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1. Introduction

By and large, the economic literature on repeated games has adopted discounting

as the payo� criterion. It is technically convenient, and captures the idea that the

distant future does not matter much for current decisions, which is certainly �more

realistic than its opposite,� as a leading microeconomics textbook puts it.1 Yet, at

least in the context of repeated games, it has two consequences that are often viewed

as undesirable. First, no action pro�le can typically be ruled out; in this sense little

is said about behavior.2 Second, predictions depend on common knowledge of the

exact discount factor, undoubtedly a strong assumption.3

In this paper, we study Blackwell equilibria, that is, equilibria whose strategy pro-

�les are optimal for all high discount factors simultaneously. Hence, they preserve

the property that time isn't free, and that every round matters for the player's pay-

o�, yet, by de�nition, they cannot depend on the exact value of the discount factor.

This is a payo� criterion, not a solution concept. For the latter, we adopt what is

commonly used depending on the environment: subgame-perfect Nash equilibrium,

perfect public equilibrium, sequential equilibrium, etc. With some abuse, we refer

to the relevant notion of equilibrium under the Blackwell criterion as Blackwell equi-

librium. The name �Blackwell equilibrium� derives from �Blackwell optimality,� the

corresponding concept introduced for Markov decision processes by Blackwell (1962).

Robustness to the exact discount rate admits several interpretations. When the

rate is thought of as arising from the random length of the actual interaction, there

are many situations in which players are uncertain about exactly how long this inter-

action will take place, and this uncertainty might be su�ciently vague that modeling

it explicitly seems futile.4 The same applies when the discount rate pertains to the

players' time preferences.5 Uncertainty regarding future interest rates is both subjec-

tive and signi�cant; and it has large, negative and persistent e�ects on the economy

1See Mas-Colell, Whinston, and Green (1995), p.734.
2See the discussion in Aumann and Maschler (1995), p.139.
3This second issue has led many game theorists (Aumann and Maschler, among many others) to
favor undiscounted payo� criteria. This is throwing the baby out with the bathwater, as forsaking
impatience reinstates the unrealistic �opposite� mentioned above.
4As Aumann and Maschler (1995, p.133) put it, �there is a limit to the amount of detail that can
usefully be put into a model, or indeed that the players can absorb or take into account.�
5Admittedly, in that case, by revealed preference, a player �knows� his own discount factor. The
case in which each player knows his own discount factor, but not the others', is taken up in Section
5.
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(see, e.g., Istre� and Mouabbi, 2018).6 When players in the game are a convenient

proxy for groups of agents (countries, political parties, �rms, etc.), then Blackwell

equilibria have the desirable feature that they are unanimously viewed as optimal by

the constituents of each group, independent of exactly how patient each of them is,

provided that they are all su�ciently patient. Finally, from the point of view of the

analyst, they allow to predict, or explain, behavior that might apply to a variety of

situations, which might di�er in the details of the interaction length.

Our goal is to understand how this more restrictive payo� criterion a�ects the

usual predictions about payo�s and action pro�les in in�nitely repeated games, under

various monitoring structures. Our main result is that its (relative) bite is increased

as monitoring �worsens,� so to speak. Loosely speaking, this is because robustness

to discounting makes it di�cult to enforce mixed actions. Yet, the role of mixed

strategies becomes progressively more important as the information structure shifts

from perfect monitoring, to imperfect public monitoring, and �nally to imperfect

private monitoring.

In games of perfect monitoring, Blackwell (subgame-perfect) equilibria still span a

large set of equilibrium payo�s, but not as large as under the (limit of) discounting

criterion. Indeed, the standard folk theorem (see Fudenberg and Maskin, 1986, here-

after FM) requires punishments that, depending on the stage game, might involve

mixing by the punishing players. To make the players indi�erent over the support

of their actions, these players must be compensated in the continuation game, as a

function of the action they have chosen. To achieve indi�erence, this compensation

must be �nely tuned to the discount factor. We show that there is no way around this

di�culty. As a result, a new notion of minmax payo� must be introduced, capturing

the fact that punishing players must be myopically indi�erent across all actions within

the support of their mixed action (but not necessarily over all actions available to

them).

We show that this is the only adjustment that must be made to the �standard�

statement of the folk theorem � indeed, mixed actions play no other role in the usual

proofs under perfect monitoring. The construction involves the same ingredients as

the proof of FM, and can be achieved using a variation of simple strategies (Abreu,

6As discussed below, our analysis is readily adjusted to the case in which the discount factor isn't
constant over time, or deterministic.
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1988). Not too surprisingly, this folk theorem can be extended to imperfect pub-

lic monitoring, in the special case in which monitoring satis�es product structure,

individual full rank, and a public randomization device is available.7

In general, under imperfect public monitoring, it is known that unpredictable be-

havior serves another purpose. Mixed actions enlarge the set of detectable deviations,

and hence a�ect the su�cient conditions usually made for the folk theorem to hold

(Fudenberg, Levine, and Maskin, 1994, hereafter FLM). Yet, the impossibility of �ne-

tuning continuation payo�s in order to compensate players for mixing in a way that

would be independent of the discount rate further restricts the action pro�les that

can be implemented. Absent a public randomization device, only stage-game Nash

equilibria and pure action pro�les can be played in a (perfect public) Blackwell equi-

librium (generically, see Proposition 2). That is, the only mixed actions that can be

played are stage-game Nash equilibria: it no longer su�ces that players be myopically

indi�erent over the support of their mixed action. This is because, unless the action

pro�le is a Nash equilibrium of the stage game, the continuation play must depend on

the realized signal, which makes it impossible for players to be indi�erent over multi-

ple actions (as they generically induce distinct distributions over public signals), even

if they are myopically indi�erent over those.

A major di�culty in the analysis under imperfect monitoring is that such games are

usually studied via recursive techniques involving the set of equilibrium payo�s (see

Abreu, Pearce, and Stacchetti, 1990). Because payo�s of a given strategy pro�le, and

the �self-generation� operator itself, depend on the discount rate, standard results

are not as helpful here, since optimality must hold for an entire range of discount

rates simultaneously.8 Hence, our analysis must tackle directly the issue of the action

pro�les that can be enforced.

Finally, we show that behavior is further constrained once monitoring is private.

In a class of games that includes the prisoner's dilemma, when monitoring satis�es

conditional independence, the only Blackwell equilibrium outcome consists in the

repetition of the stage-game Nash equilibrium. This is because indi�erence between

actions is known to play a further role under private monitoring. Under conditional

independence, with pure strategies, a player cannot tell, even statistically, whether his

7Admittedly, the product structure is very special, but it applies to important classes of games, such
as games with one-sided imperfect monitoring, e.g. principal-agent games, and games with adverse
selection and independent types.
8The alternative route in the literature involves review strategies, following Radner (1985). Unfor-
tunately, review strategies don't specify behavior fully, making it di�cult to ensure that behavior is
independent of the discount rate.
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opponent is supposed to �punish or reward� him; therefore, his opponent cannot be

incentivized to select one or the other continuation strategy as a function of the signals

he receives, unless he happens to be indi�erent across those (see Matsushima, 1989).

Hence, any non-trivial sequential equilibrium must involve indi�erences (whether a

player actually mixes or uses his private history to select one or the other continua-

tion strategy). For the same reason as under public monitoring, such indi�erence is

inconsistent with the robustness to the discount rate.

Related Literature. The Blackwell optimality criterion has been introduced by Black-

well (1962) for �nite Markov decision processes, as a way of characterizing optimality

in the undiscounted case. Blackwell shows that optimal policies exist, and provides

(a pair of) optimality equations to solve for those. More recently, this criterion has

been applied to stochastic games, both in discrete time (Singh, Hemachandra and

Rao, 2013) and in continuous time (Singh, Hemachandra, 2016). The focus of these

papers is to provide conditions under which (Nash) equilibria exist under this payo�

criterion. They do this for games in which a single player controls the transitions and

the payo� of the non-controller is additive in the players' actions. Indeed, existence

is a non-trivial problem in the environments they consider. In repeated games, this

is immediate, as the repetition of stage-game Nash equilibria is a Blackwell equilib-

rium. In contrast, we are interested in characterizing the set of such equilibria under

di�erent monitoring structures.

The motivation of our paper is related to Gossner (2020). Gossner's goal is also to

de�ne equilibria that are robust to slight perturbations in the repeated game. Gossner

introduces incomplete penal codes as partial descriptions of equilibrium strategies,

and studies to what extent such codes can be found, whose completion is allowed

to depend on the �ne details of the game. Because his class of perturbations does

not only include the discount rate, but the payo� matrix itself, complete penal codes

typically do not exist.

Slightly less related are some papers that focus on special classes of strategies.

Kalai, Samet and Stanford (1988) study reactive equilibria, which are equilibria in

which at least one player conditions his actions only on his own opponent's action

and not on his own past actions. As they show, if a reactive strategy pro�le is

robust to nearby discount factors, it must play the stage-game Nash equilibrium in

the prisoner's dilemma.
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2. Blackwell Equilibria Under Perfect Monitoring

This section studies Blackwell equilibria under perfect monitoring. First, we derive

necessary conditions that such equilibria must satisfy. This leads to a modi�ed notion

of minmax payo�, and to a folk theorem relative to this notion.

2.1. Notation and De�nitions. The set of players is I = {1, . . . , n}. Player i's

�nite set of actions is Ai, and A :=
∏

i∈I Ai is the set of all pure action pro�les. A

mixed action of i is αi ∈ ∆Ai, where ∆E is the set of all probability distributions

on a set E; the set of (independent) mixed-action pro�les is A :=
∏

i ∆Ai. Player i's

reward function is a map gi : A→ R, whose domain is extended to ∆A in the usual

way, and g := (gi)
n
i=1. The set of feasible payo�s is F := co(g(A)), where co denotes

the convex hull. Denote this normal-form game by G = 〈I;A, g〉.
The stage game G is played at each t ∈ Z+. Denoting by a

(t) ∈ A the action pro�le

chosen in each round t, the history at the end of round t ∈ Z+ is ht = (a(1), . . . , a(t)) ∈
At =: H t, with h0 the empty history and H := ∪∞t=0H

t the set of all histories. An

outcome h∞ is an in�nite sequence (a(t))∞t=1. Given discount factor δi ∈ [0, 1), player

i's (average discounted) payo� is de�ned as

(2.1) Ui (h
∞, δi) := (1− δi)

∞∑
t=1

δi
t−1gi(a

(t)).

This de�nes the repeated game G∞(δ), where the vector δ = (δ1, . . . , δn) is referred to

as the discount factor vector; G∞(δ) is the special case with common discount factor

δ.9

A pure strategy of player i is a function si : H → Ai; a behavioral strategy is a

function σi : H → ∆Ai. The set of (behavioral) strategies for i is denoted Σi, and

the set of (behavioral) strategy pro�les is denoted Σ. Player i's expected payo� (or

payo�, for short) given σ, Ui(σ, δi), is de�ned the usual way. The payo� vector is

denoted U(σ, δ).

Unless mentioned otherwise, no public randomization device (PRD) is assumed.

2.2. Blackwell Equilibrium. Given that monitoring is perfect, the natural solution

concept is subgame-perfect Nash equilibrium (SPNE).

De�nition 1. A strategy pro�le σ ∈ Σ is a Blackwell SPNE (above δ) if there

exists δ ∈ [0, 1) such that σ is an SPNE of G∞(δ) at any δ ≥ δ · (1, . . . , 1).

9Bold symbols are used for only those vectors whose scalar counterparts are also used, e.g., δ.
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A vector v ∈ Rn is a Blackwell SPNE payo� at δ if there exists a Blackwell SPNE

σ above some δ, with δ ≥ δ · (1, . . . , 1), such that v = U(σ; δ).

A more general de�nition would allow discounting to vary with time (or even with

the history). That is, one might consider an evaluation (δt)
∞
t=1 (a probability distri-

bution over positive integers), where the weight of any round t is given by δt (see

Renault, 2014). This might be particularly relevant in settings where discounting

captures the uncertainty in the length of the interaction. The choice adopted here is

made primarily for simplicity. Plainly, enlarging the set of discount sequences that

the equilibrium must survive further restricts the set of equilibria; yet, our equilib-

rium constructions do not rely on the fact that the sequences we focus on are constant

(or, for that matter, deterministic). Similarly, we could weaken the criterion with-

out changing any result by requiring optimality to hold only for constant vectors

δ = (δ, . . . , δ), if this is more appropriate in some context.

2.3. A Necessary Condition. Subgame-perfection puts little restriction on action

pro�les speci�ed by an equilibrium, as long as the feasible and individually rational

payo� set has non-empty interior. Matters are di�erent under the Blackwell criterion.

The set AMI are those mixed action pro�les α such that each player gets the same

reward from each action in the support of αi, given α−i. This property is called

Myopic Indi�erence (MI). Formally,

(2.2) AMI :=
{
α ∈ A

∣∣∣ gi(ai, α−i) = gi(α) ∀i ∈ I,∀ai ∈ supp(αi)
}
.

To put it di�erently, α is in AMI if, and only if, it is a Nash equilibrium of the stage

game 〈I; (supp(αi))i∈I , (gi)i∈I〉.
The motivation for the de�nition of AMI derives from the following result.

Proposition 1. If σ is a Blackwell SPNE, then σ(h) ∈ AMI for any history h ∈ H.

Proof. If σ is a Blackwell SPNE, it is an SPNE at all δ in an open interval O ⊂ (0, 1).

Fix any history ht−1, player i ∈ I, and actions ai, a
′
i ∈ supp(σi(h

t−1)). Let player i's

expected reward in round τ > t under the continuation strategy σ|ht−1 following the

action ai (resp., a
′
i) at t be g

(τ)
i (resp., g

′(τ)
i ). Since player i mixes over ai and a

′
i, they

yield the same payo� for any δ ∈ O:

gi(ai, σ−i(h
t−1)) +

∑
τ>t

δτ−ti g
(τ)
i = gi(a

′
i, σ−i(h

t−1)) +
∑
τ>t

δτ−ti g
′(τ)
i ∀δi ∈ O,
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and hence

(2.3) f(δi) := gi(ai, σ−i(h
t−1))−gi(a′i, σ−i(ht−1))+

∑
τ>t

δτ−ti (g
(τ)
i −g

′(τ)
i ) = 0 ∀δi ∈ O.

The Identity/Uniqueness Theorem (see Ahlfors (1953), p.127) implies that if the set

of zeros of an analytic function has an accumulation point in its domain, then it

is identically zero; since (2.3) holds for an open interval of δi, it follows that f is

identically zero in (−1, 1); in particular, setting δi = 0 gives:

gi(ai, σ−i(h
t−1)) = gi(a

′
i, σ−i(h

t−1)).

Thus, both ai and a
′
i yield the same reward; hence, σ(ht−1) ∈ AMI. This shows that

myopically indi�erent action pro�les are played after any history. �

The strength of subgame-perfection is not needed for the conclusion: if attention

is restricted to histories on path, the same holds for Nash equilibria.

Standard constructions in the literature rely on action pro�les that are not in AMI.

More speci�cally, such action pro�les enter in the de�nition of the minmax payo�,

namely

(2.4) vi := min
α−i∈

∏
j 6=i(∆Aj)

max
ai∈Ai

gi(ai, α−i).

To keep a player to this level, the other players may have to randomize over actions

over which they are not myopically indi�erent. Given Proposition 1, we introduce

the following notion of MI-minmax payo�:

(2.5) vMI
i := min

α∈AMI
max
ai∈Ai

gi(ai, α−i).

Every pure action pro�le is in AMI. It follows that

vMI
i ≤ vpure

i := min
a−i∈A−i

max
ai∈Ai

gi(ai, α−i).

Similarly, every Nash equilibrium of the stage game is included in AMI. Hence, it also

holds that vMI
i ≤ vNE

i , where vNE
i is player i's lowest stage-game Nash equilibrium

payo�.

The following example shows that the inequalities vi ≤ vMI
i ≤ vpure

i can be strict.

Example 1. Consider the payo� matrix given by Figure 1.

To minmax player 1, player 2 must play (1
2
L+ 1

2
R). However, as R is a dominant

action for player 2, he cannot be myopically indi�erent between L and R. The MI-

minmax of player 1 obtains when player 2 plays (3
4
L+ 1

4
M), which is not as harsh a
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Player 1

Player 2
L M R

T (1, 0) (0, 0) (0, 3)
B (0, 0) (3, 0) (1, 1)

Figure 1: The game in Example 1.

punishment, but still worse for player 1 than pure minmaxing via (say) R, which is

also player 2's action under Nash reversion. Hence, it holds that v1 = 1
2
< vMI

1 = 3
4
<

vpure
1 = vNE

1 = 1.

Proposition 1 immediately implies the following.

Corollary 1. Every Blackwell equilibrium payo� v satis�es vi ≥ vMI
i , for all i ∈ I.

2.4. A �Folk� Theorem. Under discounting, and subject to a mild dimensionality

condition, FM establish a folk theorem for subgame-perfect Nash equilibrium: given

any v ∈ F such that for all i, vi > vi, there exists δ ∈ [0, 1) such that, for any δ ∈ (δ, 1)

there is a subgame-perfect Nash equilibrium σ of G(δ) with payo� U(σ, δ) = v.

Clearly, the same cannot hold under the Blackwell criterion, given Proposition 1.

De�ne

(2.6) FMI := {v ∈ F | vi > vMI
i , ∀i ∈ I}.

Whenever FMI is full-dimensional, Proposition 1 implies that (the closure of) FMI is

an upper bound on the set of Blackwell SPNE payo� vectors. The following theorem

shows that this upper bound is tight in general.10

Theorem 1. Suppose that the dimension of FMI is n.11 For any v ∈ FMI, there exists

δ < 1 such that for all δ ∈ (δ, 1), v is a Blackwell SPNE payo� at δ.

The proof, which appears in Appendix A, follows FM (see also Abreu, 1988) in

having stick-and-carrot punishment regimes, one for each player. Any unilateral

10Note that the statement of Theorem 1 refers to the equilibrium payo� vector evaluated at a
common discount rate (yet, the strategy pro�le must be optimal for all possibly distinct discount
factors high enough). This is because, as is well known (see Lehrer and Pauzner, 1999), the set
of feasible payo�s evaluated at di�erent discount factors can be larger than the convex hull of the
stage-game payo�s, a topic that is orthogonal to our purpose.
11Unlike in FM, the full dimensionality assumption in Theorem 1 cannot be dropped for the case
n = 2 in general. Presumably, the general case (without interiority assumption) can be dealt with
by adapting the notion of e�ective minmax (Wen, 1994) to account for the constraint that action
pro�les must be in AMI, along the lines of Fudenberg, Levine, and Takahashi (2007).
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deviation from the prescribed strategies leads to a �stick-and-carrot regime.� In FM,

the stick phase involves minmaxing, during which the player who deviated is held to

his minmax payo�. Play then moves to the carrot phase, in which all players earn

strictly more than their minmax payo�.

In the case in which the target payo� v is achieved by a pure action pro�le,

our construction is a straightforward adaptation of this construction. During the

stick phase of player i, replace standard minmaxing with an action pro�le αi ∈
arg minα∈AMI maxai∈Ai

gi(ai, α−i). For each player j 6= i, actions within the support

αij yield j the same reward, and the selected one within it is subsequently ignored,

whereas actions outside of the support are deterred as in FM.

What if v is not the payo� of a pure action pro�le? Lacking a PRD, we follow

Dasgupta and Ghosh (2021) to construct action pro�le paths that deliver the target

payo� while also keeping continuation payo�s near the target. We then show that if

continuation payo�s given a pure action path and a certain discount remain bounded

above and below, those same bounds apply at larger discount factors.12 This ensures

that continuation payo�s are similar enough to be enforced by the same punishments

for all high enough discounts.

3. Imperfect Public Monitoring

3.1. Generic Games. This section turns to imperfect public monitoring, starting

with the same �nite set of players I = {1, 2, ..., n} and �nite sets of actions Ai, i ∈ I,
with reward function gi : A → R. A monitoring structure (Y, π) is a �nite set of

signals Y and a function π : A→ ∆Y mapping action pro�les a ∈ A into distributions

over Y , indicating the probability that each signal y ∈ Y is publicly observed. Let

G = 〈I;A, g;Y, π〉. Given discount factor vector δ, we denote the in�nitely repeated

game by G∞(δ).

For each player i, a private history of length t, hti, is a sequence (a
(1)
i , y(1), . . . , a

(t)
i , y

(t)) ∈
H t
i := (Ai × Y )t, and the set of i's private histories is Hi. A public history ht is a

sequence (y(1), . . . , y(t)) ∈ H t := Y t, with the set of all public histories denoted H. A

behavior strategy σi ∈ Σi maps private histories to i's mixed actions: σi : Hi → ∆Ai.

It is public if, it is measurable with respect to H. We adopt perfect public equilibrium

12This is reminiscent of the Arrow-Levhari (1969) stopping theorem: if the value of a discardable
security is weakly positive when evaluated at a certain discount (given optimal discarding), it is
weakly positive at greater discounts. The same intuition applies here: any short-term setbacks and
gains are smoothed out at higher discount factors. Therefore, continuation payo�s remain nearby
at all higher discount factors, and hence deviations are deterred by the same punishments.
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(PPE) as our solution concept: a strategy pro�le σ is a PPE if, for all i, σi is public,

and for all public histories ht, σ|ht is a Nash equilibrium of the in�nitely repeated

game (under some payo� criterion).

De�nition 1 is extended the obvious way. A strategy pro�le σ ∈ Σ is a Blackwell

PPE (above δ) if there exists δ ∈ [0, 1) such that σ is a PPE of G∞(δ) at any

δ ≥ δ · (1, . . . , 1). A vector v ∈ Rn is a Blackwell PPE payo� at δ if there exists a

Blackwell PPE σ above some δ, with δ ≥ δ · (1, . . . , 1), such that v = U(σ; δ), where

as before U(σ; δ) is the equilibrium payo� vector under σ given δ.

The next proposition shows that under imperfect public monitoring, the Blackwell

criterion more severely restricts the set of action pro�les that can be played in equi-

librium. It assumes there is no PRD. Its proof, as well as the proofs of other results

in this section, appear in Appendix B.

Proposition 2. Fix I, A, and Y . For almost all (g, π), given any Blackwell PPE

σ, σ(ht) is either a pure action pro�le or a stage-game Nash equilibrium, for all t,

ht ∈ H t.

That is, the set of reward functions and monitoring structures such that, in some

Blackwell equilibrium, after some public history, players choose an action pro�le that

is not pure or a stage-game Nash equilibrium, has measure zero. Other action pro�les,

even those satisfying myopic indi�erence, cannot arise. The selected action can no

longer be simply ignored. To understand why, suppose that, after some history,

some player, say i, is playing a (nondegenerate) mixed action αi satisfying myopic

indi�erence, yet some player j (perhaps i himself) is not playing a best-reply to α−j.

By de�nition, actions ai, a
′
i ∈ suppαi yield the same reward. However, they induce

di�erent distributions over public signals, in general. Since j isn't playing a best-reply

in the stage game, the continuation strategy pro�le must depend on the public signal.

This typically a�ects player i's continuation payo�, and hence, his preference between

ai and a
′
i in the repeated game.

Proof. The proof is divided into three parts; we de�ne a non-generic set of reward

functions, then a non-generic set of signal distributions, and show that, for any (g, π)

outside of this set, a Blackwell PPE speci�es a pure action or Nash pro�le at every

history.

Generically, a �nite game possesses �nitely many Nash equilibria (Harsanyi, 1973a).

Because AMI is the union of sets of Nash equilibria over �nitely many games (de�ned

by the possible subsets of actions), there exists a subset G ⊂ RI×A of measure zero
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such that, for any g ∈ RI×A \ G, the set AMI
g (the subscript referring to the reward)

is �nite and has distinct payo�s, i.e. α, α′ ∈ AMI
g implies that for all i, gi(α) 6= gi(α

′).

Fix g ∈ RI×A \ G, a period T > 1, and a T -period strategy pro�le σT : UT−1
t=0 H

t →
AMI
g in which period-T play varies with the �rst-round signal, i.e.,

(3.1) ∃y1, y
′
1, y2, . . . , yT−1 ∈ Y s.t. σT (y1, y2, . . . , yT−1) 6= σT (y′1, y2, . . . , yT−1).

For each i ∈ I, a′i, a′′i ∈ Ai with a′i 6= a′′i let

(3.2) Π
i,T,a′i,a

′′
i ,σ

T

g :=

{
π ∈ (∆Y )A

∣∣∣∣ E[vTi | a′i, σT ] = E[vTi | a′′i , σT ]

}
,

where vTi = gi ◦ σT |Y T−1 is player i's reward in round T . Both sides of the equality

in (3.2) are polynomials of {π(y | a) | y ∈ Y \ {y0}, a ∈ A}, where y0 is an arbitrary

signal (we omit y0 ∈ Y because the probability distribution {π(y | a) | y ∈ Y } adds
up to one). Since g features distinct rewards, player i's last-round reward varies with

the �rst-round signal, and hence the polynomials are distinct. As the set of zeros of

a non-zero polynomial, the set Π
i,T,a′i,a

′′
i ,σ

T

g is of measure zero (Caron and Traynor,

2005; Neeb, 2011). De�ne

Πg :=
⋃

i,T,a′i,a
′′
i ,σ

T

Π
i,T,a′i,a

′′
i ,σ

T

g ,

where a′i, a
′′
i ∈ Ai, a

′
i 6= a′′i and σT varies with the �rst-round signal. T runs over

a countably in�nite set, for each element of which σT runs over a �nite set because

g /∈ G ensures that the range AMI
g of σT is �nite. Therefore, Πg has measure zero.

Consider a game G with g /∈ G. Let σ be a Blackwell equilibrium that prescribes

an action pro�le that is neither pure nor a stage-game Nash equilibrium after some

public history; without loss of generality, after h0. By hypothesis, there is a player

i ∈ I who mixes over (at least) two distinct actions a′i, a
′′
i , and a player j who does

not use a stage-best-reply to σ−i(h
0). Then there exists an earliest round T ∗ ∈ N

in which the action pro�le depends on the �rst-round signal; otherwise, j has a

pro�table deviation in the initial round. Since i mixes at the initial history, the

payo� conditional on playing a′i is equal to the payo� following a′′i , for all δ in an

open interval O ⊂ (0, 1); as in Proposition 1, it implies that the payo� at each round

t is the same. In particular, applying this to T ∗, and denoting by σT
∗
the T ∗-period

truncation of σ, this implies that π ∈ Π
i,T ∗,a′i,a

′′
i ,σ

T∗

g ⊂ Πg. �

Again, an immediate implication of Proposition 2 is a lower bound on equilibrium

payo�s. Recall that vpurei is i's worst Nash payo�, and vNEi is i's pure minmax.
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Corollary 2. Fix A, I and Y . For almost all (g, π), every Blackwell equilibrium

payo� v satis�es vi ≥ min{vpure
i , vNEi }, for all i ∈ I.

3.2. A �Folk� Theorem. Given Proposition 2 and Corollary 2, a folk theorem under

the Blackwell criterion must involve a smaller payo� set, and stronger assumptions

than those imposed by FLM. First, player i's equilibrium payo� is bounded below by

his pure minmax, or his lowest Nash equilibrium payo�, whichever is lower.

Second, in general, mixed actions can help detect deviations, or discriminate among

them. Hence, the identi�ability assumptions must be strengthened.

De�nition 2. The monitoring structure (Y, π) satis�es pairwise full rank for a

pro�le α if for all i, j ∈ I with i 6= j, the matrix Πi,j(a) whose rows are {π>(· |
a′i, α−i) | a′i ∈ Ai} ∪ {π>(· | a′j, α−j) | a′j ∈ Aj} has rank |Ai|+ |Aj| − 1.

Denote

F ∗ := {v ∈ F | vi ≥ min{vpure
i , vNEi } ∀i ∈ I}.

Theorem 2. Fix I, A and Y . Suppose that π satis�es pairwise full rank for all pure

action pro�les. Suppose also that there exists a∗ ∈ A, Y ∗ ⊂ Y such that π(Y ∗ |
a∗−i, ai) < π(Y ∗ | a∗) < 1, ∀i ∈ I, ai 6= a∗i . Then for any v ∈ intF ∗, there exists δ < 1

such that for all δ ∈ (δ, 1), v is a Blackwell PPE payo� at δ.

The assumption that a pair (a∗, Y ∗) as stated in the theorem exists is technical;

while it is relatively mild, it is needed in the proof, and we do not know whether some

version of it is necessary for the result. It allows the players to emulate a PRD (and

could be dispensed if a PRD was assumed).13

Proving the theorem involves several steps. It is more instructive to explain some of

them in the special case in which monitoring takes a product structure, and assuming

a PRD. Hence, the proof of Theorem 2 should be read after the proof of Theorem 3

and the discussion at the end of this section.

3.3. Public Randomization. If we now assume a PRD (a uniform draw from the

unit interval), in the special case in which monitoring has a product structure, some

non-Nash myopically indi�erent mixed action pro�les may be used. Hence, the Black-

well payo� set may exceed that of Theorem 2. We say that (Y, π) has a product

13That is, the event {y | y ∈ Y ∗} is a public, binary random variable, whose likelihood is maximized
if players use a∗. Hence, it su�ces to make its occurrence desirable to ensure that players are willing
to generate that signal.
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structure if

Y =
∏
i

Yi and π(y | a) =
∏
i

πi(yi | ai),

where πi(· | a) is the marginal distribution of π(· | a) on Yi.

The relevant lower bound on player i's equilibrium payo� is given by the solution

to the following program.

(PMI,πi
i ) : min

α∈AMI,xi : Yi→R

{
gi(α) +

∑
yi∈Yi

πi(yi | αi)xi(yi)

}
subject to

gi(α) +
∑
yi∈Yi

πi(yi | αi)xi(yi) ≥ gi(ai, α−i) +
∑
yi∈Yi

πi(yi | ai)xi(yi) ∀ai ∈ Ai,(3.3)

xi(yi) ≥ 0 ∀yi ∈ Yi.(3.4)

Let vMI,πi
i denote the minimum. We note that, since it is feasible to pick a stage-game

Nash equilibrium for α, and to set xi(·) = 0, vMI,πi
i ≤ vNE

i . Also, since AMI can be

strictly larger than A, it is easy to �nd games such that vMI,πi
i < min{vpure

i , vNEi }.
This program is nothing but the �scoring algorithm� (in the direction that minimizes

i's payo�) introduced by Fudenberg and Levine (1994), with the restriction that

players −i are constrained to choose from AMI. Indeed, this constraint must be

satis�ed in a Blackwell equilibrium (given that this is already the case under perfect

monitoring, see Proposition 1, this should come as no surprise). It immediately follows

that vMI,πi
i is a lower bound on i's equilibrium payo�.

For this bound to be tight, a rank assumption is needed, for which we follow FLM.

De�nition 3. A pro�le α satis�es individual full rank (IFR) if for all i the vectors

{π(ai, α−i) | ai ∈ Ai} are linearly independent.

Let

FMI,π := {v ∈ co(u(A)) | vi ≥ vMI,πi
i ∀i ∈ I}.

The characterization is the following.

Theorem 3. Assume a PRD. Suppose (Y, π) has a product structure. Every Blackwell

PPE payo� vector v satis�es vi ≥ vMI,πi
i for all i ∈ I.

Conversely, if πi satis�es IFR for all i, then for any v ∈ intFMI,π, there exists δ < 1

such that for all δ ∈ (δ, 1), v is a Blackwell PPE payo� vector at δ.
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The proof of the necessity part matches the proof of Proposition 1. The su�ciency

part of the theorem has a two-step proof:

1. We show that at some δ0 < 1 there is a robust equilibrium, i.e., a strategy

pro�le that is a PPE in a neighborhood of δ0 with payo� vector v at δ0.

2. We use the PRD to periodically restart (or �reboot�) the game, discarding the

history up to that point, which allows us to lower the discount factor at which

incentive compatibility must be checked.14 That is, if σ is a PPE at some

δ0 ∈ (0, 1), we can construct a related equilibrium at higher discount factors

by rebooting appropriately to reduce the e�ective discount factor to δ0.

3.3.1. Rebooting. We begin with the second step, rebooting . Fix σ and p ∈ (0, 1). Let

σp denote a strategy pro�le that follows σ but reboots the game with probability p at

the end of each round, independently across rounds; i.e., if at the end of some round

the value of the PRD is less than p, we discard the history and restart playing σ. More

precisely, let ω1, ω2, . . . be the sequence of PRD draws; then, given (y1, ω1, . . . , yt, ωt),

we let

σp(y1, ω1, y2, ω2, . . . , yt, ωt) := σ(yτ+1, . . . , yt), where τ := max{s ≤ t | ωs ≤ p},

with the convention that max ∅ = 0.

If a player has a discount factor δ, the payo� stream from σp is evaluated at discount

δ; however, a simple calculation shows that a player's incentive to deviate from σp at

discount δ is the same as his incentive to deviate from σ at discount δ(1− p).
This de�nition and the preceding discussion imply the following lemma, which

essentially reduces a global robustness problem to a local one.

Lemma 1 (Reboot Lemma). If σ is a PPE for all discount factors in some interval

(δ0−∆, δ0 + ∆) ⊂ [0, 1), for some ∆ > 0, then σp is a Blackwell PPE above δ0−∆
1−p for

p ∈ (0, 1) such that δ0−∆
1−p < 1 < δ0+∆

1−p , and

U(σp, δ0/(1− p)) = U(σ, δ0).

3.3.2. Constructing a Robust Equilibrium. Given the Reboot Lemma, existence of the

desired Blackwell equilibrium follows from the construction of a robust equilibrium.

Existence of a robust equilibrium will be demonstrated by adapting arguments from

Abreu, Pearce, and Stacchetti (1990) (henceforth APS 1990). Robustness requires

incentives to hold for a range of discount factors; this motivates a stronger notion

14This is somewhat in the spirit of what is known as �Ellison's trick� (Ellison, 1994).
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of self-generation than proposed in APS 1990. We provide some intuition for the

two ways in which our de�nition needs to be stronger. The crux is that varying the

discount factor, however slightly, could a�ect incentives.

If the current action pro�le is pure, changing the discount factor may reverse weak

incentives to not deviate. This can be tackled by giving strict incentives (a slack of

at least (1− δ)η in the de�nition below) not to deviate.

The problem is subtler when mixed actions are needed, such as when delivering

vMI,πi
i to player i. Suppose α, x solve Program PMI,πi

i . Since α ∈ AMI, the current

payo� gi(α) is constant on supp(αi). Distinct actions in the support of αi could

generate di�erent distributions over various continuation payo� vectors w, but with

the same expected value for the i-th component wi. But even if these actions induce

the same distribution over wi at δ, if they induce di�erent distributions over con-

tinuation payo� vectors, they could induce di�erent distributions over action paths.

These could give di�erent expected continuation payo�s for i at discount factors even

slightly away from δ. To circumvent this, we need to ensure that any two such actions

induce the same distribution over continuation payo� vectors, and hence the same

probability distribution over action paths.

To this end we use the randomization device - a uniform draw (denoted ν) from

[0, 1]n - to �garble� the distribution of continuation payo� vectors.

De�nition 4. For any η > 0, W ⊂ Rn, and δ ∈ (0, 1), the set Bη(W ; δ) comprises

points v ∈ Rn such that v = (1 − δ)g(α) + δ E(w | α) for some continuation payo�

function w : Y × [0, 1]n → Rn taking �nitely many values, and a current action pro�le

α that is a NE of the normal-form game with payo�s (1−δ)g(a)+δ E(w | a), under the

additional condition that for any i ∈ I, for any a′i ∈ Ai, at least one of the following
is true:

w|α d
= w|a′i, α−i(3.5)

vi ≥ (1− δ)gi(a′i, α−i) + δEν
∑
y∈Y

π(y | a′i, α−i)wi(y, ν) + (1− δ)η.(3.6)

For any η > 0, the mapping Bη : 2Rn × [0, 1) → 2Rn
is called an `η-strong APS

mapping'.

The slack in (3.6) does depend on the discount factor. Alternatively, we can view

it as a slack of η in un-normalized or total payo�s. Our de�nition requests that

all pure actions on the support of αi output the same distribution of continuation

payo�s as in (3.5). Moreover, a deviating pure action ai o� the support of αi either
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(a) satis�es (3.5) so that it leads to the same distribution over continuations, and is

therefore unpro�table at any discount given that α is a Nash of the auxiliary game;

or (b) satis�es (3.6) and therefore entails a loss of at least (1− δ)η, which will allow

us to show it is unpro�table at discount factors in some neighborhood of δ. Our

strengthened notion of self-generation follows.

De�nition 5. For η > 0, a set W ⊂ Rn is said to be η-strong self-generating at

δ if W ⊂ Bη(W ; δ) for a strong APS mapping Bη.

At this point the standard approach shows that any smooth set in the interior of the

feasible and individually rational set is self-generating. Our proof di�ers in three ways

from this. First, we use the notion of η-strong self-generation, to leave �wiggle room�

for varying discounting and achieving robustness. Second, we show this property for

closed balls, rather than directly for all smooth sets; this is analytically more tractable.

Points in the interior of a ball are generated by playing a Nash equilibrium of the

stage game; the required continuations are in the ball for high enough discount factors.

Boundary points are harder �if the action pro�le chosen provides weak incentives, we

�mix in� a small probability of continuation payo�s that provide strict incentives;

these exist by individual full rank. Third, to satisfy condition (3.5) we modify each

player's continuation payo�s to take only the two extreme values, the only variation

being the probabilities with which these two values are chosen for various y ∈ Y ;

these stochastic continuation values require a public randomization device to carry

out �garbling.�

Following FLM 1994, we prove a local self-generation property, and then leverage

this property to prove we can construct robust equilibria.

Lemma 2. If π satis�es IFR, for every c ∈ FMI,π and r > 0, if the closed ball

B(c, r) ⊂ int(FMI,π), then there is a δ < 1 and a η > 0, such that at each δ ∈ (δ, 1),

B(c, r) is η-strongly self-generating.

The proof of the next lemma is immediate from Lemma 2, the continuity of payo�s

in δ, and familiar self-generation arguments à la APS 1990 and FLM 1994.

Lemma 3 (Robust Equilibrium Exists). With a product monitoring structure and a

PRD, if π satis�es IFR, for any compact W ⊂ int(FMI,π) there exists a δ ∈ (0, 1), a

η > 0 and a X ⊃ W such that for all δ ∈ (δ, 1) we have X ⊂ Bη(X; δ). Moreover,for

any δ ∈ (δ, 1) there is a strategy pro�le σ such that v = U(σ; δ) and σ is a PPE at

all δ′ ∈ (δ −∆, δ + ∆) for some ∆ > 0.
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Theorem 3 follows from Lemmata 1 and 3. We also note that Lemma 3 is essentially

a locally robust PPE folk theorem.

3.3.3. From here to Theorem 2. The full proof is contained in Appendix B, to which

this section serves as a roadmap. Once again, we use a suitable version of self-

generation to create robust equilibria at discount factors away from unity, and then

use rebooting to create a Blackwell equilibrium out of these. Generating a robust

equilibrium involves the same steps as before. Complications arise from having to

emulate a PRD through the public signal. Our assumption on the existence of a

suitable (a∗, Y ∗) guarantees that, with suitable rewards, all players can be induced

to maximize the probability of Y ∗. �Test phases� during which players play a∗ are

therefore introduced to generate randomness for resets. Several di�culties arise; we

tackle these in turn.

First, unlike the exogenous PRD of Theorem 3, our tests are open to manipulation.

In that theorem, some players may desire a reset, others not; but they are not given

a choice. Here, we need to provide incentives to players to choose the test action.

To o�er rewards and yet still wipe the history, we use two self-generating payo�

sets, a �punishment� and a �reward� one; every payo� vector in the former is Pareto-

dominated by every payo� vector in the latter. By maximizing the probability of Y ∗

during a test phase, players maximize the probability of getting to �or staying in�

the `reward' payo� set.

Second, to incentivize players as above, �normal� phase rounds �during which pun-

ishments and rewards are dished out� must be far more common than �test� phase

rounds. The Reboot Lemma only applies when there is exactly one test between two

normal-phase rounds linked by incentives �but we necessarily have more normal phase

rounds between punishment phases. To �x this, we break up play into �cycles.� Thus

if we have N rounds in the normal phase and T +1 rounds of testing, rounds within a

cycle are separated by T +N + 1 rounds. Rounds that form part of the same normal

phase are each linked to a di�erent cycle, with continuation along that cycle coming

T + N + 1 rounds later. In other words, we play N copies of the strategies given by

self-generation, punctuated by test phases of length T + 1 each. The outcome (pass

vs. fail) of each test phase a�ects every cycle identically.

Third, since the test is constructed to meet the need for a certain passing probabil-

ity, it may give payo�s di�erent than those we wish to deliver in equilibrium. As T

is given by this need, we keep it �xed and raise both N and the permissible discount

factor so that overall payo�s are largely due to normal phase play. Then, payo�s from
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the normal phase are adjusted to take into account expected payo�s during the test

phase so as to deliver an overall expected payo� equal to the target payo�.

Fourth, at the same time, the original robust equilibrium's incentives should apply;

so δT+N+1(1− p), where p is the reset probability, must lie in the robust range.

4. Imperfect Private Monitoring

This section turns to imperfect private monitoring. Again, we are given a �nite set

of players I = {1, 2, ..., n}, for each i ∈ I a �nite set of actionsAi and a reward function
gi : A → R. A (private) monitoring structure is a pair (Y, π), with Y =

∏
i∈I Yi,

�nite, and π : A → ∆Y mapping a ∈ A into the probability that the signal pro�le

(y1, . . . , yn) ∈ Y obtains. Player i only observes yi. Let G = 〈I;A, g;Y, π〉. Given

discount factor vector δ, we denote the in�nitely repeated game by G∞(δ).

A t-length private history hti is a sequence (a
(1)
i , y

(1)
i , . . . , a

(t)
i , y

(t)
i ) ∈ H t

i . The set

of all private histories for i is denoted Hi. A behavior strategy σi ∈ Σi maps private

histories to mixed actions, σ : Hi → ∆Ai. We follow the literature by adopting

sequential equilibrium as solution concept.

De�nition 1 is extended the obvious way. A strategy pro�le σ ∈ Σ is a Blackwell

equilibrium (above δ) if there exists δ ∈ [0, 1) such that σ is a (sequential) equilibrium

of G∞(δ) at any δ ≥ δ · (1, . . . , 1). A vector v ∈ Rn is a Blackwell equilibrium payo�

at δ if there exists a Blackwell equilibrium σ above some δ, with δ ≥ δ · (1, . . . , 1),

such that v = U(σ; δ), where as before U(σ; δ) is the equilibrium payo� vector under

σ given δ.

Our focus is on games in which AMI = A. An important property of such games is

the following.

Lemma 4. If AMI = A, the stage game has a unique and pure Nash equilibrium.

Proof. Since AMI = A, no player has a tie against any pure action pro�le of his

opponents. If there were ai 6= a′i and a−i such that gi(ai, a−i) = gi(a
′
i, a−i), then

(1
2
ai + 1

2
a′i, a−i) would belong to AMI. Thus, every stage-game Nash equilibrium is

strict, hence pure. By the index theorem, such an equilibrium is unique. �

The prisoner's dilemma satis�es AMI = A. So does the product choice game, and

2x2 dominance solvable games. More generally, AMI = A if there is no tie against

any pure action pro�le of the opponents, and for each player i, the ordinal ranking

over i's actions is independent of (ai+1, . . . , an). The converse of Lemma 4 does not
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hold: there exist games with a unique and pure Nash equilibrium, yet AMI 6= A. (For

instance, dominance solvability is not enough in general.)

We focus on a special class of monitoring structures. Let πi(yi | a) :=
∑

y−i
π(y | a).

De�nition 6. A monitoring structure (Y, π) is conditionally independent if π(y |
a) =

∏
i πi(yi | a) for all a ∈ A, y ∈ Y .

Conditional independence is a special and admittedly non-generic property. Yet, it

plays an important role in the literature. In particular, in the case of the prisoner's

dilemma, Matsushima (2004) establishes a folk theorem under conditional indepen-

dence.

The monitoring structure (Y, π) has full support if πi(yi | a) > 0 for all i ∈ I,

yi ∈ Yi, a ∈ A.

4.1. An �Anti-Folk� Theorem.

Theorem 4. Suppose that AMI = A, and that (Y, π) is conditionally independent and

has full support. The unique Blackwell equilibrium outcome is the repetition of the

stage-game Nash equilibrium.

Proof. Let σ be a Blackwell equilibrium. First, we show that σ is pure and history-

independent on the equilibrium path. Let t be the �rst round at which σ prescribes

either mixed or history-dependent actions, if it exists. Since players play pure and

history-independent actions until round t − 1, the conditional independence of the

monitoring structure implies the independence of players' private histories at the be-

ginning of round t, (Ht, pt) with pt = p1t×· · ·×pnt. Note that each player i is indi�er-

ent among all continuation strategies against the opponents' continuation strategies.

By an argument similar to that in Proposition 1 (the Identity/Uniqueness Theorem),

player i is indi�erent among all actions played with positive probability at round t

against the opponents' actions in the same round. Let αi(ai) =
∑

hti
pit(hit)σi(h

t
i)(ai)

for each i and ai. Then (α1, . . . , αn) ∈ AMI. This contradicts AMI = A.

Since the monitoring structure has full support, there is no reason to play a sub-

optimal action against the opponents' history-independent strategies. Thus, players

play the unique stage-game Nash equilibrium on the equilibrium path. �

The intuition for this result relies on Matsushima (1991). Indeed, the �rst step of

the proof of Theorem 4 follows his. He shows inductively that a pure strategy satis-

fying �independence of irrelevant information� must be history-independent. Hence,

non-trivial equilibria must involve some indi�erence across some actions, for some
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H D
H 0, 0 5, 1
D 1, 5 4, 4

Figure 2: The game in Example 2.

player, after some private history. This is inconsistent with AMI = A, given that σ

must be a Blackwell equilibrium.

If AMI 6= A, i.e., there exists α ∈ AMI \ A, then players may play α at, say, round

1, so that independence of private histories fails. Even if players have played pure

actions so far, they can play possibly history-dependent actions at round t so long

as their �averages� are equal to αi. By using history dependence appropriately, one

can engineer non-myopic equilibrium behavior at earlier rounds, see the following

example.

Example 2. Consider the repetition of the hawk-dove game given by the payo� matrix

in Figure 2. The conditionally independent monitoring structure (Y, π) is given by

Y1 = Y2 = {h, d}, and

πi(yi = h | aj = H) = πi(yi = d | aj = D) = 0.9.

The stage game has three Nash equilibria: (H,D), (D,H), and (1
2
H+ 1

2
D, 1

2
H+ 1

2
D),

hence AMI 6= A. Consider the following symmetric strategy pro�le: at every odd

round, play D, and at every even round, play H if one's own previous action is D

and the signal is h, play 5
9
D + 4

9
H if one's own previous action is D and the signal

is d, and play D if one's own previous action is H (o� the equilibrium path). Note

that at an even round on the equilibrium path, each player plays

0.1×H + 0.9×
(

5

9
D +

4

9
H

)
=

1

2
H +

1

2
D

on average, and no player has an incentive to deviate. If a player deviates to H at

an odd round, he receives a reward of 5 in that round, and at the next round, faces

0.9×H + 0.1×
(

5
9
D + 4

9
H
)

= 17
18
H + 1

18
D on average, and so receives a payo� of 21

18
.

Since

4 + δ × 5

2
≥ 5 + δ × 21

18
⇔ δ ≥ 18

23
,

this strategy pro�le is a Blackwell equilibrium.
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5. Extensions

5.1. Discount-free Equilibrium under Perfect Monitoring. Provided a player's

intertemporal choice satis�es classic axioms (Koopmans, 1960), discounted utility is

a representation of his preferences, and �not knowing� them is meaningless. Hence,

for applications in which discounting is part of such a representation, it is perhaps

more natural to assume that player i �knows� his own discount factor δi, but is unsure

about δ−i.
15

To account for this, we introduce the notion of discount-free equilibrium. To keep

the discussion short, we restrict ourselves to the case of perfect monitoring. De�nitions

are as in Section 2.

De�nition 7. A discount-free equilibrium above δ ∈ (0, 1) is a vector (σi)
n
i=1,

with σi : [δ, 1) → Σi, such that (σi(δi))
n
i=1 is a SPNE of G∞((δ1, . . . , δn)), for all

(δ1, . . . , δn) such that δi ≥ δ, for all i. Its payo� at δ is the payo� of (σi(δ))
n
i=1 in

G∞(δ).

Theorem 5 states that knowing one's own discount factor is enough to restore the

�standard� folk theorem, as stated in FM.16 Speci�cally, we consider the repetition of

the following extensive-form.

1. A PRD obtains (a uniform draw of the unit interval);17

2. The simultaneous-move game G is played;

3. Players publicly and simultaneously announce an element in [0, 1).

Theorem 5. Fix v ∈ intF with vi > vi, for all i. There exists δ < 1 such that, for all

δ ∈ (δ, 1), there exists a discount-free equilibrium above δ with payo� v at δ ·(1, . . . , 1).

The proofs of results in this section appear in Online Appendix OB. The equilib-

rium that we construct follows FM, but involves repeated and truthful reporting of

one's own discount factor, so that continuation payo�s can be adjusted to compen-

sate players for their mixing during punishment phases. Repeated communication is

15Still, we suppose here that player i knows that the preferences of −i can be represented by
discounted utility, and he knows the functions g−i.
16It is natural to wonder whether explicit communication cannot be replaced with phases in which
communication occurs via actions. This is not obvious, as the natural candidate for a message space
is the unit interval, the domain of the discount factor.
17Given that communication is allowed, adding a PRD is innocuous.



BLACKWELL EQUILIBRIA IN REPEATED GAMES 23

convenient to address issues arising after a history along which a player has misrep-

resented his preferences. Since the equilibrium must be subgame-perfect, it would no

longer be possible to make such a player randomize appropriately otherwise.

The challenge is to provide incentives for truth-telling. This requires some care in

de�ning continuation payo�s after punishment phases. Following the end of such a

phase, let W : (0, 1) → R+ denote a player's reward, as a function of the discount

factor, evaluated at the end of the punishment phase, that compensates a player for

the way he has randomized on path. The function W can be chosen to be completely

monotone, as we show. Further, it can be split over any two consecutive rounds t

and t + 1 in an incentive-compatible way, and further split over pairs of consecutive

rounds so that each increment is small enough to be feasible and individually rational.

More precisely, givenW (δ) and ε > 0, we pick T rounds, numbers k1, k2, ..., kT ∈ (0, 1)

adding up to one, such that a fraction kt is dispensed in rounds t, t+1, with |ktW (δ)| <
ε for all t.

5.2. Limit Blackwell Payo�s. Rather than �xing a discount factor, and charac-

terizing the set of Blackwell equilibrium payo�s evaluated at this discount factor,

one might wonder what payo�s can be achieved as limit payo�s of some Blackwell

equilibrium.

De�nition 8. A payo� vector v is a limit Blackwell payo� if there exists a Black-

well SPNE σ such that U(σ; δ)→ v as δ → (1, . . . , 1).

As one might surmise, the set of such payo�s matches the one that appears in

Theorem 1, despite the fact that not all Blackwell equilibria have payo�s that converge

as δ → (1, . . . , 1).

Theorem 6. Fix a repeated game under perfect monitoring, such that the dimension

of F is n. A payo� vector is a limit Blackwell payo� if it is in FMI, and only if it is

in the closure of FMI.

The proof proceeds as that of Theorem 1. The main di�erence is that on-path play

yields payo�s that converge to the target payo�. To this end, we construct sequences

of pure actions that approximate the target payo�, yet preserve individual rationality

for low discounting.

6. Conclusion

We apply the Blackwell optimality criterion to repeated games. This restricts equi-

librium behavior by ruling out mixed (non-pure) strategies in general, except for
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particular pro�les that depend on the monitoring structure. This restriction on be-

havior implies bounds on equilibrium payo�s, which re�ect and clarify the role that

mixed strategies play under di�erent monitoring structures. Under perfect monitor-

ing, they are used during minmaxing. Under imperfect public monitoring, they also

help detection. Under private, conditionally independent monitoring, they must be

part of any equilibrium that is not the repetition of the stage-game Nash equilibrium.

As a result, the minmax levels must be adjusted under perfect and imperfect public

monitoring, and the identi�ability conditions must be strengthened under imperfect

public monitoring. With these modi�cations, folk theorems apply. Finally, under

private, conditionally independent monitoring, only the repetition of the stage-game

Nash equilibrium survives in prisoner's dilemma-like games.

This paper is very much a �rst pass. Mixed strategies also play an important role

when considering games with short-run vs. long-run players (see Fudenberg, Kreps,

and Maskin, 1990).18 Their importance under general private monitoring also remains

to be seen.

Our results provide a somewhat nuanced justi�cation for the skepticism with which

mixed strategies are often viewed by empiricists when modeling long-run relationships,

and their focus on pure strategies. At the same time, it may be that mixed strategies

can be �puri�ed� here as well (Harsanyi, 1973b). What equilibria survive under the

Blackwell optimality criterion in a setting that includes random payo� shocks (see

Bhaskar, Mailath and Morris, 2008; P¦ski, 2012) is an open question.

18Here, under perfect monitoring, players are �hybrid:� they behave as if they were short-run as far
as behavior strategies are concerned, but long-run for pure strategies.
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Appendix A: Proofs for Section 2 (Perfect Monitoring)

Proof of Theorem 1. We start by stating a useful result, which allows construction

of action sequences with desired payo�s and continuation payo�s within given bounds.

Theorem 7 (Dasgupta and Ghosh, 2021). For all v ∈ F and ε > 0, there exists δ̂ > 0

such that for any δ ≥ δ̂ there is a sequence of action pro�les (a(t) : t ≥ 0) =: a(v, ε, δ)

such that

(6.1) v = (1− δ)
∑
t≥0

δtg(a(t));

∥∥∥∥∥(1− δ)
∑
t≥τ

δt−1g(a(t))− v

∥∥∥∥∥ ≤ ε ∀τ ≥ 1.

In words, given an ε and a high enough discount δ, the discounted payo� of the

whole sequence is v, while the continuation payo� from any time τ onwards is ε-close

to v. As our purposes require strategies designed without knowledge of the exact

discount factors, we need to know how the continuation payo�s of a �xed sequence of

actions change as individual discount factors increase. The next lemma answers this

by showing that if all δ-discounted continuation payo�s of a sequence are bounded

above and below, the same is true at higher discount factors. This helps us get

discount robustness.

Lemma 5 (Patience Lemma). Given δ ∈ (0, 1), if a sequence of real numbers (x(t))t∈Z+

satis�es

(6.2) x ≤ (1− δ)
∞∑
t=τ

δt−τx(t) ≤ x̄,∀τ ≥ 0

for some x and x in R and some δ ∈ (0, 1), then the same inequalities (6.2) hold for

any δ′ ∈ (δ, 1).

Proof. De�ne f : [δ, 1)× Z+ → R by

(6.3) f(δ′, τ) := (1− δ′)
∞∑
t=τ

δ′t−τ (x(t) − x)

which is ex hypothesi non-negative when δ′ = δ for every τ ≥ 0. For any δ′ > δ, we

have after some standard substitutions and simpli�cations:

(6.4) f(δ′, τ) =
1− δ′

1− δ
f(δ, τ) +

1− δ′

1− δ
(δ′ − δ)

∞∑
t=τ+1

δ′t−τ−1f(δ, t).
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From δ′ − δ ≥ 0 and (6.3) it follows that the right side of (6.4) is non-negative. This

leads to the inequality on the right side of (6.2) at δ′; the other follows similarly. �

We now give a constructive proof of the positive part of Theorem 1.

Proof. Fix v ∈ FMI. The overall structure follows folk theorems closely�unilateral

deviations are followed by minmax punishments, followed by a post-minmax phase

that rewards every player who carried out the minmax phase. Following Abreu,

Dutta, and Smith (1994) we now construct n points that will serve as post-minmax

payo�s at a given discount factor; we shall also show that at higher discount factors

the actual post-minmax payo�s will be nearby.

First note that Full Dimensionality implies Abreu, Dutta, and Smith (1994)'s Non-

Equivalent Utility; hence we are able to obtain points {x(i) ∈ F |i = 1, 2, . . . , n}
satisfying payo� asymmetry (PA): ∀i, j with i 6= j, xi(i) < xi(j). Let w(i) ∈ F

be the point in F where i gets the lowest feasible payo�, ignoring considerations of

individual rationality. Now for each pair (β, η) ∈ (0, 1)2 and each i, let

y(i) := β(1− η)w(i) + βηx(i) + (1− β)v.

For suitably small choices of β and η, by construction these points have the following

properties for all i: (1) strict myopic indi�erence rationality (SMIR), i.e., yj(i) > vMI
j

for all j; (2) PA; (3) target payo� dominance (TPD), i.e., yi(i) < vi. Since all

inequalities are strict, take any ε > 0 such that all the above inequalities hold with a

slack of 3ε.

Each y(i) is generated by a convex combination of the pure-action payo�s {g(a)|a ∈
A}, so y(i) ∈ F . We approximate each y(i) within ε by a rational convex combination

of the pure payo� points. Without loss of generality we can use these weights to

construct sequences (ãit)
t=T−1
t=0 of the same length T such that

(6.5)

∥∥∥∥∥ 1

T

T−1∑
t=0

g(ãit)− y(i)

∥∥∥∥∥ < ε.

De�ning

(6.6) v(i) :=
1

T

T−1∑
t=0

g(ãit) ∈ FMI,

we have obtained points {v(i) ∈ Rn|i = 1, 2, . . . , n} and for each i a �nite sequence of

action pro�les ãi = (ãit)
t=T−1
t=0 suitably reordered so that the payo� of i is increasing

along the sequence for i (i.e., gi(ã
i
t) < gi(ã

i
t′) whenever t < t′). Since the SMIR, PA,
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and TPD constraints for the {y(i)} all held with a slack of 3ε, (6.5) implies that these

constraints will hold with a slack of at least ε for {v(i)}:

∀i, vMI
i + ε < vi(i),(6.7)

∀i, vi(i) + ε < vi,(6.8)

∀i 6= j, vi(i) + ε < vi(j).(6.9)

As usual, we interpret each v(i) as giving each player j 6= i a `reward' for punishing

i. Extend each such �nite sequence to a periodic sequence by de�ning ãit := ãit mod T

for t ≥ T . For each i, the punishment pro�le for player i is a mixed action pro�le

αi ∈ AMI such that

(6.10) αi ∈ arg min
α∈AMI

max
ai

gi(ai, α−i).

Choose an N ∈ N such that for all i,

(6.11) max
a∈A

gi(a) +N gi(α
i) < (N + 1)(vi(i)− ε), ∀i,

which is possible because of gi(α
i) ≤ vMI

i and (6.7).

Choose a δ̂ high enough that for all δ > δ̂, the implication of Theorem 7 holds.

Then choose δ ≥ δ̂ so that all of the following hold for each i and each δ ≥ δ:

∀ k ∈ Z+,

∥∥∥∥∥ 1− δ
1− δT

T−1∑
t=0

δtg(ãi(t+k))− v(i)

∥∥∥∥∥ < ε,(Rewards)

(1− δ) max
a∈A

gi(a) + δ[(1− δN)gi(α
i) + δNvi(i)] < (1− δ) min

a∈A
gi(a) + δ(vi − ε),(IC-I)

vMI
i < (1− δN)gi(α

i) + δN(vi(i)− ε),(IC-II(i))

∀t ≤ N,∀j 6= i, (1− δ) max gi(a) + δ[(1− δN)gi(α
i) + δNvi(i))](IC-II(j))

< (1− δt)gi(αj) + δt(vi(j)− ε),

(1− δ) max
a∈A

gi(a) + δ(1− δN)gi(α
i) < (1− δN+1)(vi(i)− ε),(IC-III(i))

∀j 6= i, (1− δ) max gi(a) + δ[(1− δN)gi(α
i) + δNvi(i)] < vi(j)− ε.(IC-III(j))

For (Rewards) such a choice is possible by (6.6), and for (IC-I) (resp. (IC-II(i)),

(IC-II(j)), (IC-III(i)), (IC-III(j))) because its limit as δ ↑ 1 reduces to vi(i) < vi − ε
(resp. vMI

i < vi(i)− ε, vi(i) < vi(j)− ε, (6.11), vi(i) < vi(j)− ε), which holds by (6.8)

(resp. (6.7), (6.9), the choice of N , (6.9)).

Strategies.
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For any δ > δ, we de�ne a strategy pro�le that is a Blackwell equilibrium above δ.

Play is based on the following phases:

Phase I: Play a(v, ε, δ), a sequence of pure action pro�les satisfying (6.1).

Phase II(i): Play αi for N rounds.

Phase III(i): Play ãi, starting at ãi0.

We construct a simple strategy pro�le à la Abreu (1988): We start in Phase I;

unilateral deviations by a player j from any phase lead to Phase II(j) followed by

Phase III(j).

As we used Theorem 7 to generate Phase I, the payo�s of the speci�ed strategies

evaluated at discount δ are v. It remains to show that for any δ′ ≥ δ, the strategies

form an SPNE; i.e., that the strategies are a Blackwell SPNE above δ.

For any δ′ ∈ (0, 1), let vti(δ
′) and vti(j)(δ

′) denote the δ′-discounted continuation

payo� of the path in Phase I and Phase III(j) respectively, after t − 1 rounds of the

corresponding phase (not of the entire game) have elapsed. Note that, di�erently from

FM and standard perfect-monitoring folk theorems, we do not ask a player to (my-

opically) best respond during her own punishment phase, as that would potentially

not leave the others willing to mix.

From Theorem 7 and the Patience Lemma, we have

(6.12) ∀i, ∀t, ∀δ′ ≥ δ, vti(δ
′) ≥ vi − ε.

From (Rewards) we have

(6.13) ∀i, ∀j,∀t,∀δ′ ≥ δ, |vti(j)(δ′)− vi(j)| < ε.

From the fact that gi(ã
i
t) ≤ gi(ã

i
t+1) for t ∈ {0, 1, ...T − 2}, we have

∀i,∀δ′ ≥ δ, v1
i (i)(δ

′) ≤ vi(i) and(6.14)

∀i,∀t,∀δ′ ≥ δ, v1
i (i)(δ

′) ≤ vti(i)(δ
′).(6.15)

Checking subgame perfection.

Step 1. Player i cannot pro�t by deviating from Phase I if for any t ∈ N,

(1− δ′) max
a∈A

gi(a) + δ′[(1− δ′N)gi(α
i) + δ′Nv1

i (i)(δ
′)] ≤ (1− δ′) min

a∈A
gi(a) + δ′vti(δ

′).

Using (6.12), (6.14) and gi(α
i) ≤ vMI

i we need only show

(1− δ′) max
a∈A

gi(a) + δ′[(1− δ′N)vMI
i + δ′Nvi(i)] ≤ (1− δ′) min

a∈A
gi(a) + δ′(vi − ε),
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which is identical to (IC-I), which applies as δ′ ≥ δ ≥ δ.

Step 2. Player i cannot pro�t by deviating from Phase II(i) if for any t = 1, 2, . . . , N ,

(1− δ′)vMI
i + δ′[(1− δ′N)gi(α

i) + δ′Nv1
i (i)(δ

′)] < (1− δ′t)gi(αi) + δ′tv1
i (i)(δ

′).

Using (6.13) and gi(α
i) < vMI

i ≤ vi(i)−ε from (6.7), we can get the su�cient condition

(1− δ′)vMI
i + δ′[(1− δ′N)gi(α

i) + δ′N(vi(i)− ε)] < (1− δ′N)gi(α
i) + δ′N(vi(i)− ε),

which reduces to (IC-II(i)), which applies as δ′ ≥ δ ≥ δ.

Step 3. Player i cannot pro�t by deviating from Phase III(i) if for any t ∈ N,

(1− δ′) max
a∈A

gi(a) + δ′[(1− δ′N) gi(α
i) + δ′Nv1

i (i)(δ
′)] ≤ vti(i)(δ

′).

Given (6.15), this inequality holds if

(1− δ′) max
a∈A

gi(a) + δ′(1− δ′N) gi(α
i) ≤ (1− δ′N+1)vti(i)(δ

′),

so that we can now use (6.13) to get the su�cient condition

(1− δ′) max
a∈A

gi(a) + δ′(1− δ′N) gi(α
i) ≤ (1− δ′N+1)(vi(i)− ε),

which is satis�ed due to (IC-III(i)) given that δ′ ≥ δ ≥ δ.

Step 4. Player i does not deviate (observably) from Phase II(j) if for all remaining

punishment rounds t ≤ N

(1− δ′) max gi(a) + δ′[(1− δ′N)gi(α
i) + δ′Nv1

i (i)(δ
′)] < (1− δ′t)(gi(αj) + δ′tv1

i (j)(δ
′).

It su�ces to use (6.14) and (6.13) to obtain the su�cient condition

(1− δ′) max gi(a) + δ′[(1− δ′N)gi(α
i) + δ′Nvi(i)(δ

′)] < (1− δ′t)(gi(αj) + δ′t(vi(j)− ε),

which is (IC-II(j)), which applies as δ′ ≥ δ ≥ δ.

Step 5. Player i cannot pro�t by mixing di�erently in Phase II(j). Recall our de�nition

of AMI; since αj ∈ AMI, mixing only occurs between myopically indi�erent actions

according to αj; as future play does not vary over i's actions on supp(αji ), he does

not have a strict incentive to deviate.

Step 6. Player i cannot pro�t by deviating from Phase III(j) if for any t ∈ N,

(1− δ′) max gi(a) + δ′[(1− δ′N)gi(α
i) + δ′Nv1

i (i)(δ
′)] < vti(j)(δ

′).

so that using (6.14) and (6.13) we can use (IC-III(j)) as a su�cient condition.

Therefore for any δ′ ≥ δ, the speci�ed strategies form an SPNE, and hence they

are a Blackwell SPNE above δ.
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If a PRD is available, the equilibrium strategies can be modi�ed as follows:

Phase I: At each round, play the correlated action p ∈ ∆A such that v =
∑

a∈A p(a)g(a).

Phase II(i): Play αi for N rounds.

Phase III(i): Play pi ∈ ∆A such that v(i) =
∑

a∈A p
i(a)g(a) at each round of the

phase.

It is easy to see that the resulting strategies constitute a Blackwell SPNE if δ

satis�es the su�cient condition δ ≥ δ in our PRD-free construction above. �

Appendix B: Proofs for Section 3 (Imperfect Monitoring)

Proof of Lemma 2. Following FLM 1994, we proceed by �rst showing a local version

of the self-generation property we seek.

De�nition 9. A set W ⊂ Rn is said to be locally strong self-generating if for

any v ∈ W we can �nd an open set Ov, an ηv > 0 and a δv < 1 such that

v ∈ Ov ∩W ⊂ Bηv(W ; δ) ∀δ ≥ δv.

We will show that a closed ball B(c, r) ⊂ Rn is locally strong self-generating if it

lies in the interior of the set FMI,π.

To this end it is useful to introduce the notion of MI-score. Following Matsushima

(1989) and FL 1994, for any non-zero direction λ we can �nd a point v∗(λ) that lies on

the highest hyperplane in direction λ subject to the point itself being generated by a

current action in AMI, and continuation payo�s that lie below the said hyperplane.19

Let H− denote the lower half-space function, i.e., H−(λ, k) := {z ∈ Rn : λ · z ≤ k}.
Let B(·, α; δ) denote the usual APS operator for a �xed current action pro�le α. That

is, v ∈ B(W,α; δ) if there is a w : Y → W such that v is the payo� of the Nash

equilibrium α of the normal-form game with payo�s (1− δ)g(a) + δE[w|a].

De�nition 10. The MI-score in direction λ is

(6.16) kMI(λ) := sup
v∈Rn

{
λ · v

∣∣∣∣v ∈ ⋃
α∈AMI

B(H−(λ, λ · v), α; δ)

}
.

The region bounded by the MI-score in each direction serves as an upper bound on

the equilibrium payo� set. The di�erence between the usual score and the MI-score in

(6.16) is that we restrict the current action α to have the myopic indi�erence property.

19Matushima (1989) proposed an algorithm to characterize the upper boundary of the equilibrium
payo� set, when �rst-order conditions su�ce for a maximum; FL 1994 extended this to all direc-
tions to characterize the entire set, restricting attention to �nite action spaces to enable su�cient
conditions to be imposed explicitly.
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The computation of the score is, loosely speaking, more �exible than the computation

of self-generation because for any direction it allows us to generate payo�s using

continuations in the lower half-space rather than in a smaller self-generating set. Note

also that incentives aren't strict in calculating the score, since we use the standard

APS operator B rather than our strong version Bη for some η > 0. While our

equilibrium construction requires strict incentives, this is tackled perturbing it to

create a point with almost the maximal score but with strict incentives.

Online Appendix OA shows how IFR implies that FMI,π = {v ∈ Rn
∣∣λ · v ≤

kMI(λ) ∀λ 6= 0}. So to prove Lemma 2 it su�ces to show that a closed ball B(c, r) is

locally strong self-generating if the MI-score in any direction λ 6= 0 exceeds the value

λ · v for any v ∈ B(c, r).

Any v ∈ B(c, r) falls in one of two cases.

Case 1: v ∈ int(B(c, r)).

We can �nd µ > 0 such that B(v, µ) ⊂ int(B(c, r)). Fixing a NE α∗ of the stage

game G, we pick δv large enough so that the implied continuation payo�s at each

v′ ∈ B(v, µ) (which are chosen to be constant in both the signal and the output of

the randomization device) lie in int(B(c, r)).

Case 2: v ∈ ∂B(c, r).

The unit normal vector at v pointing away from B(c, r) is λ := (v − c)/‖v − c‖.
If there is an NE of G that lies above this hyperplane we follow the arguments as in

Case 1. If not, pick a point v∗ that gives the maximal MI-score in direction λ and �nd

the associated mixed action α∗ ∈ AMI and x∗ : Y → Rn, the associated normalized

continuation payo�, 20 which satis�es that for all y, λ · x∗(y) ≤ 0.

For each i, order the actions of i as Ai = {ai,1, . . . , ai,K}. De�ne v′i ∈ R|Ai| by

introducing a `penalty' of 1 for any action that is not in the support of the action

that generates v∗:

v′i,k =

vi if ai,k ∈ supp(α∗i )

vi − 1 otherwise.

By IFR, the matrix Πi(α) whose rows are transposes of the column vectors π(y|α−i, ai),
one for each ai ∈ Ai, has full row rank; therefore the following linear equation has a

20For details, see Mailath and Samuelson (2006). For all δ ∈ (0, 1), (α∗, 1−δδ x∗+ v∗) generates v∗ on
H−(λ, λ · v∗) at δ.
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solution x′i ∈ R|Y |:

(6.17)

 v
′
i,1 − gi(ai,1, α∗−i)

...

v′i,K − gi(ai,K , α∗−i)

 = Πi(α
∗)

 x
′
i(y1)
...

x′i(y|Y |)

 .
Therefore, we've converted our demand for strictness in payo�s into a signal-speci�c

reward function. Having done this for each i, de�ne the function x′ : Y → Rn by

combining the x′i, i.e., x
′(y) = (x′1(y), . . . , x′n(y)). Take β, γ ∈ (0, 1) small enough that

for all y, we have 0 > λ·(βγx′(y)+β(1−γ)(v−v∗)+(1−βγ)x∗(y)); this is possible from

λ·x∗(y) ≤ 0 and λ·(v−v∗) < 0. Let x′′(y) := βγx′(y)+β(1−γ)(v−v∗)+(1−βγ)x∗(y),

so that λ · x′′(y) < 0.

Let v′′ := βv + (1− β)v∗. Since v∗ maximises the MI-score and λ · v < kMI(λ), we

have λ · v < λ · v∗, and therefore v′′ satis�es λ · v < λ · v′′.
Therefore, the following hold for all i:

v′′i = gi(ai, α
∗
−i) + E(x′′i |(ai, α∗−i)), if ai ∈ supp(α∗i ),(6.18)

v′′i ≥ gi(ai, α
∗
−i) + E(x′′i |(ai, α∗−i)) + βγ, otherwise.(6.19)

We de�ne ηv = βγ, the degree of slack we've introduced.

If λ is not a negative coordinate direction, α∗ can be chosen to be pure; otherwise,

perform the following `garbling' to ensure (3.5):

• Publicly draw ν from the uniform distribution on [0, 1]n.21

• Let xj be the lowest value of the of x
′′
j on Y , and let xj be the highest.

• Let x̃(y, ν) = (x̃j(yj, νj))j∈I be given by

x̃j(yj, νj) =

xj, if νj ≤
x′′j (yj)−xj
xj−xj

,

xj, otherwise.

Note that x̃j is a garbling of x′′j that preserves the expectation, and that

Pr(x̃j = xj | aj) =
∑
yj∈Yj

πj(yj | aj)
x′′j (yj)− xj
xj − xj

,

21Combined with Lemma 1, an (n + 1)-dimensional public randomization device su�ces in each
round, one dimension each to garble the continuation payo�s and an extra one for the reboot
decision.
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which is constant on supp(αj).
22 This needs to be done only for negative-coordinate

directions. For all other directions, set x̃j(yj, νj) = x′′j (yj) for all ν. Thus

v′′i = gi(ai, α
∗
−i) + Ey,ν(x̃i|(ai, α∗−i)), if ai ∈ supp(α∗i ),(6.20)

v′′i ≥ gi(ai, α
∗
−i) + Ey,ν(x̃i|(ai, α∗−i)) + ηv, otherwise.(6.21)

Since λ · v < λ · v′′, add v − v′′ to both sides to translate the old normalised

continuation function to a new one x:

v = g(α∗) + Ey,ν(x|α∗), where x := x̃j + v − v′′.

The continuation payo� point w(y, ν; δ) = (wj(yj, νj; δ))j∈I is given by

(6.22) wj(yj, νj; δ) = vj +
1− δ
δ

xj(yj, νj),

which satis�es δ2 ‖w(y, ν; δ)− c‖2 = (1− δ)2 ‖x‖2 + 2δ(1− δ)x · (v − c) + δ2r2. Now,

using the fact that λ = v−c
‖v−c‖ , we have x · (v − c) = ‖v − c‖λ · (x̃ + v − v′′) =

‖v − c‖λ · x̃ + ‖v − c‖(λ · v − λ · v′′) < 0, by λ · x̃ < 0 and λ · v < λ · v′′. Thus there
is a δy,ν such that for δ ≥ δy,ν , the continuation payo� w(y, ν; δ) lies in the interior

of B(c, r). Take δv to be maxy,ν δy,ν , which is less than 1 as each δy,ν < 1. At each

δ > δv, we have

vi = (1− δ)g(αi, α
∗
−i) + δEy,ν(wj(·; δ)|(αi, α∗−i)), if ai ∈ supp(α∗i ),

(6.23)

vi ≥ (1− δ)g(αi, α
∗
−i) + δEy,ν(wj(·; δ)|(αi, α∗−i)) + (1− δ)ηv, otherwise.

(6.24)

Thus

v ∈ Bηv(B(c, r); δ) ∀δ ≥ δv.

Since translating the continuation payo� function leaves incentives una�ected, there

exists γv > 0 such that all points in B(c, r) ∩ B(v, γv) can be generated by using

continuations in B(c, r) at δv, preserving (6.23) and (6.24). Moreover, at δ > δv

translated continuation values are in B(c, r), as they are convex combinations of

translated original points and translated continuations at δv, both of which are in

B(c, r). Thus, for all δ > δv, we have B(v, γv) ∩B(c, r) ⊂ Bηv(B(c, r); δ).

Combining Cases 1 and 2 we see that B(c, r) is locally strong self-generating. Now

we can leverage our local self-generation property into a global one.

22The degenerate case of xj = xj is trivial.
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Let Z ⊂ intFMI,π be a compact locally strong self-generating set. Since Z is lo-

cally strong self-generating, for any z ∈ Z there exists γz > 0 and ηz > 0 such that

B(z, γz) ∩ Z can be ηz-strongly generated by Z at all δ > δz. Then {(intB(z, γz)) ∩
Z}z∈Z forms an open cover of Z. Since Z is compact, extract a �nite subcover

{B(z1, γz1), . . . , B(zL, γzL)}. Now let δZ := max{δz1 , . . . , δzL}, which is strictly less

than 1 as a maximum of �nitely many reals strictly less than 1; and η∗ := min{ηz1 , ..., ηzL},
which is positive as the minimum of �nitely many positive reals.

For all δ > δZ , sinceB(z`, γz`)∩Z ⊂ Bη∗(B(c, r); δ), we have that ∪L`=1 (B(z`, γz`) ∩ Z) =

Z is η∗-strongly self-generating. �

Proof of Theorem 2. The following doubly uniform version of robustness is impor-

tant in this setting.

De�nition 11. A pair (W, ∆̂) ∈ F × 2(0,1) is a doubly robust region if for any

v′ ∈ W and any δ ∈ ∆̂, we can �nd a strategy pro�le that (i) is a PPE for any

discount factor in ∆̂, and (ii) delivers the payo� v′ at δ.

Lemma 6. Given a closed ball B ⊂ intF ∗, there exists δ ∈ (0, 1) such that for any

δ′ ∈ (δ, 1) there is an open interval (δl, δh) 3 δ′ such that (B, (δl, δh)) is a doubly

robust region.

Proof. First, we notice that Lemma 2 only used the PRD to get local self-generation

in the negative coordinate direction. In our case, we are free to use either a pure or

Nash action as in each negative coordinate direction −ei as we only need to attain

a score of min{vpure
i , vNEi }. Thus garbling is unnecessary, and strictness only has to

be introduced when α∗ is pure, which by assumption implies it satis�es IFR. Thus,

a modi�ed version of Lemma 2 holds with respect to closed balls in intF ∗, using a

PRD-free version of the strong APS operator.

Thus, there is a δ ∈ (0, 1) and an η > 0 such that for all δ ∈ (δ, 1) we have

B ⊂ Bη(B; δ). Take any δ′ > δ; we will show there is an open interval satisfying the

lemma.

Let M := maxi,a |gi(a)|. Take δl, δh such that

δ < δl < δ′ < δh(6.25)

δl > δh −
η(1− δh)2

4M
(6.26)

Given any δ ∈ (δl, δh) and any v ∈ B, using that δ < δ from (6.25), construct a

PPE using Lemma 2 and η-strong self-generation at δ with payo� v. Then, take any
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δ̂ ∈ (δl, δh). Take any public history and any action pro�le α played after that history.

From the de�nition of strong self-generation, for any player i and action ai one of the

following is true:

• The distribution of continuation play does not vary between α and ai, α−i.

Then, the fact α is a Nash equilibrium implies gi(α) ≥ gi(ai, α−i) and hence

ai is never a better response than αi regardless of the discount.

• Playing ai entails a loss of at least η(1− δ) at discount δ. Notice the average
discounted payo� function is di�erentiable in δ and for any outcome h∞ we

have the bound | d
dδ0
Ui(h

∞, δ0)| ≤ 2M
1−δ0 . Thus, between any two δ0, δ1 ∈ (δl, δh)

each strategy can vary in payo�s by at most 2M
1−max{δ0,δ1} . Over the whole

interval, then, which from (6.26) has length of at most η(1−δh)2

4M
, this variation

is bounded by η(1 − δh)/2. Thus, at δ̂, deviating to ai entails a gain of less

than 2η(1− δh)/2− η(1− δ) < 0; so the deviation is unpro�table.

Thus, the constructed strategies are a PPE at any δ̂ in (δl, δh), as requested. �

Now, we begin the proof of Theorem 2 in earnest. First, we construct statistical

tests using (a∗, Y ∗). These tests will be used to mimic a PRD and decide whether the

game should or should not be reset. A success occurs when the signal is Y ∗. Recall

that any unilateral deviation from a∗ strictly reduces the probability of a signal in

the set Y ∗. Let T (T ∗, k∗) denote a test that is passed if and only if there are at

least k∗ successes in T ∗ Bernoulli trials, each with success probability q∗ = π(Y ∗|a∗).
The pass probability of the test is the probability of passing it if a∗ is played for T ∗

rounds.

Play is divided into three phases � Select, Normal, and Test. Play begins in the

Select phase. Intuitively, the Select is used to randomize whether the players next

�nd themselves in a reward or punishment Normal phase. Normal phases are where

players collect most of their payo�s. Each round n in a Normal phase is linked

via incentives to the nth round in future Normal phases, until a reset is triggered.

Following a Normal phase, play moves to the Test phase; if the test is failed, then

the subsequent Select phase randomizes over punishment and reward once again;

otherwise, the next Normal phase will continue where play left o�.

Given a target payo� v, choose the following quantities in order, culminating in

the choice of a cuto� discount factor δmin.
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Step 1. Choose c+, c− ∈ intF ∗ such that c+
i > vi > c−i for every i and the following

holds:

(6.27) v = q∗c+ + (1− q∗)c−.

Step 2. Choose r > 0 such that c+
i > vi + 5r; vi > c−i + 5r ∀i; and

B(c−, 5r), B(c+, 5r) ⊂ int{v ∈ cou(A) | ∀i ∈ I, vi ≥ vpure
i ∧ vNEi }.

As we will use balls of radius r rather than 5r, the distance along each coor-

dinate between any point in the balls we will use and the point v is at least

4r.

Step 3. Choose a δ′ high enough to satisfy the conditions of Lemma 6 for both B(c−, r)

and B(c+, r). That is, for some (δ−l , δ
−
h ) 3 δ′ and (δ+

l , δ
+
h ) 3 δ′ we have that

(B(c−, r), (δ−l , δ
−
h )) and (B(c+, r), (δ+

l , δ
+
h )) are both doubly robust regions.

Take (δ, δ) := (δ−l , δ
−
h ) ∩ (δ+

l , δ
+
h ).

Step 4. Find two binomial tests, both based on (a∗, Y ∗), with pass probabilities 1−p+

and p−, such that

(6.28) 1− p+, 1− p− ∈ (δ, δ), and

(6.29)

∥∥∥∥∥∥v −
q∗c+

1−(1−p+)δ̂
+ (1−q∗)c−

1−(1−p−)δ̂

q∗

1−(1−p+)δ̂
+ 1−q∗

1−(1−p−)δ̂

∥∥∥∥∥∥ < r

2
, ∀δ̂ ∈

(
max{ δ

1− p+
,

δ

1− p−
}, 1
)
.

Such tests can always be found. Since the binomial distribution approximates

the normal distribution (which has a continuous CDF), we can use indepen-

dent Bernoulli trials with success probability q∗ = π(Y ∗ | a∗) to design bino-

mial tests of suitable lengths T+ and T− having pass probabilities arbitrarily

close to δ+δ̄
2

and 1− δ+δ̄
2

respectively. If the approximations are close enough,

(6.28) holds and so does inequality (6.29), because equation (6.27) implies

that the LHS of inequality (6.29) goes to zero as p+ and p− get closer.

Step 5. As soon as the probability of the current test being passed hits zero or unity,

we cannot give incentives to players to play the test action unless it is a Nash

equilibrium. To ensure incentives throughout a test, we show how to modify

it by truncating it appropriately. Given any test of length T 0, we can switch

to playing a �xed Nash equilibrium αNE of the stage game as soon as the test

is conclusive (failed or passed for sure) and until T 0 rounds are up. Let T −

and T + denote, respectively, the Nash-truncated versions of the minus and

plus Binomial tests above extended to a common length T := max{T−, T+};
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if T− < T+ = T , where Nash play is substituted following the conclusion of

a test. If the continuation play after any test phase depends only on the test

outcome (pass vs fail), playing αNE is incentive compatible for any discount

factor. Since the Nash equilibrium is played only when the test is conclusive,

the Nash-truncated tests inherit the pass probabilities of the original tests.

Step 6. Tests not only impact subsequent play but also distort payo�s and incentives.

We therefore must ensure they account for only a small proportion of all

periods. This is both so that we can deliver the target payo�, and so that

normal phases provide incentives to play the test action during test phases.

Denoting by ρ the minimum change in the passing probability of a test when

a player deviates from her test action,23 choose N large enough that

(6.30) N > 6

√
nM(T + 1)

rρ
,

where |ui(a)| ≤M for all a ∈ A, i ∈ I.
Step 7. We now ensure that we can incentivize players to take the test action. We have

already (in Step 6) found a N large enough to make most periods `normal'

- what remains is to �nd a bound on δ above which normal periods provide

su�cient incentives during the test phases. Pick a δ̂ such that for all δ ≥ δ̂

and i ∈ I,

2MT +
δT

1− δ
ρ

[
(c−i + 3r/2)(1− δN)− (1− δ(N+T+1))(vi − 3r)

1− (1− p−)δ(N+T+1)

]
< 0,

and

2MT − δT

1− δ
ρ

[
(c+ − 3r/2)(1− δN)− (1− δ(N+T+1))(vi + 3r)

1− (1− p+)δ(N+T+1)

]
< 0.

In the limit as δ → 1, these become

2MT

ρ
p− + (T + 1)(vi − 3r) < N

(
vi − c−i −

9r

2

)
(6.31)

2MT

ρ
p+ + (T + 1)(vi + 3r) < N

(
c+
i − vi −

9r

2

)
.(6.32)

Given that Step 2 guarantees that c+
i − 5r > vi > c−i + 5r, both of these are

implied by (6.30). Thus there is a δ̂ as we require.

23There are two tests, �nitely many states in each test, �nite action spaces and n < ∞ players,
so this ρ is well-de�ned and, due to the assumed properties of the test action pro�le a∗, is strictly
positive.
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Step 8. We require that the payo� distortion due to tests is small so that we can

achieve our target payo�. We have (6.30), but it does not take into account

discounting. Thus, we �nd a δdist ∈ (0, 1) such that for all δ > δdist we have

(6.33)
N+T∑
t=T+1

δtrρ/2 >
T∑
t=0

δt3
√
nM,

which is possible as in the limit as δ → 1 this inequality reduces to the

undiscounted version in (6.30), which is strict.

Step 9. We want the equilibrium payo� to not vary much with the discount. To do

this we �nd δs such that for all i ∈ I and all δ > δs we have[
1− δ 1− δN

1− δ(N+T+1)

]
|vi| < r.

As δ increases to 1, the limiting condition is (T + 1)|vi| < (N +T + 1)r, which

is implied by Step 6; therefore, such a cuto� δs can be found.

Step 10. Finally, de�ne

(6.34) δmin := max

{(
δ

1−max{p−, p+}

) 1
N+T+1

, δdist, δ̂, δs

}
.

Given a δ > δmin , proceed as follows.

De�ne δ+ := δN+T+1(1− p+) and δ− = δN+T+1(1− p−). By construction,

(6.35) δ+, δ− ∈ (δ, δ)

First, we want to adjust the starting points of the self-generation algorithm in both

balls to account for (slightly) di�erent reset probabilities, but without taking into

account the test rounds. De�ne

(6.36) λ := v −

[
q∗(c+)
1−δ+ + (1−q∗)(c−)

1−δ−
q∗

1−δ+ + 1−q∗
1−δ−

]
.

The expression in square brackets has the following interpretation. Suppose that we

toss a coin with a probability q∗ of coming up heads; if we toss heads we play a

sequence of actions that gives us c+ while if it comes up tails we play the sequence of

actions that gives us c−. However, as we reset back to the beginning with di�erent

probabilities, we do not get q∗c++(1−q∗)c−. Instead, we end up getting a combination
of c+ and c−with weights in the ratio q∗/(1− δ+) to (1− q∗)/(1− δ−). The quantity

λ can be interpreted as the adjustment to the starting point needed to get v; this

follows as the above can be rearranged to write v as a convex combination of c+ + λ
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and c− + λ:

v =

q∗(c++λ)
1−δ+ + (1−q∗)(c−+λ)

1−δ−
q∗

1−δ+ + 1−q∗
1−δ−

.

By (6.29) we have that ‖λ‖ < r/2.

We now further adjust the starting points in view of the non-normal phases. We

compute the payo� v+ such that one round of the average Select phase payo� z

(detailed below), then N rounds of v+, and �nally T rounds of the test T + (whose

average δ-discounted payo�s we denote xT +) gives the same expected utility as getting

c+ + λ for (1 +N + T ) rounds, i.e.,

(6.37) (1− δN+T+1)(c+ + λ) = (1− δ)z + δ(1− δN)v+ + δN+1(1− δT )xT + .

Subtracting v+ from both sides and using the magnitude operator and the triangle

inequality, we have

(6.38) (1−δN+T+1)||(c+ +λ−v+)|| ≤ (1−δ)||(z−v+)||+δN+1(1−δT ) ||(xT +−v+)||.

and replacing payo� di�erences by 2M , the largest possible value, we have

(6.39) (1− δN+T+1)||(c+ + λ− v+)|| ≤ (1− δ)2
√
nM + δN+1(1− δT ) 2

√
nM,

from which we deduce

(6.40) ||(c+ + λ− v+)|| < (1− δT+1)

(1− δN+T+1)
2
√
nM.

Finally, we use Step 8 to deduce

(6.41) ||(c+ + λ− v+)|| < δT+1 − δN+T+1

(1− δN+T+1)

r

2
<
r

2
.

Combining this with ‖λ‖ < r/2, the triangle inequality implies that ‖c+−v+‖ < r;

thus v+ ∈ B(c+, r). De�ne v− similarly, which guarantees v− ∈ B(c−, r). By the

above, Step 3, and Lemma 6, there exists a strategy pro�le σ− that is a PPE for all

δ′′ ∈ (δ, δ), while delivering v− at δ−, and similarly a σ+ that is a PPE in that same

set of discounts delivering v+ at δ+.

Strategy Pro�le. Now we describe the strategy σ(δ, v) as an automaton over 4 types

of phases�Select (1 round), Test (T rounds), Norm+(N rounds), and Norm−(N
rounds).

• Start in Select.

• Select:
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� In the �rst round of play or if the test immediately before triggered a

reset, play a∗ once; if the selection test succeeds (which it does with

probability q∗), move to Norm+, else move to Norm−.
� If the preceding test did not trigger a reset, play αNE once, and then

move to a Normal phase of the same type as the one leading up to the

test.

• Norm−: If this is the �rst normal phase, or the last test concluded in favor

of a reset, start playing σ− using an empty history in each of the following N

rounds; if not, play according to σ− where each of the N cycles left o�. That

is, round t uses the action pro�le σ−(h∗t ) with the linked history h∗t de�ned

by h∗t := (yt−n(N+T+1), yt−(n−1)(N+T+1), ...yt−(N+T+1)) where n is the number of

tests since the last reset. At the end of this phase move to Test.

• Norm+: As above, with plus instead of minus.

• Test: Play the Nash-truncated test T −, lasting T rounds, if the immediately

preceding normal phase was Norm−; else play T +, also lasting T rounds.

Then move to Select.

As the next result shows, the payo� under σ(δ, v) is close to v, for every high enough

discount factor. For its proof, see the online appendix.

Lemma 7 (Bounding payo�s). For any δ∗ ≥ δ, |Ui(σ(δ, v), δ∗)−vi| < 3r for all i ∈ I.

Incentives. We now show that the strategy σ(δ, v) is a PPE at any δ∗ ≥ δmin.

At a history h that leads to the start of a Norm- phase, the future payo�s due to

play according to σ− until a reset are

(6.42)
N∑
j=1

δ∗j−1

∞∑
τ=0

[(1− p−)δ∗(N+T+1)]τgi(σ
−(h∗))

and re�ect the N `separate' cycles of play according to the self-generation algorithm.

Play during the test and select phases gives at most M per period, so that the payo�

due to test and reset phases until the next reset are bounded above by

(6.43)
∞∑
τ=0

[(1− p−)δ∗(N+T+1)]τ [M(T + 1)].

Finally, a reset returns continuation payo�s to Ui(σ(δ, v), δ∗), so that total future

payo�s from play after resets are bounded above by

(6.44) δ∗(N+T+1)

∞∑
τ=0

[δ∗(N+T+1)(1− p−)]τp−
Ui(σ(δ, v), δ∗)

1− δ∗
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Thus, we can bound payo�s at the outset of a Norm- phase, following a history h,

by

Ui(σ(δ, v)(h), δ∗)

1− δ∗

≤

[
N∑
j=1

δ∗j−1

∞∑
τ=0

[(1− p−)δ∗(N+T+1)]τgi(σ
−(h∗)) +

∞∑
τ=0

[(1− p−)δ∗(N+T+1)]τ [M(T + 1)]

](6.45)

+δ∗(N+T+1)

∞∑
τ=0

[δ∗(N+T+1)(1− p−)]τp−
Ui(σ(δ, v), δ∗)

1− δ∗
.

Consider a deviation by some player during a Test phase. By the fact that a∗

signal-maximizes Y ∗, deviation from a∗ therefore decreases the probability of passing

the test. Suppose the test is following a Norm− phase; failing the test therefore

decreases the probability of a reset. Take the smallest such change, ρ. An upper

bound on the within-test-phase bene�ts of a deviation is 2MT . So, a deviation is not

pro�table if

(6.46) 2MT + δ∗Tρ

[
Ui(σ(δ, v)(h), δ∗)− Ui(σ(δ, v), δ∗)

1− δ∗

]
≤ 0,

where h is the relevant history.

We can substitute the expression in (6.45) - an upper bound to Ui(σ(δ, v)(h), δ∗) -

to bound the LHS of (6.46) above by

2MT + δ∗Tρ

[ N∑
j=1

δ∗j−1

∞∑
τ=0

{(1− p−)δ∗(N+T+1)}τgi(σ−(h∗))

+
∞∑
τ=0

{(1− p−)δ∗(N+T+1)}τM(T + 1)

+
{
δ∗(N+T+1)

∞∑
τ=0

{δ∗(N+T+1)(1− p−)}τp− − 1
}Ui(σ(δ, v), δ∗)

1− δ∗

]
,
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which is in turn bounded above (using Step 8) by

2MT + δ∗Tρ

[ N∑
j=1

δ∗j−1

∞∑
τ=0

[(1− p−)δ∗(N+T+1)]τ [gi(σ
−(h∗)) + r/2]

− 1− δ∗(N+T+1)

1− (1− p−)δ∗(N+T+1)

Ui(σ(δ, v), δ∗)

1− δ∗

]
.

Now we can apply the Patience Lemma to get a new bound:

2MT + δ∗Tρ

[
N∑
j=1

δ∗j−1 c−i + 3r/2

1− (1− p−)δ∗(N+T+1)
− 1− δ∗(N+T+1)

1− (1− p−)δ∗(N+T+1)

Ui(σ(δ, v), δ∗)

1− δ∗

]
.

Using our bounds on Ui(σ(δ, v), δ∗) from Lemma (7), we can get a further upper

bound,

2MT +
δ∗T

1− δ∗
ρ

[
(c−i + 3r/2)(1− δ∗N)− (1− δ∗(N+T+1))(vi − 3r)

1− (1− p−)δ∗(N+T+1)

]
,

which we know from Step 7 is negative. Therefore, there is no incentive to deviate

during a Test phase following Norm−. The same argument applies mutatis mutandis

to a Test phase following Norm+, as well as the Select phase.

Incentives during theNorm+ andNorm− Phases: Since the strategy in the normal

phase involves playing a PPE strategy with rebooting, it follows that there is no

incentive for any player to unilaterally deviate from the prescribed actions in any

round.

Equilibrium payo�s. Given the construction of v+ and v−, the payo� vector of this

equilibrium at discount δ is U(σ(δ, v), δ) = v. This completes our proof. �
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Online Appendix OA: Additional Proofs for Section 3

The goal of this online appendix is two-fold. First, we show that the intersection

over all non-zero directions of the lower half-spaces de�ned by the corresponding

MI-scores equals the set FMI,π. Second, we prove Lemma 7.

The intersection of the maximal lower half-spaces is

H∗ := ∩
λ 6=0

H−(λ, kMI).

The MI-score di�ers from the usual score in that only action pro�les with myopic

indi�erence can be used to achieve it. Note also that incentives aren't strict in cal-

culating the score, since we use the standard APS operator B rather than our strict

version Bη for some η > 0. While our equilibrium construction requires strict incen-

tives, this is tackled perturbing it to create a point with almost the maximal score

but with strict incentives.

We consider the following mutually exclusive directions: (i) non-coordinate direc-

tions, i.e., at least two coordinates are non-zero; (ii) positive coordinate directions,

i.e., exactly one coordinate is +1, while the rest are zero; (iii) negative coordinate

directions, i.e., exactly one coordinate is −1 while the rest are zero.

Lemma 8. For any direction λ, the MI-score is attained by an action pro�le in AMI;

furthermore, a pure action pro�le achieves this score in directions other than negative

coordinate ones. Additionally, FMI,π = {v ∈ Rn
∣∣λ · v ≤ kMI(λ) ∀λ [‖λ‖ = 1]}.

The proof of the lemma is standard. Intuitively, IFR allows us to generate incentives

in all but negative-coordinate directions. These require us to use mixed actions in

general, and indeed, the Blackwell restriction implies that any such action must also

be in AMI; this is just the MI-minmax de�ned earlier, rather than the standard

minmax seen in the literature.

Proof. We divide the proof into the above cases.

Case 1: λ is a non-coordinate direction. One of the highest points in F in direction

λ must be generated by a pure action pro�le, which is in AMI, and using IFR we

can satisfy the IC conditions with equality using continuation payo�s in the lower

halfspace � this is the same argument as in Lemma 5.1 in FL 1994.

Case 2: λ is a positive coordinate direction ei. The score maximization reduces to

max vi subject to the IC constraints. We pick the pure action pro�le that maximises

the payo� of i in F . Thanks to IFR we can design continuation payo�s so that

incentives hold with equality.
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Case 3: λ is a negative coordinate direction −ei. Only here do might we need to

achieve the MI-score using a mixed action which is in AMI. In this case it follows

from our de�nition of the program PMI,πi
i and FL 1994 that the score is the negative

of the minmax vMI,πi
i . �

Proof of Lemma 7. We �rst bound Ui(σ(δ, v), δ∗) from above. Notice that terms

are divided based on whether they come from the plus or the minus ball. Within each

ball we can group terms into 1 + N + T cycles, and �nally sum over the N normal

phase cycles, replacing the test phase cycles by the largest possible payo�. This gives

Ui(σ(δ, v), δ∗)

1− δ∗
≤q∗

N∑
j=1

δ∗j
∞∑
τ=0

[(1− p+)δ∗(N+T+1)]τgi(σ
+(h∗))

+q∗
∞∑
τ=0

[(1− p+)δ∗(N+T+1)]τ [M(T + 1)]

+(1− q∗)
N∑
j=1

δ∗j
∞∑
τ=0

[(1− p−)δ∗(N+T+1)]τgi(σ
−(h∗))

+(1− q∗)
∞∑
τ=0

[(1− p−)δ∗(N+T+1)]τ [M(T + 1)]

+q∗δ∗(N+T+1)

∞∑
τ=0

[δ∗(N+T+1)(1− p+)]τp+Ui(σ(δ, v), δ∗)

1− δ∗

+(1− q∗)δ∗(N+T+1)

∞∑
τ=0

[δ∗(N+T+1)(1− p−)]τp−
Ui(σ(δ, v), δ∗)

1− δ∗

which, by Step 6, grants

Ui(σ(δ, v), δ∗)

1− δ∗
<q∗

N∑
j=1

δ∗j
∞∑
τ=0

[(1− p+)δ∗(N+T+1)]τ (gi(σ
+(h∗)) + r/2)

+(1− q∗)
N∑
j=1

δ∗j
∞∑
τ=0

[(1− p−)δ∗(N+T+1)]τ (gi(σ
−(h∗)) + r/2)

+q∗δ∗(N+T+1)

∞∑
τ=0

[δ∗(N+T+1)(1− p+)]τp+
Ui(σ(δ, v), δ∗)

1− δ∗

+(1− q∗)δ∗(N+T+1)

∞∑
τ=0

[δ∗(N+T+1)(1− p−)]τp−
Ui(σ(δ, v), δ∗)

1− δ∗
.
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Since these actions are generated by the self-generation algorithm, which keeps all

continuation payo�s in a ball of radius r around c− or c+, the Patience Lemma gives

a bound on each cycle:

Ui(σ(δ, v), δ∗)

1− δ∗
<q∗

N∑
j=1

δ∗j
(c+
i + r + r/2)

1− (1− p+)δ∗(N+T+1)
+ (1− q∗)

N∑
j=1

δ∗j
(c−i + r + r/2)

1− (1− p−)δ∗(N+T+1)

+q∗δ∗(N+T+1)

∞∑
τ=0

[δ∗(N+T+1)(1− p+)]τp+
Ui(σ(δ, v), δ∗)

1− δ∗

+(1− q∗)δ∗(N+T+1)

∞∑
τ=0

[δ∗(N+T+1)(1− p−)]τp−
Ui(σ(δ, v), δ∗)

1− δ∗
.

Collecting all terms with v(δ∗) on the left, we have

Ui(σ(δ, v), δ∗)

1− δ∗

[
1− q∗p+δ∗(N+T+1)

1− (1− p+)δ∗(N+T+1)
− q∗p−δ∗(N+T+1)

1− (1− p−)δ∗(N+T+1)

]
<

N∑
j=1

δ∗j
q∗(c+

i + r + r/2)

1− (1− p+)δ∗(N+T+1)
+

(1− q∗)(c−i + r + r/2)

1− (1− p−)δ∗(N+T+1)
.

This in turn leads to

Ui(σ(δ, v), δ∗)

1− δ∗

[
q∗(1− δ∗(N+T+1))

1− (1− p+)δ∗(N+T+1)
+

(1− q∗)(1− δ∗(N+T+1))

1− (1− p−)δ∗(N+T+1)

]
< δ∗

1− δ∗N

1− δ∗

[
q∗(c+

i + r + r/2)

1− (1− p+)δ∗(N+T+1)
+

(1− q∗)(c−i + r + r/2)

1− (1− p−)δ∗(N+T+1)

]
,

or simply

Ui(σ(δ, v), δ∗) < δ∗
1− δ∗N

1− δ∗(N+T+1)

3r/2 +

q∗c+i
1−(1−p+)δ∗(N+T+1) +

(1−q∗)c−i
1−(1−p−)δ∗(N+T+1)

q∗

1−(1−p+)δ∗(N+T+1)
+ (1−q∗)

1−(1−p−)δ∗(N+T+1)

 .
This and Step 4 grants

Ui(σ(δ, v), δ∗) < δ∗
1− δ∗N

1− δ∗(N+T+1)
[2r + vi],

or,

Ui(σ(δ, v), δ∗)− vi < δ∗
1− δ∗N

1− δ∗(N+T+1)
2r − [1− δ∗ 1− δ∗N

1− δ∗(N+T+1)
]vi,

so that Step 9 gives

Ui(σ(δ, v), δ∗)− vi < 3r.
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Reasoning similarly with the lower bound implies

Ui(σ(δ, v), δ∗)− vi > −3r.

The required bound follows. �

Online Appendix OB: Proofs for Section 5

Proof of Theorem 5. To prove Theorem 5, we'll �rst show a number of lemmata

that will allow us to deliver rewards to players depending on their discount factor

announcements, which make truthful reporting IC.

Lemma 9. Without loss of generality, the function W can be chosen to be completely

monotone, i.e., W ≥ 0, and the derivatives starting with W ′ alternate between non-

positive and non-negative.

Proof of Lemma 9. Denote by 0 the round right after the punishment phase for

player j ends. Let ξt denote the reward, in time-t payo�, we must pay i 6= j for

his action taken in round t while minmaxing j. We can choose a reward structure

so that ξt > 0 whatever i's realized action at t was (in e�ect, choosing the lowest

possible reward fully speci�es the rest). Then, as W (δ) is just the sum of the rewards

discounted forward to time 0, we have

W (δ) =
−1∑

t=−T

δtξt =
T∑
t=1

δ−tξ−t > 0

Its derivatives are

W (n)(δ) =
T∑
t=1

[
δ−t−nξ−t

n−1∏
m=0

(−t−m)

]
,

where the product term alternates sign with n and the other terms are always positive,

implying that W is completely monotone. �

Having chosen a completely monotone W , Lemma 10 delivers the reward W (δ) to

a player with discount factor δ ∈ [δ0, 1) over any two successive rounds n and n + 1

in an incentive-compatible way; in order words, if we base the reward on the player's

announcement of his discount factor, he will announce truthfully. In the statement of

the lemma below, xn(δ) denotes the payo� that δ would get in round n, while yn(δ)

denotes the payo� that he would get at round n+ 1; the total discounted adjustment

must equal the target adjustment W (δ).
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Lemma 10. Fix δ0 > 0 and a completely monotone map W : [δ0, 1] → R such that

both W and the absolute value of its derivative −W ′ are bounded above by C1 > 0.

For each n ∈ N there exist functions xn, yn : [0, 1] → R, such that, for all pairs

δ, δ̂ ∈ [0, 1],

(6.47) W (δ) = δn(xn(δ) + δyn(δ)) ≥ δn(xn(δ̂) + δyn(δ̂)).

Furthermore, there exists C2 such that max{|xn(δ)|, |yn(δ)|} < nδ−n−1C2 for all δ and

n.

Proof of Lemma 10. Given W and n, de�ne

xn(δ) = δ−n((n+ 1)W (δ)− δW ′(δ)); yn(δ) = δ−n−1(δW ′(δ)− nW (δ)),

so thatW (δ) = δn(xn(δ)+δyn(δ)). For any δ̂ > δ the fundamental theorem of calculus

gives

xn(δ̂) + δyn(δ̂)− (xn(δ) + δyn(δ))

=

∫ δ̂

δ

(x′n(µ) + δy′n(µ)) dµ

=

∫ δ̂

δ

µ−n−2(δ − µ)
(
n(n+ 1)W (µ)− 2nµW ′(µ) + µ2W ′′(µ)

)
dµ ≤ 0,

where the inequality follows from the complete monotonicity of W . From here, equa-

tion (6.47) follows immediately for δ̂ > δ. A symmetric argument establishes the

same property for δ̂ < δ. The last assertion of the lemma is immediate given the

de�nitions of x and y, and the bound on W and −W ′. �

Lemma 10 is not by itself suitable for delivering adjustments in our repeated game

because the required payo�s may be either infeasible or feasible but not individually

rational. Lemma 11 steps in and shows that adjustments can be spread over su�-

ciently many rounds so that each adjustment is small. Thus, given a total adjustment

W (δ) and a δ we pick a large number N of rounds; we then pick fractions k1, k2, ..., kN

that add up to one, and then deliver part n of reward, i.e.,Wn(δ) = W (δ) kn, by split-

ting it over rounds n and n+ 1 using Lemma 10 (each Wn thus plays the role of h in

Lemma 10).

While it seems natural to subdivide equally by letting each kn equal 1/N , it turns

out that this is not enough to guarantee that rewards are su�ciently small, because

later rewards increase too rapidly (the bounds on xn(δ) and yn(δ) increase too fast

with n); to compensate for this we will choose a decreasing sequence of kns. This
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shows that for high enough δ, with a PRD, we can compensate players for actions

taken in the minmax phase in a way that makes it incentive compatible to reveal their

discount factor δ, while keeping individual round adjustments small enough that each

round's target payo� is feasible and above the standard minmax.

Lemma 11. Let δ0 > 0 and let W : [δ0, 1]→ R+ be a completely monotonic function.

For all L > 0, there exists a N ∈ N, δ ∈ (δ0, 1), and a collection of functions

{zn}1≤n≤N with each zn : [δ, 1]→ [−L,L] such that

(PK) W (δ) =
N∑
t=1

δnzn(δ);

(IC) ∀δ > δ, δ ∈ arg max
δ̂

N∑
n=1

δnzn(δ̂).

Proof of Lemma 11. Given C2 as in Lemma 10, choose ε so that 2εC2 < L. Let

N = inf{N̂ |
∑N̂

n=1
ε
n
> 1}, which exists since the harmonic series

∑
n≥1

1
n
diverges.

For n = 1, ..., N − 1 set kn = ε/n and let kN = 1 −
∑N−1

n=1 kn. We will split split

the total reward into N parts as W (δ) =
∑

nWn(δ), where Wn(δ) := knW (δ); then

using Lemma 10 we split each of these parts into a current and a delayed component:

Wn(δ) = δn(xn(δ) + δyn(δ)). Putting xN+1(δ) = 0, the actual reward paid in round n

for 1 ≤ n ≤ N + 1 is zn(δ) = xn(δ)kn + yn−1(δ)kn−1, where xn is the current reward

component of Wn, while yn−1 is the delayed reward component of Wn−1.

Lemma 10 gives |xn(δ)| < nδ−n−1C2 for all δ, we have |xn(δ)kn| < εδ−n−1C2.

Similarly, as |yn(δ)| < nδ−n−1C2, we have |yn(δ)|kn < εδ−n−1C2; these two facts

imply |zn(δ)| < δ−n−12εC2. Therefore, there exists δ > 0, so that for all δ > δ and

n ≤ N + 1 we have |zn(δ)| < L.

By construction we have for all δ ∈ [δ, 1],

(6.48)
N+1∑
n=1

δnzn(δ) =
N+1∑
n=1

δn(knxn+kn−1yn−1) =
N∑
n=1

δn(knxn+δknyn) =
N∑
n=1

knW (δ) = W (δ).

Now, as we have δ ∈ arg maxδ̂ δ
n(xn(δ̂) + δyn(δ̂)) for each n = 1, ..., N by Lemma 10,

it follows that by the above equation that

δ ∈ arg max
δ̂

N∑
n=1

δn(knxn + δknyn) = arg max
δ̂

N+1∑
n=1

δnzn(δ̂),
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i.e., we can deliver the reward W (δ) to type δ in an incentive-compatible way while

keeping each player's per-round adjustments in [−L,L]. �

Lemma 11 allows us to deliver rewards for punishment in an incentive-compatible

way while keeping adjustments in an arbitrarily small [−L,L]. From there, the rest

of the proof of Theorem 5 is standard.

Proof of Theorem 6. We start with a Tauberian result, which is used to show that

if the average of the �rst T terms of a sequence of reals converge as T → ∞, then

the normalized discounted sum of the whole sequence converges to the same limit as

δ ↑ 1. The following classic result, due to Frobenius, is our starting point.

Lemma 12 (Frobenius). For any sequence of reals (xt)
∞
t=0 satisfying

lim
T→∞

1

T + 1

T∑
t=0

t∑
k=0

xt = x∗ ∈ R,

we have limδ↑1
∑∞

t=0 δ
txt = x∗.

Corollary 1. If for a sequence of reals (xt)
∞
t=0 we have limT→∞

1
T+1

∑T
t=0 xt = x∗ ∈ R,

then limδ↑1(1− δ)
∑∞

t=0 δ
txt = x∗.

Proof. De�ning x−1 = 0, we have

(6.49) x∗ = lim
T→∞

1

T + 1

T∑
t=0

xt = lim
T→∞

1

T + 1

T∑
t=0

t∑
k=0

(xk − xk−1)

as
∑t

k=0(xk − xk−1) = xt. Using Lemma 12, we obtain

x∗ = lim
δ↑1

∞∑
t=0

δt(xt − xt−1) = lim
δ↑1

[
∞∑
t=0

(δt − δt+1)xt

]
= lim

δ↑1
(1− δ)

∞∑
t=0

δtxt. �

In light of this, if we can construct a Blackwell SPNE whose on-path play yields

an undiscounted average payo� of v, then v is a limit Blackwell payo�. This leads to

the proof of the folk theorem.

Fix v ∈ FMI. We wish to construct a strategy pro�le σ such that for any given

ε > 0 there is some δ < 1 above which σ is a BE with discounted payo� within ε of

v.

In view of Corollary 1, feasibility reduces to obtaining v as the limit of means of a

sequence of pure action payo�s. While this is easy to do, some care is needed because

in order for a sequence of actions to be an equilibrium path, we also need to make

sure that the (discounted) continuation payo�s are individually rational; in fact our
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insistence on Blackwell equilibria means that we should keep continuation payo�s of

each i ∈ I above the corresponding MI-minmax value vMI
i , not just the usual minmax

vi.

The crux is that if the target payo� v is the discounted sum of pure-action payo�s,

i.e., of points in C = g(A), all continuation payo�s are not necessarily individually

rational even if v is. To circumvent this, we represent v as the discounted sum

of individually rational payo�s. To this end, construct a full-dimensional set D =

{d(1), ..., d(K)}, where K ∈ N, such that (i) v ∈ int{co(D)} ⊂ co(C); (ii) each

d(k) ∈ D is a rational convex combination of points in C; and (iii) there exists γ > 0

for which di(k) > vMI
i + 3γ for all i and all k = 1, 2, . . . , K. Since v ∈ co(D), there

exists a weight vector (non-negative components adding up to unity) λ = (λ(k))Kk=1

such that v =
∑K

k=1 λ(k)d(k). Let (λm)m be a sequence of weight vectors with rational

components such that λm → λ as m → ∞. Let vm :=
∑K

k=1 λ
m(k)d(k). Since each

d(k) is a rational convex combination of points in C, a �nite sequence (`subcycle

k') from C averages to d(k). Without loss of generality, these k subcycles have the

same length.24 Similarly we write vm as a �nite sequence (`cycle m') of points in

D. Concatenate the cycles for m = 0, 1, 2, ...; then replace each occurance of d(k)

in each cycle by subcycle k to create the sequence (xt : t ≥ 0) of payo� pro�les in

C, called the payo� path; the corresponding sequence of actions is the action path.

Since there are �nitely many distinct subcycles, choosing δ̃ < 1 high enough ensures

that for δ ≥ δ̃ the following two conditions hold�(i) the δ-discounted sum of any

subcycle di�ers from the simple mean by at most γ; (ii) (1 − δL)M < γ, where L is

the maximum length of a subcycle and all individual payo�s of the stage game are in

[−M,M ]. Property (i) implies that any δ-discounted continuation payo� of the path

from the start of any subcycle is at least vMI
i + 2γ; properties (i) and (ii) together

imply that the continuation payo� of the path from any time (even when it is not the

start of a subcycle) is at least vMI
i + γ.

The means of the cycles are vm and since ‖vm− v‖ → 0, we have 1
T+1

∑T
t=0 xt → v;

Corollary 1 then implies that for any some δ̂ ∈ (δ̃, 1) we have

(6.50)

∥∥∥∥∥v − (1− δ)
∞∑
t=0

δtxt

∥∥∥∥∥ ≤ ε ∀ δ ≥ δ̂.

24If not, �nd the least common multiple L of the lengths of the subcycles, and repeat each of the
subcycles the appropriate number of times to create K new subcycles each of length L.
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The rest of the construction, as well as the proof that the resulting strategies

constitute a Blackwell Equilibrium, follows the same path as the proof of Theorem 1.


