̂

∗


´
and ϑ̃

∗
 at the -th bootstrap replication.

The bootstrap covariance matrix is:

V̂ 2 =




X
=1

¯̄̄̄
¯θ̂∗ − 1



X
=1

θ̂
∗


¯̄̄̄
¯
2



The next proposition shows that V̂ 2 is a consistent estimator of V 2, and can then be used to obtain asymp-7

totically valid bootstrap standard errors.1

Proposition B5: Under the same assumptions of Proposition B2, if  12 → 0 as   → ∞, then, for all
  0,

Pr
³
 :  ∗

³¯̄̄
V̂ 2 − V 2

¯̄̄
 

´´
→ 0

Proof: By a similar argument as that in the proof of Proposition B4,

√

³
θ̂
∗
 − θ̂

´
= −

³
D>
2D2

´−1
D>
2

√

³
1


P
=1

³
ϑ̂
∗
∆(θ̂  θ̂

∗
 )− ϑ̂∆(θ̂  θ̂ )

´
−
³
ϑ̃
∗
 − ϑ̃

´´
+ ∗(1)

= −
³
D>
2D2

´−1
D>
2

³√

³
1


P
=1

³
ϑ̂
∗
∆(θ̂  θ̂ )− ϑ̂∆(θ̂  θ̂ )

´
−
³
ϑ̃
∗
 − ϑ̃

´´
+C>

2

√

³
θ̂
∗
 − θ̂

´´
+ ∗(1)

Moreover, along the lines of the proof of Proposition B4, we can show that

E∗
³√


³
θ̂
∗
 − θ̂

´´
= ∗(1)

and:2

Var∗
³√


³
θ̂
∗
 − θ̂

´´
=

³
D>
2D2

´−1
D>
2 Var

∗
³³√

 1


P
=1

³
ϑ̂
∗
∆(θ̂  θ̂ )− ϑ̂∆(θ̂  θ̂ )

´´
−
√

³
ϑ̃
∗
 − ϑ̃

´
+C>

2

√

³
θ̂
∗
 − θ̂

´´
D2

³
D>
2D2

´−1
+ (1)

=
³
D>
2D2

´−1
D>
2 Avar

³³√
 1


P
=1

³
ϑ̂∆(θ0θ)− ϑ0

´´
−
√

³
ϑ̃ − ϑ0

´
+C>

2

√

³
θ̂ − θ

´´
D2

³
D>
2D2

´−1
+ (1)

Hence, Var∗
³√


³
θ̂
∗
 − θ̂

´´
= Avar

³√

³
θ̂ − θ0

´´
+ (1).3

Finally, under the parameter restrictions in Assumptions B1(i) and B1(iii), Minkowski’s inequality ensures that

E∗
µ³√


°°°θ̂∗ − θ̂°°°´2+¶ = (1)
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The statement then follows from Theorem 1 in Goncalves and White (2005).4

Bootstrap Standard Errors for λ1

As mentioned in the main text, the model free VIX index series is available only from 1990 and so in the third step
we have a sample of length T , instead of length  . Thus, we need to resample 1 2  and VIX from the shorter
sample, using blocksize  and number of blocks , so that  = T . Also, we need to resample the unobservable
factor from a sample of length T , at the parameter estimate of θ obtained in the previous step, ̂3∆ say. Let
VIX∗∆(y

∗
 ; φ̂

∗
  θ̂

∗
  ̂

∗
 λ) be the resampled model-based VIX, according to Eq. (55). Finally, let

ψ̃
∗
T =

³
ψ̃
∗
1T VIX

∗
 ̂∗VIX

´>


where ψ̃
∗
1T is the parameter vector for the auxiliary model, estimated using ∗1 

∗
2, and VIX

∗
 , with VIX

∗
 being2

the resampled series of the model-free VIX, and VIX
∗
 ̂∗VIX are the sample mean and standard deviation of VIX

∗
 ,3

and:4

ψ̂
∗
T ∆(θ̂

∗
  φ̂

∗
  ̂

∗
 λ)

=
³
ψ̂
∗
1T ∆(θ̂

∗
  φ̂

∗
  ̂

∗
 λ)VIX

∗
∆(θ̂

∗
  φ̂

∗
  ̂

∗
 λ) ̃

∗
∆VIX(θ̂

∗
  φ̂

∗
  ̂

∗
 λ)

´>


where ψ̂
∗
1T ∆(φ̂

∗
  θ̂

∗
  ̂

∗
 λ) is the parameter vector for the auxiliary model, estimated using ∗1, 

∗
2, and

VIX
∗
∆(θ̂

∗
  φ̂

∗
  ̂

∗
 λ) and ̃∗∆VIX(θ̂

∗
  φ̂

∗
  ̂

∗
 λ) are the sample mean and standard deviation of

VIX∗∆(φ̂
∗
  θ̂

∗
  ̂

∗
 λ). Define,

λ̂
∗
T = arg min

∈Λ0

°°°°°
Ã
1



X
=1

³
ψ̂
∗
T ∆(φ̂

∗
  θ̂

∗
  ̂

∗
 λ)− ψ̂T ∆(φ̂  θ̂  ̂  λ̂T )

´
−
³
ψ̃
∗
T − ψ̃T

´!°°°°°
2



Construct the bootstrap covariance matrix, as

V̂ 3T  =
T


X
=1

¯̄̄̄
¯λ̂∗T  − 1



X
=1

λ̂
∗
T 

¯̄̄̄
¯
2



where λ̂
∗
T  denotes the value of λ̂

∗
T at the -th bootstrap replication.5

The next proposition is the counterpart to Propositions B4 and B5. It shows that V̂ 3T  is a consistent estimator6

of V 3, and can then provide asymptotically valid bootstrap standard errors.7

8

Proposition B6: Under the same assumptions of Proposition B3, if T 12 → 0 as  T    → ∞, then, for all
  0,

Pr
³
 :  ∗

³¯̄̄
V̂ 3T  − V 3

¯̄̄
 

´´
→ 0

Proof: Follows by arguments nearly identical to those in the proof of Proposition B5.9

C. Supplemental material for Section 410

We provide additional results aiming to: (i) ascertain how the model-implied statistics match those of the data11

(in Section C.1), and (ii) assess some implications of the model estimates for the dynamics of dividends (in Section12

C.2). Finally, (iii) we conduct experiments to check whether our variance decompositions and out-of-sample results13

are robust to the modification of the methodology we use to integrate out the unobserved factor (in Section C.3).14

C.1. Model-implied dividends dynamics15

We explore the implications our three-step estimation procedure has on the dynamics of the dividends. Consider16

the system of equations  =  (s6=λφθθ; δ ),  = 0 1 2 3, for four functions  (s6=λφθθ; δ )17

given by Eqs. (9)-(10)-(11), where s6= denotes the parameter vector that includes all the elements  except , and18

the remaining notation is as in the main text. Given the estimates of sλφθ, and θ, say ŝ, λ̂, φ̂, θ̂ and θ̂19

reported in Section 4 (see Tables 1, 2 and 4), we set  = 001, and search for values of δ and  that jointly minimize20
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the criterion,21

Ξ (δ ) ≡
3X

=0

(̂ − (ŝ6= λ̂ φ̂ θ̂ θ̂; δ ))2 (61)1

as well as moment conditions relying on an auxiliary model for the real dividends (see Eq. (63) below), along with2

the mean and the standard deviation of real dividends, say ̄ and ̂.3

To generate moment conditions for the dividends, we simulate  paths of length  of the unobservable factor4

3 (), and the unobservable secular growth,  (), using a Milstein approximation with discrete interval ∆, using the5

parameter estimates of θ and θ in Table 2, and sample them at the same frequency as the data, obtaining the6

series 3∆ and 
∆. Likewise, let Div


∆ be the simulated series of the dividends, when the parameters are7

fixed at θ:8

lnDiv

∆ = ln

∆ + ln
³
0 + 11 + 22 + 3


3∆

´
 (62)9

where 1 and 2 denote gross inflation and gross industrial production growth. Eq. (62) is, naturally, the simulated10

counterpart to Eqs. (2)-(3), with 
0∆ ≡ 1, as in Eq. (4). We fix the intercept, 0, so as to make the model-implied11

average of the detrended dividends match its empirical counterpart: 0 = Div
−1̄1−2̄2−3, where Div denotes12

the sample mean of the detrended dividends, Div ≡ −Div, Div is the observed real dividend at time , and13

finally, ̄1 and ̄2 are the sample means of two macroeconomic factors gross inflation and gross industrial production14

growth, 1 and 2, depicted in Figure 1. Real dividends are defined as dividends divided by the consumer price15

index, and dividend data are obtained from Robert Shiller’s website (http://www.econ.yale.edu/~shiller/),16

covering monthly data for the period from January 1950 to December 2006. Next, define yearly dividend growth as17

DG ≡ ln (DivDiv−12), and let DG
∆ be the simulated counterparts to DG. The auxiliary model for dividend18

growth is:19

DG = D +
X

∈{1224}
D11− +

X
∈{1224}

D22− + D  (63)20

and is, naturally, the same as that we use to fit the model-implied dividend growth, DG

∆ . Our optimization21

leads us to find that  = 13901 and the values of δ reported in Table C.1 below.22

23

Table C.124

Calibrated values of δ, the parameter vector relating to the dividend process in Eqs. (2)-(3),25

as implied by the three-step estimation procedure.26

0 1 2 3
0.0382 −0.0302 0.0291 0.0006

27

Table C.2 (Panel E) reports parameter estimates for the auxiliary model for the real dividends in Eq. (63). Figure28

C.1 depicts the dynamics of real dividend growth, DG, as well as its simulated counterparts, obtained by feeding29

Eq. (62) with the realization of the two macroeconomic factors, gross inflation, 1, and gross industrial production30

growth, 2, and by averaging over the cross-section of 1000 simulations of secular growth and the unobserved factor31

and, finally, by fixing the parameters to θ̂ and θ̂ (as reported in Table 2 of Section 4), and the calibrated values32

for δ reported in Table C.1.33

The calibrated parameter values in Table C.1 suggest real dividend growth is procyclical in our model, at least34

because it positively links to gross industrial production growth, through the positive coefficient value, 2. While35

it also negatively relates to inflation (due to 1  0), it is overall procyclical, in that our model-implied dividend36

growth drops over all NBER recession episodes of our sample, mimicking the behavior of their observed counterparts,37

both qualitatively (especially over the last ten years in the sample, and quantitatively (as seen from the parameter38

estimates for the auxiliary model in Panel E of Table C.2). Note that the negative coefficient estimates of (the39

sum of) D212 and D224 are consistent with a procyclical dividends behavior, given a mean-reverting behavior of the40

industrial production growth. Intuitively, bad times (when industrial production is low) are followed by good. But41

good times are those where detrended dividends also increase. Therefore, a slowdown in industrial production growth42

is a predictor of high dividend growth. (A similar explanation holds for the negative values of the macroeconomic43

loadings resulting from the estimates of the auxiliary regressions relating to the asset returns in Panel B, and the44

positive values of the short-term macroeconomic loadings relating to the auxiliary regressions for volatility reported45

in Panel C.)46
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To illustrate with a simple example, consider a case where detrended dividends positively link to a single state
variable tracking the business cycle conditions  (), say, such that  () = 0 +  (), for two constant 0 and ,
and where   0. Assume, then, and critically, that  () is mean-reverting, with unconditional expectation , speed
of adjustment   0, and some volatility coefficient  (),

 () =  (−  ()) +  ( ())  () 

where  () is a Brownian motion. Then, it is straightforward to show that −12 ( ()−  (− 12)) = 0 −47

1 (− 12), where  denotes the expectation taken conditionally upon the information set as of time , and1

0 ≡ 
¡
1− −12

¢
 and 1 ≡ 

¡
1− −12

¢
. That is, if  () is mean-reverting,   0, and  () is procyclical,2

  0, expected changes in detrended dividends negatively link to past values of  (), i.e. 1  0. This reasoning3

generalizes to a multivariate case, although the presence of feedbacks between macroeconomic variables might then4

dilute the contribution of each variable as a predictor of future detrended dividends.5

6

7

8
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Figure C.1 — Dividend growth, observed and implied by the model estimates, with10

NBER dated recession periods. This figure plots year-to-year dividend growth, along with11

its counterpart implied by the model estimates, obtained through our three-step procedure.12

Dividend growth is defined as DG = ln (DivDiv−12), where Div is the dividend observed13

at time . The model-implied dividend growth is obtained by feeding Eq. (62) with the two14

macroeconomic factors depicted in Figure 1 (inflation and growth), by averaging over the cross-15

section of 1000 simulations of secular growth and the unobserved factor and, finally, by fixing16

the parameters to θ̂ and θ̂ (as reported in Table 2 of Section 4), and the calibrated values17

for δ reported in Table C.1. The sample covers monthly data for the period from January18

1950 to December 2006. Vertical solid lines (in black) track the beginning of NBER-dated19

recessions, and vertical dashed lines (in red) indicate the end of NBER-dated recessions.20
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C.2. Model-implied predictions of reduced-form regressions21

This section contains details concerning parameter estimates for the auxiliary models utilized to implement the1

three-step estimation procedure in the main paper–Table C.2, Panel A through D. The values of δ in Table C.1,2

which simultaneously minimize the criterion function Ξ (δ ) in Eq. (61) and moment conditions for the auxiliary3

models for the real dividends in Eq. (63), lead to the parameter estimates for the auxiliary models reported in Panel4

E of Table C.2.5

6

Table C.27

Parameter estimates for the auxiliary models fitted on both data and data generated by the8

model, and relating to (i) the macroeconomic factors (Eqs. (17)-(18)), in Panel A; (ii) asset9

returns (Eq. (22)), in Panel B; (iii) asset volatility (Eq. (23)), in Panel C; and the VIX index10

(Eq. (25)), in Panel D. Panel E reports parameter estimates for the auxiliary model relating to11

the real dividends (Eq. (63) in this Appendix). For each of these auxiliary models, we report12

2 as well as the residual variances, denoted with 1 and 2 (Panel A), 
2
R
(Panel B), 2

V
13

(Panel C), 2
VIX

(Panel D), and 2
D
(Panel E). The parameter estimates ,  and  in Panel14

A refer to the vector w, the matrix A and the diagonal elements of the variance-covariance15

matrix C in Eqs. (17)-(18), and 2 is the 
2 of the regression for the macroeconomic factor16

,  = 1 2. Remaining notation is as in the main text.1718

Panel A
Auxiliary regressions relating to macroeconomic factors

Data Model-implied
1 −0.0197 −0.0232
2 0.1640 0.2134
11 0.9982 0.9970
21 −0.1063 −0.1255
12 0.0208 0.0254
22 0.9483 0.9199

21 0.9516 0.9203

1 1.41·10−5 2.03·10−5
22 0.9394 0.9114
2 0.0002 0.0004
̄1 1.0385 1.0386
̄2 1.0367 1.0375
̂1 0.0296 0.0296
̂2 0.0571 0.0572

19

Panel B
Auxiliary regressions relating to asset returns

Data Model-implied

R 2.4293 3.4159

R112 −1.2560 −1.0303
R212 −1.0609 −2.2459
2 0.1707 0.5221

2R 0.0204 0.0139
̄ 2.8843 2.7915
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Table C.2–continued20

1

Panel C
Auxiliary regressions relating to asset volatility

Data Model-implied

V −0.3745 0.0628

V6 1.0162 0.8525

V12 −0.6893 −0.2889
V18 0.5311 0.3741

V24 −0.3272 −0.1515
V36 0.0541 0.0269

V48 −0.0205 0.0167

V112 0.0813 0.2969

V124 −0.1191 −0.1023
V136 0.1831 −0.1114
V148 −0.0035 −0.0649
V212 0.0435 −0.0957
V224 0.0910 0.0517

V236 0.1022 −0.0215
V248 0.0312 0.0036

2 0.6184 0.7551

2V 0.0006 0.0005

Vol 0.1150 0.1305
̂Vol 0.0401 0.0314

2

Panel D
Auxiliary regressions relating to the VIX index

Data Model-implied

VIX −0.4316 −0.0037
VIX 0.5532 0.9788

VIX136 −0.2800 −0.1318
VIX148 −0.0357 0.0989

VIX236 0.3320 0.0518

VIX248 0.4865 −0.0107
2 0.6969 0.9512

2VIX 0.0013 3.97·10−5
VIX 0.1894 0.2326
̂VIX 0.0636 0.0278

3

Panel E
Auxiliary regressions relating to detrended dividends

Data Model-implied

D 0.6753 1.6282

D112 −0.5057 −1.0051
D124 −0.0753 0.6234

D212 0.1043 −1.0894
D224 −0.1598 −0.0780
2 0.2352 0.5659

2D 0.0014 0.0026
̄ 0.0781 0.0879
̂ 0.0136 0.0363
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C.3. Variance decomposition and out-of-sample statistics4

The experiments of this section produce variance decomposition and out-of-sample statistics under two alternative1

methodologies regarding the treatment of the unobserved factor. In the main text, these statistics originate from2

simulations of the unobservable factor. Under the first methodology of this section, we feed the model through the3

time series of the model-implied unobservable factor ̂3 (), calculated as in Eq. (28) of the main text. Figure C.24

depicts conditional variance decompositions, calculated through Eq. (27), and obtained by feeding the model with5

the two macroeconomic factors, inflation and growth in Figure 1, and replacing the unobserved factor 3 () with6

̂3 (). Table C.3 (Panel A) summarizes results applying to the overall sample as well as selected subsamples. Panel7

B of Table C.3 reports the statistics corresponding to the VIX index. Sample periods are as indicated in Figure C.2.8

Under the second methodology, we use the University of Michigan Consumer Sentiment (UMCSENT) index9

to generate the statistics. Note that the UMCSENT index has a different scale than that of the model-implied10

unobserved factor. Therefore, we re-scale the index in a way that it has the same average and standard deviation as11

the model-implied factor over any given sampling period where we conduct the experiments, as follows. Let Sent12

and ̂3 () be the UMCSENT index and, as usual, the model-implied unobserved factor. When calculating statistics13

through the UMCSENT index, we utilize the time series −Sent, where we define:14

Sent ≡ − (̂3) +
 (̂3)

 (Sent)
(Sent − (Sent))  (64)15

with  () and  () denoting the average and the standard deviation of a given time series  over a certain16

sampling period of size  . The rationale behind the term − (̂3) is that higher realizations of ̂3 are bad news17

to the stock market, given the negative sign of the 3 estimate reported in Table 4, as explained in the main text.18

Therefore, according to Eq. (64), sample periods where the extracted factor is on average high correspond to periods19

where our rescaled index, Sent, is on average low. The sampling periods we consider are (i) from January 1978 to20

December 2006, for the variance decompositions relating to stock volatility, where  (̂3) = 2302,  (̂3) = 7915,21

and  (Sent) = 122747, and (ii) from January 1990 to December 2006, for the decomposition statistics relating22

to the VIX index, where  (̂3) = −2341,  (̂3) = 71305 and  (Sent) = 122184. Figure C.3 and Table C.423

contain variance decomposition statistics of these experiments, which are the counterparts to those relating to Figure24

C.2 and Table C.3.25

The findings summarized in Tables C.3-C4 and Figures C.2-C.3 closely match those relying on simulations, and26

reported in the main text (Table 3 and Figure 3). The contributions are quite comparable across all the factors,27

quantitatively. For example, industrial production growth makes the most important contribution to the overall28

variation in both realized volatility and the VIX index, with its conditional properties being basically the same as29

those in Figure 3. The contribution of secular growth is, at times, more important than that of the unobserved30

factor. These cases arise, for example, during the dotcom bubble of the late 1990s, in the experiments relating to31

the use of the model-implied factor (Figure C.2), or during the subprime events and the 2007 recession (Figure C.3),32

in the experiments of the UMCSENT index.33

The explanations of these cases link to the fact that the variance of secular growth is constant, such that the34

contribution of growth,  () in Eq. (27), is inversely related to volatility, 
2 (). The volatility predicted by the35

model for the dotcom bubble is quite low, and especially so in the experiments based on the model-implied factor,36

which explains the findings in Figure C.2. Instead, a higher contribution of growth over the subprime events in Figure37

C.3, relates to the failure of the model to fully capture the surge in realized volatility experienced over that period,38

once our model is fed wih the UMCSENT index. This fact is confirmed by out-of-sample experiments, discussed39

below (see Table C.5, and Figures C.4 and C.5), where our model delivers much better results relating to realized40

volatility predictions, once we use as an input the model-implied unobserved factor rather than the UMCSENT41

index, and even controlling for a different window over which to evaluate  (̂3) and  (̂3) in Eq. (64). (Model42

predictions based on the UMCSENT index remain, however, better than predictions based on OLS.) At the same43

time, the model delivers the best out-of-sample predictions in terms of the VIX index, once we utilize the UMCSENT44

index as an input.45

46
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47

1

Figure C.2 — Contributions to total stock volatility made by macroeconomic and2

the model-implied unobservable factors, with NBER dated recession periods. This3

figure plots the contributions to stock volatility,  () and  () in Eq. (27), obtained as the4

ratios of the instantaneous stock return variance due to factor  to the total instantaneous5

variance, 2 (),  () ( = 1 2 3), as well as the ratio of the instantaneous variance of secular6

growth to 2 (),  (). From top to bottom, “Industrial Production” is 2 (), “Unobservable7

factor” is 3 (), “Secular Growth” is  (), and “Inflation” is 1 (). Each prediction at each8

point in time is obtained by feeding the model with the two macroeconomic factors depicted in9

Figure 1 (inflation and growth), and replacing the unobserved factor with the model-implied10

factor ̂3 (), as defined in Eq. (28). The sample covers monthly data for the period from11

January 1950 to December 2006. Vertical solid lines (in black) track the beginning of NBER-12

dated recessions, and vertical dashed lines (in red) indicate the end of NBER-dated recessions.13

The shaded area (in yellow) covers the out-of-sample period, from January 2007 to March14

2009.15
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Table C.316

Variance decomposition statistics for (i) realized volatility (Panel A) and expected volatility
under the risk-neutral probability (Panel B). Panel A reports averages and standard deviations

of the contributions  () and  () to the total variance, 
2 () in Eq. (12), made by: (i)

the two macroeconomic factors, gross inflation, 1 (), and gross industrial production growth,
2 (), as defined in Table 1, (ii) the model-implied unobserved factor, ̂3 (), estimated as in
Eq. (28),

̂3 ≡ 1

̂3

µ


̂

− ̂0 − ̂11 − ̂22

¶


and (iii) secular growth, defined respectively, as:

 () ̄
2 (y ()) ≡ ̂2 (̂ + ̂ ())

2 ()
  = 1 2 3 and  () ≡ 2

2 ()


where  is the real stock price at time , ̄ (y) ≡ ̂0+
P3

=1 ̂ , ̂ is the cross-sectional average1

of 1000 simulations of secular growth, (̂  ̂)
3
=1 and (̂)

3
=0 are the parameter estimates, as2

reported in Tables 1 and 2, 3 () ≡ ̂3, and the total variance in Eq. (12) is obtained fixing3

3 () ≡ ̂3. The sample covers monthly data for the period from January 1950 to December4

2006. Panel B reports statistics for the risk-neutral counterparts to the average paths of  ()5

and  (). The sample covers monthly data for the period from January 1990 to December6

2006.7

Panel A: Contributions of factors to stock volatility
Averages

1950-2006 1950-1981 1960-1981 1982-2006
Gross inflation 0.87% 0.91% 0.86% 0.82%
Gross growth 73.20% 71.59% 72.63% 74.98%
Unobserved factor 17.35% 18.23% 16.63% 16.39%
Secular growth 8.56% 9.24% 9.85% 7.79%

Standard deviations
1950-2006 1950-1981 1960-1981 1982-2006

Gross inflation 0.22% 0.28% 0.12% 0.09%
Gross growth 7.64% 9.37% 5.87% 4.52%
Unobserved factor 5.94% 7.46% 3.14% 3.36%
Secular growth 5.69% 5.46% 5.71% 5.85%

8

Panel B: Contributions of factors to the VIX Index
Averages Standard deviations

Gross inflation 3.13% 0.03%
Gross growth 85.94% 2.38%
Unobserved factor 8.22% 1.22%
Secular growth 2.71% 0.17%
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1

Figure C.3 — Contributions to total stock volatility made by macroeconomic factors2

and the UMCSENT index, with NBER dated recession periods. This figure plots3

the contributions to stock volatility,  () and  () in Eq. (27), obtained as the ratios of4

the instantaneous stock return variance due to factor  to the total instantaneous variance,5

2 (),  () ( = 1 2 3), as well as the ratio of the instantaneous variance of secular growth to6

2 (),  (). From top to bottom, “Industrial Production” is 2 (), “Unobservable factor” is7

3 (), “Secular Growth” is  (), and “Inflation” is 1 (). Each prediction at each point in8

time is obtained by feeding the model with the two macroeconomic factors depicted in Figure9

1 (inflation and growth), and replacing the unobserved factor with the UMCSENT index,10

rescaled as in Eq. (64). The sample covers monthly data for the period from January 1978 to11

December 2006. Vertical solid lines (in black) track the beginning of NBER-dated recessions,12

and vertical dashed lines (in red) indicate the end of NBER-dated recessions. The shaded area13

(in yellow) covers the out-of-sample period, from January 2007 to March 2009.14
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Table C.415

Variance decomposition statistics for (i) realized volatility (Panel A) and expected volatility
under the risk-neutral probability (Panel B). Panel A reports averages and standard devia-

tions of the contributions  () and  () to the total variance, 
2 () in Eq. (12), made

by: (i) the two macroeconomic factors, gross inflation, 1 (), and gross industrial production
growth, 2 (), as defined in Table 1, (ii) the UMCSENT index, and (iii) secular growth, defined
respectively, as:

 () ̄
2 (y ()) ≡ ̂2 (̂ + ̂ ())

2 ()
  = 1 2 3 and  () ≡ 2

2 ()


where ̄ (y) ≡ ̂0 +
P3

=1 ̂ , 3 () ≡ −Sent, and Sent is the UMCSENT index, rescaled as1

in Eq. (64). The sample covers monthly data for the period from January 1978 to December2

2006. Panel B reports statistics for the risk-neutral counterparts to the average paths of  ()3

and  (). The sample covers monthly data for the period from January 1990 to December4

2006.5

Panel A: Contributions of factors to stock volatility
Averages Standard deviations

Gross inflation 0.83% 0.11%
Gross growth 74.11% 3.17%
Unobserved factor 15.40% 3.78%
Secular growth 9.66% 4.92%

6

Panel B: Contributions of factors to the VIX Index
Averages Standard deviations

Gross inflation 1.37% 0.02%
Gross growth 86.80% 2.47%
Unobserved factor 9.13% 0.92%
Secular growth 2.70% 0.15%

7

8

Finally, we provide out-of-sample results pertaining to the two methodologies of this appendix to integrate out9

the unobserved factor. Table C.5 reports Root Mean Squared Errors (RMSE) for the two cases where the model is fed10

with (i) the series of the model-implied unobserved factor, ̂3, as calculated through Eq. (28) (second column), and11

(ii) the series −Sent, where Sent is the UMCSENT index, rescaled as in Eq. (64) (third column). We rescale the12

UMCSENT index through Eq. (64), using the average and standard deviation of the model-implied unobserved factor13

over the five years prior to the out-of-sample experiments (January 2007 to March 2009), where  (̂3) = −261214

and  (̂3) = 2072, and fixing  (Sent) = 106134, which is the standard deviation of the UMCSENT index over15

the period from January 1990 to December 2006. For comparison, we also report RMSE for the benchmark cases16

considered in the main text (Section 4.2.4), namely the case of simulations of the unobserved factor (first column),17

and the OLS (fourth column).18

As anticipated at the beginning of Section C.3, the model generates better predictions than those stemming19

from OLS, in all the experiments. To summarize, (i) predictions relating to realized volatility are best performed20

when we feed the model with the model-implied factor; (ii) predictions relating to the VIX index are the best when21

we utilize the UMCSENT index. While predictions based on simulations of the unobserved factors never rank first,22

they rank in a stable way, compared to the predictions from alternative methodologies regarding the treatment of23

the unobservable factor.24

25

Table C.526

Out-of-sample statistics under different assumptions about the treatment of the unobserved27

factor.28

RMSE for the model and OLS

Model
(simulations)

Model
(Extracted factor)

Model
(UMCSENT index)

OLS

Volatility 0.0478 0.0262 0.0607 0.0700
VIX Index 0.1119 0.1121 0.1034 0.1319
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Figure C.4 — Out of sample predictions through the model-implied unobserved1

factor, and the subprime crisis. This figure plots one-year return volatility and the VIX2

index, along with its counterparts predicted by the model and by an OLS regression. The left3

panel depicts smoothed return volatility, defined as Vol ≡
√
6 · 12−1P12

=1 |ln (+1−−)|,4

where  is the real stock price as of month , along with the instantaneous standard deviation5

predicted by (i) the model, through Eq. (12), and (ii) the predictive part of an OLS regression6

of Vol on to past values of Vol, inflation and industrial production growth. The right panel7

depicts the VIX index, along with the VIX index predicted by (i) the model; and (ii) the8

predictive part of an OLS regression of the VIX index on to past values of the VIX index,9

inflation and industrial production growth. Each prediction is obtained by feeding the model10

and the predictive part of the OLS regression with the two macroeconomic factors depicted11

in Figure 1 (inflation and growth) and, for the model, the model-implied unobserved factor12

estimated as in Eq. (28), ̂3 ≡ ̂−13 (

̂
− ̂0 − ̂11 − ̂22), where ̂ is the cross-sectional13

average of 1000 simulations of secular growth. The sample depicted in the figure spans the14

period from January 2000 to March 2009. The estimation of both the model and the OLS15

regressions relates to the period from January 1950 to December 2006. Vertical solid lines (in16

black) track the beginning of NBER-dated recessions, and the vertical dashed line (in red)17

indicates the end of the NBER-dated recession, occurred in November 2001. The shaded area18

(in yellow) covers the out-of-sample period, from January 2007 to March 2009, which includes19

the NBER recession announced to have occurred in December 2007, and the subprime crisis,20

which started in June 2007.21
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Figure C.5 — Out of sample predictions through the UMCSENT index, and the1

subprime crisis. This figure plots one-year return volatility and the VIX index, along with2

its counterparts predicted by the model and by an OLS regression. The left panel depicts3

smoothed return volatility, defined as Vol ≡
√
6 · 12−1P12

=1 |ln (+1−−)|, where  is4

the real stock price as of month , along with the instantaneous standard deviation predicted5

by (i) the model, through Eq. (12), and (ii) the predictive part of an OLS regression of6

Vol on to past values of Vol, inflation and industrial production growth. The right panel7

depicts the VIX index, along with the VIX index predicted by (i) the model; and (ii) the8

predictive part of an OLS regression of the VIX index on to past values of the VIX index,9

inflation and industrial production growth. Each prediction is obtained by feeding the model10

and the predictive part of the OLS regression with the two macroeconomic factors depicted11

in Figure 1 (inflation and growth) and, for the model, using 3 () ≡ −Sent, where Sent is12

the UMCSENT index, rescaled as in Eq. (64). The sample depicted in the figure spans the13

period from January 2000 to March 2009. The estimation of both the model and the OLS14

regressions relates to the period from January 1950 to December 2006. Vertical solid lines (in15

black) track the beginning of NBER-dated recessions, and the vertical dashed line (in red)16

indicates the end of the NBER-dated recession, occurred in November 2001. The shaded area17

(in yellow) covers the out-of-sample period, from January 2007 to March 2009, which includes18

the NBER recession announced to have occurred in December 2007, and the subprime crisis,19

which started in June 2007.20
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