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Abstract

A mechanism implements a social choice correspondence f in mixed Nash equi-

librium if, at any preference profile, the set of all (pure and mixed) Nash equilib-

rium outcomes coincides with the set of f -optimal alternatives at that preference

profile. This definition generalizes Maskin’s definition of Nash implementation in

that it does not require each optimal alternative to be the outcome of a pure Nash

equilibrium. We show that the condition of weak set-monotonicity, a weakening of

Maskin’s monotonicity, is necessary for implementation. We provide sufficient con-

ditions for implementation and show that important social choice correspondences

that are not Maskin monotonic can be implemented in mixed Nash equilibrium.
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1 Introduction

This paper studies the problem of implementation in mixed Nash equilibrium. According

to our definition, a mechanism implements a social choice correspondence f in mixed

Nash equilibrium if the set of all (pure and mixed) equilibrium outcomes corresponds

to the set of f -optimal alternatives at each preference profile. Crucially, and unlike

the classical definition of implementation, this definition of implementation does not

give a predominant role to pure equilibria: an f -optimal alternative does not have to

be the outcome of a pure Nash equilibrium. This sharply contrasts with most of the

existing literature on Nash implementation, which does not consider equilibria in mixed

strategies (see Jackson, 2001, and Maskin and Sjöström, 2002, for excellent surveys).

Two notable exceptions are Maskin (1999) for Nash implementation and Serrano and

Vohra (2009) for Bayesian implementation. These authors do consider mixed equilibria,

but still require each f -optimal alternative to be the outcome of a pure equilibrium.

Pure equilibria are yet again given a special status.

Perhaps, the emphasis on pure equilibria expresses a discomfort with the classical

view of mixing as deliberate randomizations on the part of players. However, it is now

accepted that even if players do not randomize but choose definite actions, a mixed strat-

egy may be viewed as a representation of the other players’ uncertainty about a player’s

choice (e.g., see Aumann and Brandenburger, 1995). Moreover, almost all mixed equilib-

ria can be viewed as pure Bayesian equilibria of nearby games of incomplete information,

in which players are uncertain about the exact profile of preferences, as first suggested

in the seminal work of Harsanyi (1973). This view acknowledges that games with com-

monly known preferences are an idealization, a limit of near-complete information games.

This interpretation is particularly important for the theory of implementation in Nash

equilibrium, whereby the assumption of common knowledge of preferences, especially on

large domains, is at best a simplifying assumption.1 Furthermore, recent evidence in the

1The point that the assumption of common knowledge of preferences might be problematic is not

new. For instance, Chung and Ely (2003) study the problem of full implementation of social choice

functions under “near-complete information” and show that Maskin monotonicity is a necessary con-

dition for implementation in undominated (pure) Nash equilibria. Their result sharply contrasts with

Palfrey and Srivastava (1991), who have shown that almost all social choice functions are implementable

in undominated (pure) Nash equilibria. Oury and Tercieux (2010) consider the problem of partial im-

plementation of social choice functions under “almost complete” information and show that Maskin
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experimental literature suggests that equilibria in mixed strategies are good predictors

of behavior in some classes of games e.g., coordination games and chicken games (see

chapters 3 and 7 of Camerer, 2003). Since, for some preference profiles, a mechanism

can induce one of those games, paying attention to mixed equilibria is important if we

want to describe or predict players’ behavior. In sum, we believe that there are no com-

pelling reasons to give pure Nash equilibria a special status and modify the definition of

implementation accordingly.

It is important to stress that while we consider mixed strategies, we maintain an

entirely ordinal approach. To be specific, we assume that a social choice correspondence

f maps profiles of preference orderings over alternatives into subsets of alternatives (not

lotteries) and we require that a given mechanism implements f irrespective of which

cardinal representation of players’ preferences is chosen.

Our definition of mixed Nash implementation yields novel insights. We demonstrate

that the condition of Maskin monotonicity is not necessary for full implementation in

mixed Nash equilibrium. Intuitively, consider a profile of preferences and an alternative,

say a, that is f -optimal at that profile of preferences. According to Maskin’s definition

of implementation, there must exist a pure Nash equilibrium with equilibrium outcome

a. Thus, any alternative a player can obtain by unilateral deviations must be less

preferred than a. Now, if we move to another profile of preferences where a does not

fall down in the players’ ranking, then a remains an equilibrium outcome and must be

f -optimal at that new profile of preferences. This is the intuition behind the necessary

condition of Maskin monotonicity for full implementation. Unlike Maskin’s definition of

implementation, our definition does not require a to be a pure equilibrium outcome. So,

suppose that there exists a mixed equilibrium with a as an equilibrium outcome.2 The

key observation to make is that the mixed equilibrium induces a lottery over optimal

alternatives. Thus, when we move to another profile of preferences where a does not

fall down in the players’ ranking, the original profile of strategies does not have to be

an equilibrium at the new state. In fact, we show that a much weaker condition, weak

set-monotonicity, is necessary for implementation in mixed Nash equilibrium. Weak

set-monotonicity states that the set f(θ) of optimal alternatives at state θ is included

monotonicity is necessary for implementation in pure Nash equilibrium.
2More precisely, let σ∗ be the mixed Nash equilibrium and Pσ∗,g the distribution over alternatives

induced by the strategy profile σ∗ and the allocation rule g. Then a belongs to the support of Pσ∗,g.
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in the set f(θ′) of optimal alternatives at state θ′, whenever the weak and strict lower

contour sets at state θ of all alternatives in f(θ) are included in their respective weak

and strict lower contour sets at state θ′, for all players.

To substantiate our claim that weak set-monotonicity is a substantially weaker re-

quirement than Maskin monotonicity, we show that the strong Pareto and the strong

core correspondences are weak set-monotonic on the unrestricted domain of preferences,

while they are not Maskin monotonic. Similarly, on the domain of strict preferences,

the top-cycle correspondence is weak set-monotonic, but not Maskin monotonic.

We also show that a mild strengthening of weak set-monotonicity, that we call weak*

set-monotonicity, is necessary for mixed Nash implementation of social choice functions.

Furthermore, weak* set-monotonicity and no-veto power are sufficient for implemen-

tation of social choice correspondences in general settings, while on the domain of

strict preferences weak* set-monotonicity is equivalent to weak set-monotonicity. We

also provide an additional condition, called top-D-inclusiveness, which together with

weak* set-monotonicity, guarantees the implementation by finite mechanisms in separa-

ble environments. Lastly, since no-veto power is not satisfied by important social choice

correspondences like the strong Pareto and the strong core, we also present sufficient

conditions that dispense with the no-veto power condition. (See Benôıt and Ok, 2008,

and Bochet, 2007.)

An important feature of our sufficiency proofs is the use of randomized mechanisms.

This is a natural assumption given that players can use mixed strategies. Indeed, al-

though a randomized mechanism introduces some uncertainty about the alternative to

be chosen, the concept of a mixed Nash equilibrium already encapsulates the idea that

players are uncertain about the messages sent to the designer and, consequently, about

the alternative to be chosen. We also stress that the randomization can only be among

optimal alternatives in equilibrium. In the literature on (exact) Nash implementation,

randomized mechanisms have been studied by Benôıt and Ok (2008) and Bochet (2007).

These authors restrict attention to mechanisms in which randomization by the designer

can only occur out of equilibrium, and do not attempt to rule out mixed strategy equi-

libria with undesirable outcomes. On the contrary, we allow randomization among

f -optimal alternatives at equilibrium and rule out mixed equilibria with outcomes that

are not f -optimal. Our approach also differs from the use of randomized mechanisms
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in the literature on virtual implementation (e.g., see Matsushima, 1998, and Abreu and

Sen, 1991), which heavily exploits the possibility of selecting undesirable alternatives

with positive probability in equilibrium.

The paper is organized as follows. Section 2 presents a simple example illustrat-

ing our ideas. Section 3 contains preliminaries and introduces the definition of mixed

Nash implementation. Section 4 presents the necessary conditions of weak and weak*

set-monotonicity, while sections 5, 6 and 7 provides several sets of sufficient conditions.

Section 8 applies our results to some well-known social choice correspondences and sec-

tion 9 concludes.

2 A Simple Example

This section illustrates our notion of mixed Nash implementation with the help of a

simple example.

Example 1 There are two players, 1 and 2, two states of the world, θ and θ′, and four

alternatives, a, b, c, and d. Players have state-dependent preferences represented in the

table below. For instance, player 1 ranks b first and a second in state θ, while a is ranked

first and b last in state θ′. Preferences are strict.

θ θ′

1 2 1 2

b c a c

a a d d

c b c a

d d b b

The designer aims to implement the social choice correspondence f , with f(θ) = {a}

and f(θ′) = {a, b, c, d}. We say that alternative x is f -optimal at state θ if x ∈ f(θ).

We first argue that the social choice correspondence f is not implementable in the

sense of Maskin (1999). Maskin’s definition of Nash implementation requires that for

each f -optimal alternative at a given state, there exists a pure Nash equilibrium (of the

game induced by the mechanism) corresponding to that alternative. So, for instance,

at state θ′, there must exist a pure Nash equilibrium with b as equilibrium outcome.
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Maskin requires, furthermore, that no such equilibrium must exist at state θ. However,

if there exists a pure equilibrium with b as equilibrium outcome at state θ′, then b will

also be an equilibrium outcome at state θ, since b moves up in every players’ ranking

when going from state θ′ to state θ. Thus, the correspondence f is not implementable in

the sense of Maskin. In other words, the social choice correspondence f violates Maskin

monotonicity, a necessary condition for implementation in the sense of Maskin.

In contrast with Maskin, we do not require that for each f -optimal alternative at

a given state, there exists a pure Nash equilibrium corresponding to that alternative.

We require instead that the set of f -optimal alternatives coincides with the set of mixed

Nash equilibrium outcomes. So, at state θ′, there must exist a mixed Nash equilibrium

with b corresponding to an action profile in the support of the equilibrium.

We now argue that with our definition of implementation, the correspondence f is

implementable. To see this, consider the mechanism where each player has two messages

m1 and m2, and the allocation rule is represented in the table below. (Player 1 is the

row player.) For example, if both players announce m1, the chosen alternative is a.

m1 m2

m1 a b

m2 d c

Now, at state θ, (m1, m1) is the unique Nash equilibrium, with outcome a. At state θ′,

both (m1, m1) and (m2, m2) are pure Nash equilibria, with outcomes a and c. Moreover,

there exists a mixed Nash equilibrium that puts strictly positive probability on each

action profile (since preferences are strict), hence on each outcome.3 Therefore, f is

implementable in mixed Nash equilibrium, although it is not implementable in the sense

of Maskin.

We conclude this section with two important observations. First, our notion of im-

plementation in mixed Nash equilibrium is ordinal : the social choice correspondence f is

implementable regardless of the cardinal representation chosen for the two players. Sec-

ond, alternative d is f -optimal at state θ′, and it moves down in player 1’s ranking when

moving from θ′ to θ. This preference reversal guarantees the weak set-monotonicity of

3Note that at state θ, a is the unique rationalizable outcome, while all outcomes are rationalizable

at state θ′, so that f is implementable in rationalizable outcomes. See Bergemann, Morris and Tercieux

(2010) for the study of social choice functions implementable in rationalizable outcomes.
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the correspondence f , which, as we shall see, is a necessary condition for implementation

in mixed Nash equilibrium.

3 Preliminaries

An environment is a triplet 〈N, X, Θ〉 where N := {1, . . . , n} is a set of n players, X

a finite set of alternatives, and Θ a finite set of states of the world. Associated with

each state θ is a preference profile <θ:= (<θ
1, . . . , <

θ
n), where <θ

i is player i’s preference

relation over X at state θ. The asymmetric and symmetric parts of <θ
i are denoted ≻θ

i

and ∼θ
i , respectively.

We denote with Li(x, θ) := {y ∈ X : x <θ
i y} player i’s lower contour set of x at

state θ, and SLi(x, θ) := {y ∈ X : x ≻θ
i y} the strict lower contour set. For any (i, θ) in

N × Θ and Y ⊆ X, define maxθ
i Y as {x ∈ Y : x <θ

i y for all y ∈ Y }.

We assume that any preference relation <θ
i is representable by a utility function

ui(·, θ) : X → R, and that each player is an expected utility maximizer. We denote

with Uθ
i the set of all possible cardinal representations ui(·, θ) of <θ

i at state θ, and let

Uθ := ×i∈NU
θ
i .

A social choice correspondence f : Θ → 2X \ {∅} associates with each state of the

world θ, a non-empty subset of alternatives f(θ) ⊆ X. Two classic conditions for Nash

implementation are Maskin monotonicity and no-veto power. A social choice correspon-

dence f is Maskin monotonic if for all (x, θ, θ′) in X × Θ × Θ with x ∈ f(θ), we have

x ∈ f(θ′) whenever Li(x, θ) ⊆ Li(x, θ′) for all i ∈ N . Maskin monotonicity is a neces-

sary condition for Nash implementation (à la Maskin). A social choice correspondence

f satisfies no-veto power if for all θ ∈ Θ, we have x ∈ f(θ) whenever x ∈ maxθ
i X for all

but at most one player j ∈ N . Maskin monotonicity and no-veto power are sufficient

conditions for Nash implementation (à la Maskin) when there are at least three players.

Let ∆(X) be the set of all probability measures over X. A mechanism (or game form)

is a pair 〈(Mi)i∈N , g〉 with Mi the set of messages of player i, and g : ×i∈NMi → ∆(X)

the allocation rule. Let M := ×j∈NMj and M−i := ×j∈N\{i}Mj, with m and m−i generic

elements.

A mechanism 〈(Mi)i∈N , g〉, a state θ and a profile of cardinal representations (ui(·, θ))i∈N

of (<θ
i )i∈N induce a strategic-form game as follows. There is a set N of n players. The

set of pure actions of player i is Mi, and player i’s expected payoff when he plays mi
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and his opponents play m−i is

Ui(g(mi, m−i), θ) :=
∑

x∈X

g(mi, m−i)(x)ui(x, θ),

where g(mi, m−i)(x) is the probability that x is chosen by the mechanism when the

profile of messages (mi, m−i) is announced. The induced strategic-form game is thus

G(θ, u) := 〈N, (Mi, Ui(g(·), θ))i∈N〉. Let σ be a profile of mixed strategies. We denote

with Pσ,g the probability distribution over alternatives in X induced by the allocation

rule g and the profile of mixed strategies σ.4

Definition 1 The mechanism 〈(Mi)i∈N , g〉 implements the social choice correspondence

f in mixed Nash equilibrium if for all θ ∈ Θ, for all cardinal representations u(·, θ) ∈ Uθ

of <θ, the following two conditions hold:

(i) For each x ∈ f(θ), there exists a Nash equilibrium σ∗ of G(θ, u) such that x is in

the support of Pσ∗,g, and

(ii) if σ is a Nash equilibrium of G(θ, u), then the support of Pσ,g is included in f(θ).

Before proceeding, it is important to contrast our definition of implementation in

mixed Nash equilibrium with Maskin (1999) definition of Nash implementation.

First, part (i) of Maskin’s definition requires that for each x ∈ f(θ), there exists a

pure Nash equilibrium m∗ of G(θ, u) with equilibrium outcome x, while part (ii) of his

definition is identical to ours. In contrast with Maskin, we allow for mixed strategy

Nash equilibria in part (i) and, thus, restore a natural symmetry between parts (i) and

(ii). Yet, our definition respects the spirit of full implementation in that only optimal

outcomes can be observed by the designer as equilibrium outcomes.

Second, as in Maskin, our concept of implementation is ordinal as all equilibrium

outcomes have to be optimal, regardless of the cardinal representation chosen. Also,

our approach parallels the approach of Gibbard (1977). Gibbard considers probabilistic

social choice functions, i.e., mapping from profiles of preferences to lotteries over out-

comes, and characterizes the set of strategy-proof probabilistic social choice functions.

Importantly to us, Gibbard requires each player to have an incentive to truthfully reveal

4Formally, the probability Pσ,g(x) of x ∈ X is
∑

m∈M σ(m)g(m)(x) if M is countable. If M is

uncountable, a similar expression applies.
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his preference, regardless of the cardinal representation chosen to evaluate lotteries (and

announcements of others).5

Third, we allow the designer to use randomized mechanisms. This is a natural

assumption given that players can use mixed strategies. Indeed, although a randomized

mechanism introduces some uncertainty about the alternative to be chosen, the concept

of mixed Nash equilibrium already encapsulates the idea that players are uncertain

about the messages sent to the designer and, consequently, about the alternative to be

chosen. We also stress that the randomization can only be among optimal alternatives

in equilibrium. In the context of (exact) Nash implementation, Benôıt and Ok (2008)

and Bochet (2007) have already considered randomized mechanisms.6 There are two

important differences with our work, however. First, these authors restrict attention to

mechanisms in which randomization only occurs out of equilibrium, while randomization

can occur in equilibrium in our work, albeit only among optimal alternatives. Second,

unlike us, they do not attempt to rule out mixed strategy equilibria with undesirable

outcomes. Also, our work contrasts with the literature on virtual implementation (e.g.,

Abreu and Sen, 1991 and Matsushima, 1998). In that literature, randomization can also

occur in equilibrium. Moreover, even non-optimal alternatives can occur with positive

probability in equilibrium. Unlike this literature, we focus on exact implementation:

only f -optimal alternatives can be equilibrium outcomes.

Finally, from our definition of mixed Nash implementation, it is immediate to see

that if a social choice correspondence is Nash implementable (i.e., à la Maskin), then

it is implementable in mixed Nash equilibrium. The converse is false, as shown by

Example 1 in Section 2. The goal of this paper is to characterize the social choice

correspondences implementable in mixed Nash equilibrium. The next section provides

a necessary condition.

5See also Barberà et al. (1998) and Abreu and Sen (1991) for further discussions of the ordinal

approach.
6Vartiainen (2007) also considers randomized mechanisms, but for the implementation of social

choice correspondences in (pure) subgame perfect equilibrium on the domain of strict preferences.
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4 Necessary Conditions

We begin by introducing a new condition, called weak set-monotonicity, which we show

to be necessary for the implementation of social choice correspondences in mixed Nash

equilibrium.

Definition 2 A social choice correspondence f is weak set-monotonic if for all pairs

(θ, θ′) ∈ Θ × Θ, we have f(θ) ⊆ f(θ′) whenever for all x ∈ f(θ), for all i ∈ N , the two

following conditions hold: (i) Li(x, θ) ⊆ Li(x, θ′) and (ii) SLi(x, θ) ⊆ SLi(x, θ′).7

Weak set-monotonicity is a weakening of Maskin monotonicity. It restricts f only

when all alternatives in the set f (θ) move up in the weak and strict rankings of all

players. More precisely, it requires that if for all players, the lower and strict lower

contour sets of all alternatives in f (θ) do not shrink in moving from θ to θ′, then the

set f (θ′) of optimal alternatives at θ′ must be a superset of the set f(θ) of optimal

alternatives at θ. Maskin monotonicity, on the contrary, restricts f whenever a single

alternative in f (θ) moves up in the weak rankings of all players.8 As we shall see in

Section 8, important correspondences, like the strong Pareto correspondence, the strong

core correspondence and the top-cycle correspondence are weak-set monotonic, while

they fail to be Maskin monotonic.

Theorem 1 If the social choice correspondence f is implementable in mixed Nash equi-

librium, then it satisfies the weak set-monotonicity condition.

Proof The proof is by contradiction on the contrapositive. Assume that the social

choice correspondence f does not satisfy weak set-monotonicity and yet is implementable

in mixed Nash equilibrium by the mechanism 〈M, g〉.

7Alternatively, a social choice correspondence f is weak set-monotonic if x∗ ∈ f(θ) \ f(θ′) implies

that there exists a pair (x, y) in f(θ) × X and a player i ∈ N such that either (1) x <θ
i y and y ≻θ′

i x,

or (2) x ≻θ
i y and y <θ′

i x.
8Weak set-monotonicity is also weaker than Sanver’s (2006) almost monotonicity, and Cabrales and

Serrano’s (2009) quasimonotonicity. Quasimonotonicity and almost monotonicity restrict f when a

single alternative in f (θ) moves up in the rankings of all players. The correspondence f is quasimono-

tonic if for all pairs (θ, θ′) ∈ Θ × Θ, and x ∈ f(θ), we have x ∈ f(θ′) whenever for all i ∈ N it is

SLi(x, θ) ⊆ SLi(x, θ′). The correspondence f is almost monotonic if for all pairs (θ, θ′) ∈ Θ × Θ,

and x ∈ f(θ), we have x ∈ f(θ′) whenever for all i ∈ N it is: (i) Li(x, θ) ⊆ Li(x, θ′) and (ii)

SLi(x, θ) ⊆ SLi(x, θ′).
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Since f does not satisfy weak set-monotonicity, there exist x∗, θ, and θ′ such that

x∗ ∈ f(θ) \ f(θ′), while Li(x, θ) ⊆ Li(x, θ′) and SLi(x, θ) ⊆ SLi(x, θ′) for all x ∈ f(θ),

for all i ∈ N .

Claim. For each player i ∈ N , fix any cardinal representation ui(·, θ) of <θ
i . We claim

that there exists a cardinal representation ui(·, θ
′) of <θ′

i such that ui(x, θ′) ≤ ui(x, θ)

for all x ∈ X, ui(x, θ′) = ui(x, θ) for all x ∈ f(θ).

Proof of claim. To prove our claim, consider any pair (x, x′) ∈ f(θ) × f(θ) with

x <θ
i x′. Since Li(x̂, θ) ⊆ Li(x̂, θ′) for all x̂ ∈ f(θ), we have that x ≻θ

i x′ implies

x ≻θ′

i x′ and x ∼θ
i x′ implies x ∼θ′

i x′. Hence, we can associate with each alternative

in f(θ) the same utility at θ′ as at θ. Now, fix an alternative x ∈ f(θ) and consider

y ∈ Li(x, θ). Since Li(x, θ) ⊆ Li(x, θ′), we must have ui(y, θ′) ≤ ui(x, θ′) = ui(x, θ). If

x ∼θ
i y, then we can choose ui(y, θ′) ≤ ui(y, θ) = ui(x, θ). If x ≻θ

i y, then we must have

x ≻θ′

i y since SLi(x, θ) ⊆ SLi(x, θ′); we can therefore choose ui(y, θ′) in the open set

(−∞, ui(y, θ)) and still represent <θ′

i by ui(·, θ
′). Finally, if y /∈ ∪x∈f(θ)Li(x, θ), we have

that ui(y, θ) > ui(x, θ) for all x ∈ f(θ). If y ∈ Li(x, θ′) for some x ∈ f(θ), then we can

set ui(y, θ′) ≤ ui(x, θ′) = ui(x, θ) ≤ maxx′∈f(θ) ui(x
′, θ) < ui(y, θ). If y /∈ ∪x∈f(θ)Li(x, θ′),

then we can choose ui(y, θ′) in the open set (maxx′∈f(θ) ui(x
′, θ), ui(y, θ)). This concludes

the proof of our claim.

Before proceeding, we should stress the importance of the nestedness of the strict

lower-contour sets in part (ii) of the definition of weak set-monotonicity. Let x ∈ f(θ)

and assume that x ∼θ
i y ≻θ

i z at state θ and x ∼θ′

i z ≻θ′

i y at state θ′. Both alternatives

z and y are in the lower contour set of x at θ and θ′, but the strict lower-contour sets

are not nested. Clearly, we cannot assign the same utility to x at θ and θ′ and weakly

decrease the utility of both y and z when moving from θ to θ′; the claim does not hold.

Since f is implementable and x∗ ∈ f(θ), for any cardinal representation u(·, θ) of

<θ, there exists an equilibrium σ∗ of the game G(θ, u) with x∗ in the support of Pσ∗,g.

Furthermore, since x∗ /∈ f(θ′), for all cardinal representations u(·, θ′) of <θ′ , for all

equilibria σ of G(θ′, u), x∗ does not belong to the support of Pσ,g. In particular, this

implies that σ∗ is not an equilibrium at θ′ for all cardinal representations u(·, θ′). Thus,

assuming that M is countable, there exist a player i, a message m∗
i in the support of σ∗

i ,
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and a message m′
i such that:9

∑

m−i

[Ui(g(m∗
i , m−i), θ) − Ui(g(m′

i, m−i), θ)] σ
∗
−i(m−i) ≥ 0

and

0 >
∑

m−i

[Ui(g(m∗
i , m−i), θ

′) − Ui(g(m′
i, m−i), θ

′)]σ∗
−i(m−i).

It follows that

∑

m−i

[Ui(g(m∗
i , m−i), θ) − Ui(g(m∗

i , m−i), θ
′)] σ∗

−i(m−i) (1)

>
∑

m−i

[Ui(g(m′
i, m−i), θ) − Ui(g(m′

i, m−i), θ
′)]σ∗

−i(m−i)

Let us now consider the cardinal representations constructed in the claim above;

that is, ui(x, θ′) ≤ ui(x, θ) for all x ∈ X and ui(x, θ) = ui(x, θ′) for all x ∈ f(θ). Since

f is implementable, we have that the support of Pσ∗,g is included in f(θ). Therefore,

Ui(g(m∗
i , m−i), θ) = Ui(g(m∗

i , m−i), θ
′) for all m−i in the support of σ∗

−i. Hence, the left-

hand side of the inequality (1) is zero. Furthermore, we have that Ui(g(m′
i, m−i), θ) ≥

Ui(g(m′
i, m−i), θ

′) for all m−i. Hence, the right-hand side of (1) is non-negative, a con-

tradiction. This completes the proof. �

Several remarks are worth making. First, Theorem 1 remains valid if we restrict

ourself to deterministic mechanisms, so that weak-set monotonicity is a necessary con-

dition for implementation in mixed Nash equilibrium, regardless of whether we consider

deterministic or randomized mechanisms. Second, it is easy to verify that weak-set

monotonicity is also a necessary condition for implementation if we require the Nash

equilibria to be in pure strategies, but allow randomized mechanisms. Third, while

we have restricted attention to von Neumann-Morgenstern preferences, the condition of

weak set-monotonicity remains necessary if we consider larger classes of preferences that

include the von Neumann-Morgenstern preferences. This is because we follow an ordinal

approach and require that f be implemented by all admissible preference representations.

9If the mechanism is uncountable, a similar argument holds with appropriate measurability condi-

tions and integrals rather than sums.
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We now introduce a strengthening of the notion of weak set-monotonicity, which

turns out to be necessary for mixed Nash implementation when f is a social choice

function, that is f (θ) is a singleton for all θ ∈ Θ.

Definition 3 A social choice correspondence f is weak* set-monotonic if for all pairs

(θ, θ′) ∈ Θ × Θ, we have f(θ) ⊆ f(θ′) whenever for all x ∈ f(θ), for all i ∈ N , the two

following conditions hold: (i) Li(x, θ) ⊆ Li(x, θ′) and (ii) either SLi(x, θ) ⊆ SLi(x, θ′)

or x ∈ maxθ′

i X.

Clearly, if a social choice correspondence is Maskin monotonic, then it is weak* set-

monotonic, and if it is weak* set-monotonic, then it is weak set-monotonic. Moreover,

weak* set-monotonicity coincides with weak set-monotonicity if maxθ
i X is a singleton

for each i ∈ N , for each θ ∈ Θ. We refer to this domain of preferences as the single-top

preferences. This mild domain restriction will prove useful in applications (see Section

8). Furthermore, on the domain of strict preferences (a subset of single-top preferences)

SLi(x, θ) = Li(x, θ) \ {x} for all x and θ, and weak* set-monotonicity is equivalent to

weak set-monotonicity.

Theorem 2 If the social choice function f is implementable in mixed Nash equilibrium,

then it satisfies the weak* set-monotonicity condition.

Proof The proof is by contradiction. Assume the function f violates weak* set-

monotonicity, but is implementable in mixed Nash equilibrium by the mechanism 〈M, g〉.

In light of Theorem 1, f must satisfy weak set-monotonicity. Hence, there exist x∗, θ,

and θ′ such that x∗ = f(θ) 6= f(θ′), Li(x
∗, θ) ⊆ Li(x

∗, θ′) for all i ∈ N , for at least one

i ∈ N we have SLi(x
∗, θ)  SLi(x

∗, θ′) and x∗ ∈ maxθ′

i X, while for all other i ∈ N we

have SLi(x
∗, θ) ⊆ SLi(x

∗, θ′).

Since f is implementable and x∗ = f(θ), for any cardinal representation u(·, θ) of

<θ, there exists an equilibrium σ∗ of the game G(θ, u) with the unique element in the

support of Pσ∗,g being x∗. Consider first all players i such that SLi(x
∗, θ) ⊆ SLi(x

∗, θ′).

The proof of Theorem 1 shows that for some cardinal representations of these players’

utilities at θ′, it cannot be the case that they have a profitable deviation from σ∗
i .

Now, consider the players i ∈ N with SLi(x
∗, θ)  SLi(x

∗, θ′) and x∗ ∈ maxθ′

i X. Since

x∗ ∈ maxθ′

i X, for all possible cardinal representations of player i’s preferences at θ′ there

cannot be a profitable deviation from strategy σ∗
i . This shows that σ∗ is an equilibrium

13



of G(θ′, u′) for some cardinal representation u′ of preferences at state θ′, and contradicts

the assumption that f is implementable. �

An alternative definition of implementation suggested to us would replace part (i)

of our definition with the requirement that, for each x ∈ f(θ), there exists a Nash

equilibrium σ∗ such that x coincides with the support of Pσ∗,g. It follows from the proof

of Theorem 2 that weak* set-monotonicity is necessary for implementation of social

choice correspondences with this alternative definition.10

5 Sufficient Conditions

Before stating the main result of this section, we need to introduce a natural restriction

on the set of cardinal representations at each state, which guarantees that the set of

admissible cardinal representations is closed. Example 5 below illustrates the difficulties

arising when the set of cardinal representations is open.

We assume that for each player i ∈ N , for each state θ ∈ Θ, the set of admissible

cardinal representations is a compact subset U
θ

i of Uθ
i . It follows that there exists ε > 0

such that for all i ∈ N , for all θ, for all pairs (x, y) ∈ X × X with x ≻θ
i y, and for all

ui(·, θ) ∈ U
θ

i : ui(x, θ) ≥ (1 − ε)ui(y, θ) + ε maxw∈X ui(w, θ).11 Accordingly, we modify

Definition 1 of mixed Nash implementation so as to include this restriction on the set

of cardinal representations. We call this weaker notion of implementation, mixed Nash

C-implementation.

We are now ready to present the main result of this section, which states that in any

environment with at least three players, weak* set-monotonicity and no veto-power are

sufficient conditions for implementation in mixed Nash equilibrium.

Theorem 3 Let 〈N, X, Θ〉 be an environment with n ≥ 3. If the social choice correspon-

dence f is weak* set-monotonic and satisfies no-veto power, then it is C-implementable

in mixed Nash equilibrium.

10We did not adopt this definition because we see no compelling reasons to require that for each

f -optimal alternative, there exists a mixed equilibrium attaching probability one to that alternative.
11Rule 2 of the mechanism used in the proof of Theorem 3 exploits the existence of such an ε.
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Proof Consider the following mechanism 〈M, g〉. For each player i ∈ N , the message

space Mi is Θ × {αi : αi : X × Θ2 → X} × X × Z++. In words, each player announces

a state of the world, a function from alternatives and pairs of states into alternatives,

an alternative, and a strictly positive integer. A typical message mi for player i is

(θi, αi, xi, zi). (Note that we denote any integer z in bold.) Let M := ×i∈NMi with

typical element m.

Let {f1(θ), . . . , fKθ(θ)} = f(θ) be the set of f -optimal alternatives at state θ ; note

that Kθ = |f(θ)|. Let 1 > ε > 0 be such that for all i ∈ N , for all θ ∈ Θ, for

all pairs (x, y) ∈ X × X with x ≻θ
i y, and for all ui(·, θ) ∈ U

θ

i , we have ui(x, θ) ≥

(1− ε)ui(y, θ)+ ε maxw∈X ui(w, θ). Since U
θ

i is a compact subset of Uθ
i , such an ε exists.

Let 1[x] ∈ ∆(X) be the lottery that puts probability one on outcome x ∈ X. The

allocation rule g is defined as follows:

Rule 1: If mi = (θ, α, x, 1) for all i ∈ N (i.e., all agents make the same announcement

mi) and α(fk(θ), θ, θ) = fk(θ) for all fk (θ) ∈ f (θ) , then g(m) is the “uniform” lottery

over alternatives in f(θ); that is,

g(m) =
1

Kθ

Kθ

∑

k=1

1 [fk(θ)] .

Rule 2: If there exists j ∈ N such that mi = (θ, α, x, 1) for all i ∈ N \ {j}, with

α(fk(θ), θ, θ) = fk(θ) for all fk (θ) ∈ f (θ) , and mj = (θj, αj, xj , zj) 6= mi, then g(m) is

the lottery:

1

Kθ

Kθ

∑

k=1

{

δk(m)(1 − εk(m))1
[

αj(fk(θ), θ, θ
j)

]

+ δk(m)εk(m)1
[

xj
]

+ (1 − δk(m)) 1 [fk(θ)]
}

,

with

δk(m) =







δ if αj(fk(θ), θ, θ
j) ∈ Lj(fk(θ), θ)

0 if αj(fk(θ), θ, θ
j) 6∈ Lj(fk(θ), θ)

for 1 > δ > 0, and

εk(m) =







ε if αj(fk(θ), θ, θ
j) ∈ SLj(fk(θ), θ)

0 if αj(fk(θ), θ, θ
j) 6∈ SLj(fk(θ), θ)

.

That is, suppose all players but player j send the same message (θ, α, x, 1) with α(fk(θ), θ, θ)

= fk(θ) for all k ∈ {1, . . . , Kθ}. Let mj = (θj, αj, xj , zj) be the message sent by player j.
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If αj(fk(θ), θ, θ
j) selects an alternative x in player j’ strict lower-contour set SLj(fk(θ), θ)

of fk(θ) at state θ, then the designer replaces the outcome fk (θ) from the uniform lottery

with the lottery that attaches probability δ(1−ε) to x, probability δε to xj , and probabil-

ity (1−δ) to fk(θ). If αj(fk(θ), θ, θ
j) selects an alternative x in Lj(fk(θ), θ)\SLj(fk(θ), θ)

(i.e., player j is indifferent between x and fk(θ) at state θ), then the designer replaces

the outcome fk (θ) from the uniform lottery with the lottery that attaches probability

δ to x and probability (1 − δ) to fk(θ). Otherwise, the designer does not replace the

outcome fk (θ) from the uniform lottery.

Rule 3: If neither rule 1 nor rule 2 applies, then g
(

(θi, αi, xi, zi)i∈N

)

= xi∗ , with i∗ a

player announcing the highest integer zi∗ . (If more than one player i selects the highest

integer, then g randomizes uniformly among their selected xi.)

Fix a state θ∗ and a cardinal representation ui ∈ U
θ∗

i of <θ∗

i for each player i. Let u

be the vector of cardinal representations. For future reference, we divide the rest of the

proof in several steps.

Step 1. We first show that for any x ∈ f(θ∗), there exists a Nash equilibrium σ∗ of

G(θ∗, u) such that x belongs to the support of Pσ∗,g. Consider a profile of strategies σ∗

such that σ∗
i = (θ∗, α, x, 1) for all i ∈ N , so that rule 1 applies. The (pure strategy) profile

σ∗ is clearly a Nash equilibrium at state θ∗. By deviating, each player i can trigger rule

2, but none of these possible deviations are profitable. Any deviation can either induce

a probability shift in the uniform lottery from fk(θ
∗) to a lottery with mass (1−ε) on an

alternative in SLi(fk(θ
∗), θ∗) and mass ε on xj , or shift δ probability mass from fk(θ

∗) to

an alternative indifferent to fk(θ
∗) (i.e., an alternative in Li(fk(θ

∗), θ∗)\SLi(fk(θ
∗), θ∗)).

By definition of ε, the former type of deviation is not profitable and the latter type of

deviation is clearly not profitable. Moreover, under σ∗, the support of Pσ∗,g is f(θ∗).

Hence, for any x ∈ f(θ∗), there exists an equilibrium that implements x.

Step 2. Conversely, we need to show that if σ∗ is a mixed Nash equilibrium of G(θ∗, u),

then the support of Pσ∗,g is included in f(θ∗). Let m be a message profile and denote

with gO(m) the set of alternatives that occur with strictly positive probability when m

is played: gO(m) = {x ∈ X : g(m)(x) > 0}. Let us partition the set of messages M

into three subsets corresponding to the three allocation rules. First, let R1 be the set of

message profiles such that rule 1 applies, i.e., R1 = {m : mj = (θ, α, x, 1) for all j ∈ N ,

with α(fk(θ), θ, θ) = fk(θ) for all fk (θ) ∈ f (θ)}. Second, if all agents j 6= i send some
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message mj = (θ, α, x, 1) with α(fk(θ), θ, θ) = fk(θ) for all fk (θ) ∈ f (θ), while agent i

sends a different message mi = (θi, αi, xi, zi), then rule 2 applies and agent i is the only

agent differentiating his message. Let Ri
2 be the set of these message profiles and define

R2 = ∪i∈NRi
2. Third, let R3 be the set of message profiles such that rule 3 applies (i.e.,

R3 is the complement of R1 ∪ R2 in M).

Consider an equilibrium σ∗ of G(θ∗, u) and let M∗
i be the set of message profiles that

occur with positive probability under σ∗
i . (M∗

i is the support of σ∗
i .) We need to show

that gO(m∗) ⊆ f(θ∗) for all m∗ ∈ M∗ := ×i∈NM∗
i .

Step 3. For any player i ∈ N , for all m∗
i = (θi, αi, xi, zi) ∈ M∗

i , define the (deviation)

message mD
i (m∗

i ) = (θi, αD, xD, zD), where: 1) αD differs from αi in at most the alter-

natives associated with elements (fk(θ), θ, θ) for all θ ∈ Θ, for all k ∈ {1, . . . , Kθ}; that

is, we can only have αD(fk(θ), θ, θ) 6= αi(fk(θ), θ, θ) for some k ∈ {1, . . . , Kθ} and some

θ ∈ Θ, while we have αD(x, θ′, θ′′) = αi(x, θ′, θ′′), otherwise, 2) xD ∈ maxθ∗

i X, and 3)

zD > zi and for 1 > µ ≥ 0, the integer zD is chosen strictly larger than the integers zj

selected by all the other players j 6= i in all messages m∗
−i ∈ M∗

−i, except possibly a set

of message profiles Mµ
−i ⊆ M∗

−i having probability of being sent less than µ. (Note that

µ can be chosen arbitrarily small, but not necessarily zero because other players may

randomize over an infinite number of messages.) Consider the following deviation σD
i

for player i from the equilibrium strategy σ∗
i :

σD
i (mi) =







σ∗
i (m

∗
i ) if mi = mD

i (m∗
i ) for some m∗

i ∈ M∗
i

0 otherwise
.

Step 4. First, note that under (σD
i , σ∗

−i), the set of messages sent is a subset of Ri
2 ∪

R3: either rule 2 applies and all players but player i send the same message or rule

3 applies. Second, whenever rule 3 applies, player i gets his preferred alternative at

state θ∗ with arbitrarily high probability (1 − µ). Third, suppose that under σ∗, there

exists m∗ ∈ Rj
2 with j 6= i. Under (σD

i , σ∗
−i), with the same probability that m∗ is

played, (mD
i (m∗

i ), m
∗
−i) ∈ R3 is played (rule 3 applies) and with probability at most µ,

the lottery g((mD
i (m∗

i ), m
∗
−i)) under (mD

i (m∗
i ), m

∗
−i) might be less preferred by player i

than the lottery g(m∗). (With probability 1 − µ, g((mD
i (m∗

i ), m
∗
−i)) = maxθ∗

i X.) Yet,

since µ can be made arbitrarily small and utilities are bounded, the loss can be made

arbitrarily small. Consequently, by setting αD(fk(θ), θ, θ
i) <θ∗

i αi(fk(θ), θ, θ
i) for all θ
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and all k ∈ {1, . . . , Kθ}, player i can guarantee himself an arbitrarily small, worst-case

loss of ū, in the event that m∗ ∈ ∪j 6=iR
j
2 under σ∗.

Step 5. Let us now suppose that there exists (m∗
i , m

∗
−i) ∈ R1; that is, for all j 6=

i, m∗
j = m∗

i = (θ, α, x, 1). In the event the message sent by all others is m∗
j = m∗

i ,

player i strictly gains from the deviation if αD(fk(θ), θ, θ) ∈ Li(fk(θ), θ) and either (1)

αD(fk(θ), θ, θ) ≻
θ∗

i fk(θ) or (2) αD(fk(θ), θ, θ) ∈ SLi(fk(θ), θ), αD(fk(θ), θ, θ) <θ∗

i fk(θ)

and fk(θ) 6∈ maxθ∗

i X. Since the expected gain in this event can be made greater than ū

by appropriately choosing µ, (1) and (2) cannot hold for any player i. It follows that for

σ∗ to be an equilibrium, for all i and all k, we must have (1) Li(fk(θ), θ) ⊆ Li(fk(θ), θ
∗)

and (2) either SLi(fk(θ), θ) ⊆ SLi(fk(θ), θ
∗) or fk(θ) ∈ maxθ∗

i X. Therefore, by the

weak* set-monotonicity of f , we must have f(θ) ⊆ f(θ∗). This shows that gO(m∗
i , m

∗
−i) ⊆

f(θ∗) for all (m∗
i , m

∗
−i) ∈ R1.

Step 6. Let us now suppose that there exists (m∗
i , m

∗
−i) ∈ Ri

2; that is, for all j 6= i,

m∗
j = (θ, α, x, 1) 6= m∗

i . In this case, any player j 6= i strictly gains from the deviation

σD
j whenever zD is the largest integer, which occurs with a probability of at least 1 −

µ, unless gO(m∗
i , m

∗
−i) ⊆ maxθ∗

j X. Since µ can be made arbitrarily small, it must

be gO(m∗
i , m

∗
−i) ⊆ maxθ∗

j X for all j 6= i. Therefore, by no-veto power, it must be

gO(m∗
i , m

∗
−i) ⊆ f(θ∗) for all (m∗

i , m
∗
−i) ∈ Ri

2.

Step 7. It only remains to consider messages (m∗
i , m

∗
−i) ∈ R3. For such messages the

argument is analogous to messages in Ri
2. For no player i to be able to profit from the

deviation σD
i , it must be gO(m∗

i , m
∗
−i) ⊆ maxθ∗

i X for all i ∈ N . Therefore, the condition

of no-veto power implies gO(m∗
i , m

∗
−i) ⊆ f(θ∗) for all (m∗

i , m
∗
−i) ∈ R3. �

Several remarks are in order. First, the mechanism constructed in the proof is in-

spired by the mechanism in the appendix of Maskin (1999), but ours is a randomized

mechanism.12 As we have already explained, we believe this is natural given that we

consider the problem of implementation in mixed Nash equilibrium.

Second, our construction uses integer games. While we agree that integer games

are not entirely satisfactory (e.g., see Jackson, 2001), Theorem 3 is no different from

the large literature on implementation in having to resort to integer games in order to

12The mechanism in the main body of Maskin (1999) does not deal with the issue of ruling out

unwanted mixed Nash equilibria.
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rule out unwanted (not f -optimal) outcomes. In section 6, we will provide sufficient

conditions for mixed Nash implementation by finite mechanisms, mechanisms in which

(unlike in an integer game) each player only has a finite number of strategies.

Third, Theorem 3 strongly relies on the condition of weak* set-monotonicity, a weak-

ening of Maskin monotonicity, which is relatively easy to check in applications. We have

not tried to look for necessary and sufficient conditions for mixed Nash implementation.

We suspect that such a characterization will involve conditions that are hard to check

in practice, as it is the case for Nash implementation à la Maskin (e.g., condition µ of

Moore and Repullo, 1990, condition M of Sjöström, 1991, condition β of Dutta and Sen,

or strong monotonicity of Danilov, 1992). We do know, however, as example 4 below

shows, that weak* set-monotonicity is not necessary for Nash implementation.

Fourth, we have not attempted to find sufficient conditions for the case of two players.

Such a case requires a special treatment and is better left to another paper.

Fifth, as the following example shows, with C-implementation the conditions of weak

and weak* set-monotonicity might fail to be necessary (for social choice correspondences

and functions, respectively). However, they remain necessary for “large” enough com-

pact sets of cardinal representations.

Example 2 There are two players, 1 and 2, two states of the world, θ and θ′, and a

unique cardinal representation at each state, indicated below:

θ θ′

1 2 1 2

d : 2

c : 1.5

a : 1

b : −1

d : 5

c : 2

a : 1

b : 0

d : 5

a : 1

c : 0.5

b : −1

c ∼ d : 2

a : 1

b : 0

For instance, at state θ, player 1’s utility of d is 2, while player 2’s utility is 5. The social

choice function is f(θ) = {a} and f(θ′) = {c}; it is not weak* set-monotonic. Yet, it is

easy to verify that f is implementable by the mechanism:

m1 m2

m1 a (1/2)1[a] + (1/2)1[b]

m2 (1/2)1[d] + (1/2)1[b] c

,
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where (1/2)1[x] + (1/2)1[y] denotes a 50-50 lottery on x and y. To see that for “large”

enough compact sets of cardinal representations the conditions of weak and weak* set-

monotonicity remains necessary, fix δ > 0, and let U
θ

i := {ui(·, θ) : X → [−K, K] : x ≻θ
i

y ⇔ ui(x, θ) ≥ ui(y, θ) + δ} with K large enough but finite. The set U
θ

i of cardinal

representations is clearly compact, and the proofs of Theorems 1 and 2 carry over if

δ < 2K/(|X|2).13

Sixth, the next example shows that the necessary condition of weak set-monotonicity

together with no-veto power are not sufficient for mixed Nash implementation. This

is analogous to the literature on implementation with incomplete information where

no-veto power together with the necessary conditions of incentive compatibility and

Bayesian monotonicity are not sufficient for Bayesian implementation (see Jackson,

1991).

Example 3 There are three players, 1, 2 and 3, two states of the world, θ and θ′, and

three alternatives a, b and c. Preferences are represented in the table below.

θ θ′

1 2 3 1 2 3

b a ∼ d c b a ∼ b ∼ d c

c a c a

a b b a b

d c d d c d

The social choice correspondence is f(θ) = {a, d} and f(θ′) = {b, d}. It is weak

set-monotonic since SL2(a, θ) 6⊆ SL2(a, θ′) and L2(b, θ
′) 6⊆ L2(b, θ). It also satisfies

no-veto power. However, it is not implementable in mixed Nash equilibrium. If it

were implementable, then for any cardinal representation of <θ, there would exist an

equilibrium σ∗ at θ such that the support of Pσ∗,g is either {a} or {a, d}. Then, σ∗ would

13To see this, fix the following cardinal representation of <θ
i : ui(x, θ) = K for all x ∈ maxθ

i X ,

ui(x, θ) = K−δ|X | for all x ∈ maxθ
i (X \maxθ

i X), etc. This cardinal representation is clearly admissible

and the difference in utilities between any two alternatives that are not indifferent is at least δ|X |. It

is then easy to see that, as required by the claim in the proof of Theorem 1, if we move to a state θ′

where Li(x, θ) ⊆ Li(x, θ′) and SLi(x, θ) ⊆ SLi(x, θ′) for all x ∈ f(θ), for all i ∈ N , then there exists

a cardinal representation ui(·, θ′) with ui(x, θ′) ≤ ui(x, θ) for all x ∈ X , and ui(x, θ′) = ui(x, θ) for all

x ∈ f(θ). That is all we need for the proofs of Theorems 1 and 2 to go through.
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also be an equilibrium at θ′ for some cardinal representation of <θ′ , a contradiction. For

instance, fix a cardinal representation u(·, θ) at θ. Since players 1 and 3’s preferences do

not change from θ to θ′, we can use the same cardinal representations at θ′. As for player

2, we can use u2(a, θ′) = u2(b, θ
′) = u2(d, θ′) = u2(a, θ) = u2(d, θ) > u2(b, θ) > u2(c, θ) =

u2(c, θ
′). The intuition is clear. Since players 1 and 3’s preferences do not change from

θ to θ′ and a and d are top-ranked for player 2 at both states, any equilibrium at θ

with outcome a in the support remains an equilibrium at θ′ (with the above cardinal

representation). At state θ′, there is no alternative that can be used to generate a

profitable deviation for player 2. Note that, as implied by Theorem 3, f is not weak*

set-monotonic since L2(a, θ) ⊆ L2(a, θ′), a ∈ maxθ′

2 {a, b, c}, and yet a /∈ f(θ′).

Seventh, as the next example shows, weak* set-monotonicity is not necessary for the

implementation of social choice correspondences.

Example 4 There are three players, 1, 2 and 3, three alternatives a, b and c, and two

admissible profiles of preferences θ and θ′. Preferences are given in the table below.

θ θ′

1 2 3 1 2 3

a b b a ∼ c b ∼ c b

c c a a

b a c b a c

The social choice correspondence is f(θ) = {a, b, c} and f(θ′) = {b, c}. It is not weak*

set-monotonic, but it is implementable in mixed Nash equilibrium. To see that f is not

weak* set-monotonic, note that a /∈ f(θ′) and yet: Li(x, θ) ⊆ Li(x, θ′) for all x ∈ {a, b, c},

for all i ∈ {1, 2, 3}; SL3(x, θ) ⊆ SL3(x, θ′) for all x ∈ {a, b, c}; SL1(c, θ) ⊆ SL1(c, θ
′),

SL1(b, θ) ⊆ SL1(b, θ
′), and SL1(a, θ) 6⊆ SL1(a, θ′), but a ∈ maxθ′

1 X; SL2(a, θ) ⊆

SL2(a, θ′), SL2(c, θ) ⊆ SL2(c, θ
′), and SL2(b, θ) 6⊆ SL1(b, θ

′), but b ∈ maxθ′

2 X. To

show that f is implementable in mixed Nash equilibrium, consider the mechanism in

which players 1 and 2 have two messages each, m1 and m2, player 3 has no message,

and the allocation rule is represented below (player 1 is the row player):

m1 m2

m1 b c

m2 a b
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If the profile of preferences is θ′, (m1, m2) is the unique pure Nash equilibrium of the

game, with outcome c. There is also an equilibrium in which player 1 chooses m1 and

player 2 (appropriately) mixes over m1 and m2. There is no equilibrium in which both

players mix. (Note that m2 is weakly dominant for player 2 at state θ′.) On the other

hand, it is clear that if the profile of preferences is θ, then there is an equilibrium in

which both players totally mix between m1 and m2. Therefore, f is implementable in

mixed Nash equilibrium, although it is not weak* set-monotonic.

We now claim that the restriction to compact sets of cardinal representations in

Theorem 3 can be relaxed if we strengthen the condition of weak* set-monotonicity to

strong set-monotonicity. Theorem 4 formally states this result without proof.14

Definition 4 A social choice correspondence f is strong set-monotonic if for all pairs

(θ, θ′) ∈ Θ × Θ, we have f(θ) ⊆ f(θ′) whenever for all x ∈ f(θ), for all i ∈ N :

Li(x, θ) ⊆ Li(x, θ′).

Note that on the domain of strict preferences, strong set-monotonicity coincides with

weak and weak* set-monotonicity. Moreover, if a social choice correspondence is Maskin

monotonic, then it is strong set-monotonic, and if it is strong set-monotonic, then it is

weak set-monotonic.

Theorem 4 Let 〈N, X, Θ〉 be an environment with n ≥ 3. If the social choice correspon-

dence f is strong set-monotonic and satisfies no-veto power, then it is implementable in

mixed Nash equilibrium.

We conclude this section with an example showing that weak* set-monotonicity and

no-veto power are not sufficient for (non compact) mixed Nash implementation; either

a restriction to a compact set of cardinal representations is needed or the condition of

weak* set-monotonicity needs to be strengthened to strong set-monotonicity.

Example 5 There are three players, 1, 2 and 3, four alternatives, a, b, c and d, and two

14The proof is obtained from the proof of Theorem 3 by setting εk(m) = 0 for all m.
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admissible profiles of preferences θ and θ′. Preferences are given in the table below.

θ θ′

1 2 3 1 2 3

b d c b d c

c a a c a ∼ b a

a b b a c b

d c d d d

The social choice correspondence is f(θ) = {a} and f(θ′) = {b}. It satisfies weak* set-

monotonicity and no-veto power; hence it is C-implementable in mixed Nash equilibrium.

Let η be any real number with η ≥ 2. Consider the following (non-compact) family of

preference cardinalizations: u1(x, θ) = u1(x, θ′) for all x ∈ X; u3(x, θ) = u3(x, θ′) for all

x ∈ X; u2(d, θ) = u2(d, θ′) = 2, u2(a, θ) = u2(a, θ′) = 1, u2(b, θ) = 1 − 1
η
, u2(b, θ

′) = 1,

u2(c, θ) = u1(c, θ
′) = 0. Note that there is a unique utility representation for player 1

and 3 and the representation for player 2 only varies in the utility assigned to alternative

b in state θ. We will show that with such a set of cardinal representations, f cannot be

implemented in mixed Nash equilibrium. Suppose, to the contrary, that it can. Then,

when θ is the true state, there is an equilibrium σ∗ with full support on outcome a.

Consider a possible deviation σD
2 by player 2 and let pa, pb, pc, pd be the probability on

each of the four outcomes induced by such a deviation. It must be the case that the

deviation is not profitable when the state is θ; that is,

1 = u2(a, θ) ≥ pau2(a, θ)+pbu2(b, θ)+pcu2(c, θ)+pdu2(d, θ) = pa+pb

(

1 −
1

η

)

+2pd. (2)

Since σ∗ cannot be an equilibrium when the true state is θ′ (otherwise f would not be

implemented) and the preferences of players 1 and 3 do not change with the state, there

must be a deviation σD
2 by player 2 that is profitable when the state is θ′ and player 1

and 3 play σ∗
1 and σ∗

3; that is,

1 = u2(a, θ′) < pau2(a, θ′) + pbu2(b, θ
′) + pcu2(c, θ

′) + pdu2(d, θ′) = pa + pb + 2pd. (3)

Equation (2) implies that for all η ≥ 2, 1−pa−pb ≥ −1
η
pb +2pd and, hence, 1−pa−pb ≥

2pd, while equation (3) requires that 1 − pa − pb < 2pd, a contradiction.
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6 Finite Mechanisms

Theorem 3 relies on integer games to provide sufficient conditions for mixed Nash imple-

mentation. As pointed out by Jackson (2001, p. 684), this is not totally satisfactory: “A

player’s best response correspondence is not well-defined when that player faces a mixed

strategy of the others that places weight on an infinite set of integers.” In this section,

we look at finite mechanisms; that is, for each player i ∈ N , we impose that the set

of messages Mi is finite.15 Since this paper considers finite environments (finite sets of

alternatives and preference profiles), the restriction to finite mechanisms is natural. We

use two additional conditions. First, following Jackson, Palfrey and Srivastava (1994),

we restrict attention to separable environments. An environment is separable if the

following two properties hold:16

A1 A worst outcome relative to f : there exists w ∈ X such that x ≻θ
i w for all i ∈ N ,

all (θ, θ′) ∈ Θ × Θ, and all x ∈ f (θ′).

A2 Separability: For all x ∈ X, all θ′ ∈ Θ, and i ∈ N , there exists yi(x) ∈ X such

that yi(x) ∼θ′

i x, while yi(x) ∼θ
j w for all θ ∈ Θ and all j ∈ N \ {i}.

There are several examples of separable environments, e.g., pure exchange economies

with strictly monotone preferences or environments with transferable utilities. We refer

the reader to Jackson et al. (1994) for more examples.17

Let D be a subset of N containing at least one player. The second condition we

require is that for each player i in D and for each state of the world θ, f (θ) contains

the top alternatives for player i in the range Xf := f(Θ) of f . A formal definition is as

follows.

Definition 5 A social choice correspondence f is top-D-inclusive (relative to f) if there

exists a non-empty subset D of the set of players N such that ∪i∈D maxθ
i Xf ⊆ f(θ) for

all θ ∈ Θ.

15Best responses are well-defined in games induced by finite mechanisms.
16The definition by Jackson, Palfrey and Srivastava (1994) includes a third property, strict value

distinction, which we do not need. Also, our property A2 is weaker then their corresponding property.
17Sjöström (1994) provides another example of a separable environment: a production economy with

public goods.
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Top-D-inclusiveness is an efficiency condition. For instance, the weak Pareto corre-

spondence is top-D-inclusive. Note also that if f is top-D-inclusive with D containing at

least two elements and Xf = X, then it satisfies no-veto power. We have the following

theorem:

Theorem 5 Let 〈N, X, Θ〉 be a separable environment with n ≥ 3. If the social choice

correspondence f is weak* set-monotonic and top-D-inclusive, then it is C-implementable

in mixed Nash equilibrium by a finite mechanism.

The intuition for Theorem 5 is simple. Consider a profile of messages m∗ such that

all but player i announces the same message (i.e., rule 2 of the proof of Theorem 3

applies: m∗ ∈ Ri
2). An essential role of the integer game in Theorem 3 is to guarantee

that any player j 6= i can trigger the integer game, gets his favorite alternative (with

arbitrary high probability) and, thus, cannot be worse off. Without the integer game,

this is not always possible. However, with separable environments, we can guarantee

player i the same expected payoff under m∗, while giving to all the other players the

payoff corresponding to the worst outcome. In turn, this implies that any player j 6= i

can trigger a finite “game” between players in D where only alternatives in Xf can be

implemented and, thus, not be worse off. Lastly, top-D-inclusiveness guarantees that

the outcomes of the finite “game” are f -optimal. The formal proof of Theorem 5 is in

the Appendix.

We end this section with three remarks. First, we do not know how tight our suffi-

cient conditions for finite mechanisms are. Clearly, dictatorial and constant social choice

correspondences are implementable in mixed Nash equilibrium by finite mechanisms in

general environments.18 Furthermore, in Example 1, we implement a social choice corre-

spondence by a finite mechanism and yet it is neither top-D-inclusive nor dictatorial nor

constant.19 Second, as in Theorem 4, if we replace weak* set-monotonicity with strong

set-monotonicity, then we obtain a sufficiency theorem for implementation in mixed

Nash equilibrium by a finite mechanism, as opposed to C-implementation. Third, it is

worth emphasizing the difference between Theorem 5 and the results in three related

18In separable environments, a constant social choice function is weak∗ set-monotonic and top-D-

inclusive. Moreover, setting |D| = 1 and Xf ⊆ ∪θ∈Θ maxθ
i X allows to define weak∗ set-monotonic and

top-D-inclusive social choice correspondences that are essentially dictatorial.
19Example 1 is with two players, but it is easy to modify it so as to have three players: add a third

player with the same preferences as player 1.
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papers. Jackson, Palfrey and Srivastava (1994) and Sjöström (1994) use bounded mech-

anisms that make no use of integer games, but their solution concept is different from

ours; they consider implementation in undominated Nash equilibrium, rather than Nash

implementation. Abreu and Matsushima (1992) use finite mechanisms, but their results

are for virtual implementation, and their mechanism requires, among other things, that

agents transmit cardinal information about their preferences to the center. We focus on

exact implementation in mixed Nash equilibrium and on ordinal mechanisms.20

7 Dispensing with No-Veto Power

As pointed out by Benôıt and Ok (2008) and Bochet (2007), the appeal of the no-veto

power condition may be questioned in settings with a small number of agents. In the

context of pure Nash implementation, and allowing for out-of-equilibrium randomness

in the mechanism, they showed that no-veto power can be dispensed with, provided that

some mild domain restrictions are imposed.21 We now show that similar results can be

obtained in the context of mixed Nash implementation.

Definition 6 (Bochet, 2007) An environment 〈N, X, Θ〉 satisfies top-strict difference

if for any θ ∈ Θ and x ∈ X such that x ∈ ∩i∈I maxθ
i X for I ⊆ N with |I| = n−1, there

exist (j, k) ∈ N × N such that maxθ
j X = maxθ

k X = {x}.

Top strict difference requires that if n−1 agents rank x at the top, then at least two

agents must rank x strictly at the top.

20Almost any social choice correspondence is implementable in undominated Nash equilibrium (Pal-

frey and Srivastava, 1991) or virtually implementable in Nash equilibrium (Abreu and Sen, 1991). But,

as we pointed out in fn.1, Chung and Ely (2003) show that if the assumption of complete information is

relaxed to “near-complete information,” then Maskin monotonicity is restored as a necessary condition

for implementation in undominated, pure, Nash equilibrium.
21Bochet (2007) showed that, with n ≥ 3, Maskin monotonicity is sufficient for Nash implementation

if preferences satisfy top-strict difference. Benôıt and Ok (2008), again with n ≥ 3, showed that Maskin

monotonicity and weak unanimity of f are sufficient if preferences satisfy the top-coincidence condition.

Both papers use out-of-equilibrium randomness in the mechanism, but limit themselves to rule out

unwanted pure equilibria.
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Definition 7 (Benôıt and Ok, 2008) An environment 〈N, X, Θ〉 satisfies the top-

coincidence condition if for any θ ∈ Θ and any I ⊆ N with |I| = n − 1, the set

∩i∈I maxθ
i X is either empty or a singleton.

Clearly, the top-coincidence condition and the top-strict difference condition are

satisfied on the domain of single-top preferences. (Remember that on the domain of

single-top preferences, each player has a single most preferred alternative at each state.)

Definition 8 A social choice correspondence f is weakly unanimous if for all θ ∈ Θ,

we have x ∈ f(θ) whenever {x} = ∩i∈N maxθ
i X.

As argued by Benôıt and Ok (2008), the top-coincidence condition is a fairly mild

domain restriction, while weak unanimity is a much weaker condition than no-veto

power. Clearly, if f satisfies no-veto power, then it is weakly unanimous, but the converse

does not hold. We have the following theorem.22

Theorem 6 Let 〈N, X, Θ〉 be an environment with n ≥ 3. If the social choice corre-

spondence f is weak* set-monotonic and either (a) the environment satisfies the top-

coincidence condition and f is weakly unanimous, or (b) the environment satisfies the

top-strict-difference condition, then f is C-implementable in mixed Nash equilibrium.23

8 Applications

This section contains a series of remarks in which we provide applications of our results

to some important social choice rules.

Remark 1 On the unrestricted domain of preferences (i.e., when all possible ordinal

rankings are admissible), the strong Pareto correspondence fPO is weak set-monotonic,

while it fails to be Maskin monotonic. Therefore, on the domain of single-top preferences,

fPO satisfies weak* set-monotonicity and no veto power.24 Hence, if we restrict attention

22The proof is relegated to the Appendix.
23Theorem 6 is stated for weak* set-monotonic correspondences and C-implementation, but also holds

for strong set-monotonic correspondences and mixed Nash implementation. Only a modification like

the one needed to prove Theorem 4 is required.
24Recall that on the domain of single-top preferences, maxθ

i X is a singleton for each i ∈ N , for each

θ ∈ Θ, and thus weak* set-monotonicity coincides with weak set-monotonicity.
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to the domain of single-top preferences, Theorem 3 applies and fPO is C-implementable

in mixed Nash equilibrium.

The strong Pareto correspondence is defined as follows:

fPO (θ) := {x ∈ X : there is no y ∈ X such that x ∈ Li(y, θ) for all i ∈ N,

and x ∈ SLi(y, θ) for at least one i ∈ N}.

To see that fPO is weak set-monotonic, consider two states θ and θ′ such that for

all i ∈ N , for all x ∈ fPO(θ), (i) Li(x, θ) ⊆ Li(x, θ′) and (ii) SLi(x, θ) ⊆ SLi(x, θ′).

Suppose that x∗ ∈ fPO(θ), but x∗ /∈ fPO(θ′). At state θ′, there must then exists y ∈ X

such that y /∈ SLi(x
∗, θ′) for all i ∈ N and y /∈ Li(x

∗, θ′) for at least one i ∈ N . It follows

that y /∈ SLi(x
∗, θ) for all i ∈ N and y /∈ Li(x

∗, θ) for at least one i ∈ N , a contradiction

with x∗ ∈ fPO(θ). Consequently, fPO (θ) ⊆ fPO (θ′) and fPO is weak set-monotonic.

To see that the strong Pareto correspondence is not Maskin monotonic on the do-

main of single-top preferences (and, therefore, on the unrestricted domain), consider the

following example. There are three players, 1, 2 and 3, and two states of the world θ

and θ′. Preferences are given in the table below.

θ θ′

1 2 3 1 2 3

d d b d d b

b a a b a ∼ b a

c b c c c

a c d a c d

The strong Pareto correspondence is: fPO(θ) = {a, b, d} and fPO(θ′) = {b, d}. Maskin

monotonicity does not hold since L2(a, θ) ⊆ L2(a, θ′) and yet a 6∈ fPO(θ′).25

Remark 2 Using arguments that parallel the ones used for the strong Pareto corre-

spondence, it can be verified that on the unrestricted domain of preferences the strong

25On the unrestricted domain of preferences, fPO is not weak* set-monotonic. To see this, suppose

alternative d is not available in the example. The strong Pareto correspondence is then f(θ) = {a, b}

and f(θ′) = {b}. Weak* set-monotonicity fails, since it is L2(a, θ) ⊆ L2(a, θ′), a ∈ maxθ′

2 {a, b, c} and yet

a 6∈ fPO(θ′). In fact, following the reasoning in Example 3, we can see that fPO is not C-implementable

in mixed Nash equilibrium in this modified example.
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core correspondence fSC is weak set-monotonic. If we restrict attention to the domain

of single-top preferences fSC also satisfies weak* monotonicity, while it is not Maskin

monotonic on either domain of preferences. Since fSC also satisfies weak unanimity, by

Theorem 6, it is C-implementable in mixed Nash equilibrium in the domain of single-top

preferences.

A coalitional game is a quadruple 〈N, X, θ, v〉, where N is the set of players, X is

the finite set of alternatives, θ is a profile of preference relations, and v : 2N \ {∅} → 2X .

An alternative x is weakly blocked by the coalition S ⊆ N \ {∅} if there is a y ∈ v(S)

such that x ∈ Li(y, θ) for all i ∈ S and x ∈ SLi(y, θ) for at least one i ∈ S. If there is

an alternative that is not weakly blocked by any coalition in 2N \ {∅}, then 〈N, X, θ, v〉

is a game with a non-empty strong core. A coalitional environment with non-empty

strong core is a quadruple 〈N, X, Θ, v〉, where Θ is a set of preference relations such that

〈N, X, θ, v〉 has a non-empty strong core for all θ ∈ Θ.

The strong core correspondence fSC is defined for all coalitional environments with

non-empty strong core as follows:

fSC (θ) := {x ∈ v(N) : x is not weakly blocked by any ∅ 6= S ⊆ N} .

Remark 3 On the unrestricted domain of preferences, a Maskin monotonic social choice

function must be constant (Saijo, 1988). It is simple to see that this is also true for a

weak* set-monotonic social choice function. Suppose, to the contrary, that f(θ) =

x 6= y = f (θ′) . Let θ′′ be such that x, y ∈ maxθ′′

i X for all i ∈ N. Then weak*

set-monotonicity implies {x, y} ⊆ f(θ′′), contrary to the assumption that f (θ′′) is a

singleton.

Remark 4 On the domain of strict preferences, the top-cycle correspondence, an im-

portant voting rule, is weak* (and hence weak) set-monotonic, while it is not Maskin

monotonic. Since it also satisfies no-veto power, it follows that Theorem 4 applies: on

the domain of strict preferences, the top-cycle correspondence is implementable in mixed

Nash equilibrium.

We say that alternative x defeats alternative y at state θ, written x ≫θ y, if the

number of players who prefer x to y is strictly greater than the number of players who
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prefer y to x. At each state θ, the top-cycle correspondence selects the smallest subset

of X such that any alternative in it defeats all alternatives outside it.

fTC(θ) := ∩{X ′ ⊆ X : x′ ∈ X ′, x ∈ X \ X ′ implies x′ ≫θ x}.

To prove that the top-cycle correspondence is weak set-monotonic, assume to the

contrary that there is at least an alternative x∗ such that x∗ ∈ fTC(θ), x∗ /∈ fTC(θ′), and

Li(x, θ) ⊆ Li(x, θ′) for all x ∈ fTC(θ), for all i ∈ N. (When preferences are strict Li(x, θ)\

{x} = SLi(x, θ) and strong set-monotonicity coincides with weak set-monotonicity and

weak* set-monotonicity.) Clearly, if x∗ is a Condorcet winner at θ so that fTC(θ) = {x∗},

then x∗ is also a Condorcet winner at θ′; hence x∗ ∈ fTC(θ′), a contradiction. Assume

that x∗ is not a Condorcet winner; that is, the set fTC (θ) is not a singleton. Take any

alternative x ∈ fTC (θ) and any y /∈ fTC (θ). By definition of fTC , it must be that

x ≫θ y. Since Li(x, θ) ⊆ Li(x, θ′) for all x ∈ fTC(θ), it must also be that x ≫θ′ y.

Hence, it must be fTC (θ′) ⊆ fTC (θ). For all x∗ ∈ fTC (θ)\fTC (θ′) , it must be the case

that x ≫θ′ x∗ for all x ∈ fTC (θ′). Furthermore, since the lower contour sets of x∗ satisfy

Li(x
∗, θ) ⊆ Li(x

∗, θ′), the strict upper contour set of x∗ at θ′ is a subset of the strict

upper contour set at θ for all i ∈ N , and hence it must be x ≫θ x∗ for all x ∈ fTC (θ′) .

This contradicts the assumption that x∗ ∈ fTC (θ) and fTC (θ) is the smallest subset of

X such that any alternative in it defeats all alternatives outside it at θ.

To see that fTC is not Maskin monotonic, consider the following example with two

states, three alternatives and three players.

θ θ′

1 2 3 1 2 3

a c b a c c

b a c b a b

c b a c b a

We have that fTC(θ) = {a, b, c} and fTC(θ′) = {c}. Since Li(a, θ) ⊆ Li(a, θ′) for all

i ∈ N , Maskin monotonicity and fTC(θ) = {a, b, c} would require a ∈ fTC(θ′).

Remark 5 The Borda, Kramer and plurality voting rules fail to satisfy weak set-

monotonicity.26

26The Kramer score of alternative x at state θ is maxy 6=x |{i ∈ N : x ≻θ
i y}|; the Kramer rule selects
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It is simple to see that the example in Maskin (1999, page 30) shows that the Borda

rule fails to satisfy not only Maskin monotonicity, but also weak set-monotonicity. For

the Kramer rule, consider the example in the table below with five players, three alter-

natives and two states θ and θ′.

θ θ′

1 2 3 4 5 1 2 3 4 5

a a a a c a a a a b

b b c c b b b b b c

c c b b a c c c c a

The Kramer rule selects a at state θ and b at state θ′, a violation of weak set-monotonicity.

(Remember that weak* set-monotonicity coincides with weak set-monotonicity when

preferences are strict, as in the above example.) For the plurality rule, consider the

table below with seven players, three alternatives and two states θ and θ′.

θ θ′

1 2 3 4 5 6 7 1 2 3 4 5 6 7

a a a b b c c a a a b b b b

b b b c c b b b b b c c c c

c c c a a a a c c c a a a a

In this example, the plurality rule selects a at θ and b at θ′, which also violates weak set-

monotonicity. So, our results are not so permissive so as to imply that all “reasonable”

social choice correspondences are implementable in mixed Nash equilibrium.

9 Conclusions

In this paper, we introduce the concept of mixed Nash implementation. According to

our definition, a mechanism implements a social choice correspondence f in mixed Nash

equilibrium if the set of all pure and mixed Nash equilibrium outcomes corresponds to

the set of f -optimal alternatives at each preference profile. Crucially, and unlike Maskin,

our definition does not give a predominant role to pure equilibria. While we allow players

the alternatives with the highest Kramer score at each state. The plurality rule selects the alternatives

ranked top by the highest number of players.
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and the planner to randomize, we maintain an entirely ordinal approach. In our model,

a social choice correspondence f maps profiles of preference orderings over alternatives

into subsets of alternatives and we require that the chosen game form implements f for

all possible cardinal representation of players’ preferences. Also, we require exact, as

opposed to virtual, implementation.

We show that weak set-monotonicity, a substantial weakening of Maskin’s mono-

tonicity, is necessary for implementation of social choice correspondences in mixed Nash

equilibrium. Weak* set-monotonicity, a mild strengthening of weak set-monotonicity, is

necessary for implementing social choice functions, and together with no veto power is

sufficient for the implementation of social choice correspondences if there are at least

three players. We also provide sufficient conditions which include weak* set-monotonicity

and mild domain restrictions, but do not include no-veto power. Restricting attention

to finite mechanisms, we show that an efficiency condition, called top-D-inclusiveness,

together with weak* set-monotonicity, is sufficient for implementation in separable en-

vironments. Important social choice correspondences that are not Maskin monotonic,

like the strong Pareto, the strong core and the top-cycle may be implemented in mixed

Nash equilibrium.
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Appendix

Proof of Theorem 5. We need to make a few changes to the mechanism considered

in the proof of Theorem 3. Let D be a subset of players, with cardinality |D| ≥ 1 that

satisfies the definition of top-D-inclusiveness. For each player i ∈ N , the message space

Mi is Θ×{αi : αi : X ×Θ2 → X}×X ×Xf ×{1, 2}. Thus, each i must also announce

an element s of Xf and may announce only two integers, 1 or 2. Rule 1 is the same

as in the proof of Theorem 3, except that that the common message sent by all players

mi = (θ, α, x, s, 1) includes two alternatives. We replace rules 2 and 3 of the allocation

rule g with the following:

Rule 2F: If there exists j ∈ N such that mi = (θ, α, x, s, 1) for all i ∈ N \ {j}, with

α(fk(θ), θ, θ) = fk(θ) for all fk (θ) ∈ f (θ) , and mj = (θj, αj, xj , sj, zj) 6= mi, then g(m)

is the lottery:

1

Kθ

Kθ

∑

k=1

{

δk(m)(1 − εk(m))1
[

yj(αj(fk(θ), θ, θ
j))

]

+ δk(m)εk(m)1
[

yj(xj)
]

+ (1 − δk(m)) 1
[

yj(fk(θ))
]}

with

δk(m) =







δ if αj(fk(θ), θ, θ
j) ∈ Lj(fk(θ), θ)

0 if αj(fk(θ), θ, θ
j) 6∈ Lj(fk(θ), θ)

for 1 > δ > 0, and

εk(m) =







ε if αj(fk(θ), θ, θ
j) ∈ SLj(fk(θ), θ)

0 if αj(fk(θ), θ, θ
j) 6∈ SLj(fk(θ), θ)

.

It is important to note that the assumption of a separable environment and the definition

of yj(x) in A2 imply that under this rule any player i 6= j gets the same payoff as under

the worst outcome w.

Rule 3F: If neither rule 1 nor rule 2 applies, then g
(

(θi, αi, xi, si, zi)i∈N

)

is the

uniform lottery over the alternatives si selected by the players in D:

1

|D|

∑

j∈D

1
[

si
]

.
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Fix a state θ∗, and a cardinal representation ui ∈ U
θ∗

i of <θ∗

i for each player i. Let u

be the vector of cardinal representations.

Step 1. Step 1 of the proof is the same as Step 1 in the proof of Theorem 3. It shows that

for any x ∈ f(θ∗), there exists a Nash equilibrium σ∗ of G(θ∗, u) such that x belongs to

the support of Pσ∗,g.

Step 2. Step 2, defining the sets R1, Rj
2 and R3, in which the different rules apply, is

also the same as Step 2 in the proof of Theorem 3.

Consider an equilibrium σ∗ of G(θ∗, u), and let M∗
i be the set of message profiles

that occur with positive probability under σ∗
i . We need to show that gO(m∗) ⊆ f(θ∗)

for all m∗ ∈ M∗ := ×i∈NM∗
i .

Step 3. Suppose there exists (m∗
i , m

∗
−i) ∈ Ri

2; that is, for all j 6= i, m∗
j = (θ, α, x, , s, 1) 6=

m∗
i . In this case, for all m∗

j = (θj , αj, xj, sj, zj) define the deviation message func-

tion mD
j

(

m∗
j

)

= (θj , αj, xj , sj, 2); that is, mD
j

(

m∗
j

)

replaces zj with the integer 2

in all messages sent by player j. Note that: (i) when (m∗
j , m

∗
−j) ∈ R1 ∪ Rj

2, then
(

mD
j

(

m∗
j

)

, m∗
−j

)

∈ Rj
2 and player j obtains the same payoff under g from the two

message profiles; (ii) when (m∗
j , m

∗
−j) ∈ Ri

2, then
(

mD
j

(

m∗
j

)

, m∗
−j

)

∈ R3 and player j

obtains a strictly higher payoff from the deviation message, since he obtains the same

payoff as with the worst outcome in Ri
2, while any outcome under R3 belongs to Xf

and hence is preferred to w; (iii) when (m∗
j , m

∗
−j) ∈ R3, then

(

mD
j

(

m∗
j

)

, m∗
−j

)

∈ R3

and player j obtains the same payoff from the two message profiles. It follows that if

a message profile (m∗
i , m

∗
−i) ∈ Ri

2 occurs with positive probability, then player j has a

strictly profitable deviation. This implies that there are only two possibilities. The first

is that the equilibrium σ∗ of G(θ∗, u) is in pure strategies and all players send the same

message m∗
i = (θ, α, x, s, 1) and hence (m∗

i , m
∗
−i) ∈ R1. The second possibility is that

the equilibrium σ∗ of G(θ∗, u) is in mixed (or pure) strategies and all message profiles

sent with positive probability by players belong to the set R3. Step 4 deals with the first

possibility, while Step 5 deals with the second.

Step 4. Suppose all players send the same message m∗
i = (θ, α, x, s, 1) and hence

(m∗
i , m

∗
−i) ∈ R1 with probability one. For any player i ∈ N , define the (deviation)

message mD
i = (θi, αD, xD, sD, 2), where: 1) αD differs from αi in at most the alter-

natives associated with elements (fk(θ), θ, θ) for all θ ∈ Θ, for all k ∈ {1, . . . , Kθ};
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2) xD ∈ maxθ∗

i X, and 3) sD ∈ maxθ∗

i Xf . Player i strictly gains from the devi-

ation if αD(fk(θ), θ, θ) ∈ Li(fk(θ), θ) and either (1) αD(fk(θ), θ, θ) ≻θ∗

i fk(θ) or (2)

αD(fk(θ), θ, θ) ∈ SLi(fk(θ), θ), αD(fk(θ), θ, θ) <θ∗

i fk(θ) and fk(θ) 6∈ maxθ∗

i X. Hence,

(1) and (2) cannot hold for any player i. It follows that for σ∗ to be an equilib-

rium, for all i and all k it must be (1) Li(fk(θ), θ) ⊆ Li(fk(θ), θ
∗) and (2) either

SLi(fk(θ), θ) ⊆ SLi(fk(θ), θ
∗) or fk(θ) ∈ maxθ∗

i X. Therefore, by the weak* set-

monotonicity of f , we must have f(θ) ⊆ f(θ∗). This shows that gO(m∗
i , m

∗
−i) ⊆ f(θ∗).

Step 5. Suppose the equilibrium σ∗ of G(θ∗, u) is in mixed (or pure) strategies and all

message profiles sent with positive probability by players belong to the set R3. For all

j ∈ D and all m∗
j = (θj , αj, xj , sj, zj) sent with positive probability by player j, define

the deviation message function mD
j

(

m∗
j

)

=
(

θj , αj, xj , sD, 2
)

, where sD ∈ maxθ∗

i Xf .

Note that if player j ∈ D follows the deviation strategy of replacing each message m∗
j

with the deviation message defined by the function mD
j (·) , then he strictly profits unless

sj ∈ maxθ∗

i Xf . Since this is true for all j ∈ D, and Rule 3F applies to all equilibrium

message profiles, it must be gO(m∗
i , m

∗
−i) ⊆ ∪i∈D maxθ

i Xf . Then, by top-D-inclusiveness,

it is gO(m∗
i , m

∗
−i) ⊆ f(θ∗). This completes the proof. �

Proof of Theorem 6. For part (a) we use the same mechanism as in the proof of

Theorem 3. For part (b) we slightly modify rule 3, replacing it with the following:

Rule 3R: Let i∗ be a player announcing the highest integer zi∗ . If neither rule 1 nor

rule 2 applies, then g
(

(θi, αi, xi, zi)i∈N

)

is the random lottery that assigns probability
(

1 − 1
zi∗

)

to xi∗ and probability 1
zi∗

to the uniform lottery over all alternatives in X.

The proof of both parts is very similar to the proof of Theorem 3; only two changes

are needed.

The first, more substantial, change is for the case of a message realization m∗ ∈ Ri
2.

Replace Step 6 with the following.

Step 6R. As in the proof of Theorem 3, we may conclude that all the alternatives

in the support of Pm∗,g must belong to maxθ∗

j X for all j ∈ N \ {i}. (Recall that

m∗
j = (θ, α, x, 1) for all j ∈ N \ {i}, with α(fk(θ), θ, θ) = fk(θ) for all fk (θ) ∈ f (θ) , and

m∗
i = (θi, αi, xi, zi) 6= m∗

j .)

(a) By the top-coincidence condition, the support of Pm∗,g must then consist of a

single alternative x∗. Hence it must be x∗ = f(θ). Player i may deviate and send the
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message mD
i = (θi, αD, xD, zi), with xD ∈ maxθ∗

i X and with αD differing from αi only

in the component αD(x∗, θ, θi) ∈ Li(x
∗, θ). For such a deviation not to be profitable it

must be: (i) x∗ = f(θ) <θ∗

i αD(x∗, θ, θi) and (ii) if αD(x∗, θ, θi) ∈ SLi(x
∗, θ) then x∗ ≻θ∗

i

αD(x∗, θ, θi) or x∗ ∈ maxθ∗

i X. We can conclude that: (1) Li(x
∗, θ) ⊆ Li(x

∗, θ∗) and (2)

either SLi(x
∗, θ) ⊆ SLi(x

∗, θ∗) or x∗ ∈ maxθ∗
i X. Furthermore, since x∗ ∈ maxθ∗

j X for

all j ∈ N\{i}, (1) and (2) hold for all j. Consequently, f(θ) = x∗ ⊆ f(θ∗) by the weak*

set-monotonicity of f .

(b) By the top-strict-difference condition, there must be at least a j ∈ N\{i} such

that maxθ∗

j X is a singleton. Hence the support of Pm∗,g must consist of a single alter-

native x∗ and it must be x∗ = f(θ). The rest of the proof of this case is as the proof of

part (a).

The second, minor, change in the proof is for the case of a message realization m∗

such that rule 3 (rule 3R) applies. Replace Step 7 with the following.

Step 7R. Let i∗ be a player announcing the highest integer zi∗ . Since no player must

be able to profitably gain from a deviation, it must be the case that xi∗ ∈ maxθ∗

i X for

all i ∈ N . (a) It follows from the top-coincidence condition and weak unanimity that

xi∗ ∈ f(θ∗). (b) It follows from the top-strict-difference condition that for at least one

agent j, we have maxθ∗

j X = {xi∗}, then, by rule 3R, setting zj > zi∗ and xj = xi∗ is a

profitable message deviation for agent j. �
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