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1 Introduction

Why do investors change their portfolio positions with the arrival of new informa-

tion? For a long time, the conventional wisdom was that these changes in portfolios

were mainly due to risk-sharing among agents with di¤erent attitudes towards risk.

Recently, Judd et al. [15] topped the validity of this explanation. Indeed, in the con-

text of a stationary Markovian economy, they show that each investor�s equilibrium

holdings of assets of any speci�c maturity is constant along time and across states

after an initial trading stage. They conclude "that other factors considered in the

literature, such as life-cycle factors, asymmetric information, heterogeneous beliefs,

and incompleteness of the asset market, play a signi�cant role in generating trade

volume." Among these factors, di¤erences of opinions due to heterogeneous beliefs

have received special attention. For instance, Morris [18] suggests that "...trading

volume presumably re�ects a lack of consensus in the interpretation of the (publicly

released) information." (p. 247) Indeed, recent work focusing on asset trading by

Scheinkman and Xiong [24] and Hong and Stein [13] has emphatically put forward

this idea. Hong and Stein [13], in particular, observe that "In conventional rational

asset-pricing models with common priors . . . the volume of trade is approximately

pinned down by the unanticipated liquidity and portfolio rebalancing needs of in-

vestors. However, these motives would seem to be far too small to account for the

tens of trillions of dollars of trade observed in the real world . . . the bulk of volume

must come from something else - for example, di¤erences in prior beliefs that lead

traders to disagree about the value of a stock even when they have access to the

same information sets". . . ." (p. 111-112). They argue that an appropriate expla-

nation of trading volume is one of the highest theoretical priorities in the study of

asset markets and, then, they conclude that �. . . taken collectively, the disagreement

models. . . represent the best horse on which to bet" (p. 126).

In this paper we assess the widespread idea that di¤erences of opinion due to

heterogeneous beliefs can generate persistent changes in portfolios. We consider an

exchange economy where investors do not know the conditional probability of the

states of nature and update their priors in a Bayesian fashion.1 Our main contribu-

tions are the following. We �rst show that even though heterogeneous prior beliefs

can indeed generate changes in the portfolios that sustain Pareto optimal allocations,

1To avoid any confusion, we use of the following terminology. By a prior, we refer to the subjective
unconditional probability distribution over future states of nature. In the particular case where the
prior can be characterized by a vector of parameters and a probability distribution over them, we
call the latter the agent´s prior belief.
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these changes vanish in the long run with probability one if investors know the likeli-

hood function generating the data and the support of their prior beliefs contains the

true probability distribution of the states of nature. Additionally, we characterize

the limit portfolios and show that, even though agents learn the true probability of

states of nature, these portfolios need not coincide with those of an otherwise iden-

tical economy with homogeneous priors. Afterwards, we show by means of examples

that if one wants to argue that heterogeneity of priors can have enduring implications

on the volume of trade then one needs to assume that either (i) no investor has the

truth in the support of his prior belief or (ii) investors disagree about the likelihood

function generating the data.

In order to purposely disentangle the role of heterogeneous priors in explaining

why investors change their portfolios from those of the other candidates listed above,

we proceed as follows. First, we analyze the evolution of portfolios that support a

Pareto optimal allocation to discard the lack of some market to share risk as the

driving force; i.e., markets are e¤ectively complete in our model. Second, we assume

that agents interpret public data di¤erently to abstract from disagreement stemming

from asymmetries in their information. Third, we consider a population of in�nitely-

lived agents to shut down the life-cycle factors motive. Finally, we assume that

both the endowments as well as the assets returns are i.i.d. draws from a common

probability distribution to isolate from the role of non-stationarities in fundamentals.

Our approach hinges on studying portfolios that support Pareto Optimal alloca-

tions. But solving directly for the portfolios is not always possible and, therefore, we

follow an indirect strategy developed by Espino and Hintermaier [8]. We begin with a

recursive characterization of the set of Pareto optimal allocations. The optimal plan

for the planner�s problem is history dependent whenever agents have heterogeneous

priors. This is because optimality requires the ratio of marginal valuations of con-

sumption of any two agents -which includes priors that could be subjectively held- to

be constant along time. Consequently, at any date the ratio of marginal utilities at

any future event must be proportional to the history dependent ratio of the agents�

priors about that event, i.e. the likelihood ratio of the agents�priors. Since history

dependence makes standard recursive methods unsuitable, we tackle this di¢ culty

using a strategy similar to Lucas and Stokey�s [17]. We obtain a recursive charac-

terization of the set of Pareto optimal allocations in our stochastic framework under

the assumption that investors know the likelihood function generating the data but

have di¤erent prior beliefs about the probability of the states of nature.2 The key
2Lucas and Stokey [17] characterize recursively optimal programs in a deterministic setting where
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insight is that the planner does not need to know the partial history itself in order to

continue the date zero optimal plan from date t onwards. In fact, it su¢ ces that he

knows the likelihood ratio of the agents�priors, the state of nature and the agents�

prior beliefs over the probability of the states of nature. We argue that the sequential

formulation of the planner�s problem is equivalent to a recursive dynamic program

where the planner allocates current feasible consumption and assigns next period

attainable utility levels among agents.

Afterwards, we use the planner�s policy functions to characterize recursively in-

vestors��nancial wealth in any dynamically complete market equilibrium. This allows

us to establish that the �nancial wealth distribution (and the corresponding portfo-

lios) converges if and only if both the likelihood ratio as well as the investors�posterior

beliefs over the unknown parameters converge.

When agents know the true likelihood function, the well-known consistency prop-

erty of Bayesian learning implies that the agents�prior beliefs converge with prob-

ability one. To get a thorough understanding of the limiting behavior of portfolios,

therefore, what remains to explain is the asymptotic behavior of likelihood ratios.

When the support of the agents�prior beliefs over the parameters is a countable set

containing the true probability distribution, the true probability distribution over

paths is absolutely continuous with respect to the agents�priors and, therefore, the

convergence of likelihood ratios follows from the well-known result in Blackwell and

Dubins [1]. When the agents�prior beliefs have a positive and continuous density

with support containing the true parameter, the hypothesis in Blackwell and Dubins

[1] are not satis�ed and so we apply a result in Phillips and Ploberger [21] to show

that still the likelihood ratio of the agents� priors converges with probability one.

We also show that equilibrium portfolios converge to those of a rational expecta-

tions equilibrium of an economy where the investors�relative wealth is determined

by the densities of their prior beliefs evaluated at the true parameter. The important

message here is that when investors are Bayesians who know the likelihood function

generating the data and have the truth in the support of their prior beliefs, the het-

erogeneity of priors by itself can generate changes in portfolios but these changes

necessarily vanish.

Later, we give two examples where agents are Bayesians but change portfolios

in�nitely often. In the �rst example, agents know the likelihood function generating

the data but they do not have the truth in the support of their prior beliefs. For

recursive preferences induce the dependence upon histories.
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simplicity we consider agents that are dogmatic in the sense that the support of their

prior beliefs consists in only one point. We assume that their (degenerate) prior

beliefs are such that the associated one-period-ahead conditional probabilities have

identical entropy, a condition that ensures that the likelihood ratio of their priors

�uctuates in�nitely often between zero and in�nity and, consequently, portfolios �uc-

tuate in�nitely often. The second example underscores the importance of assuming

that every agent knows the true likelihood function for the portfolio to converge. To

stretch the argument to the limit, we consider an example in which only one agent

does not know the true likelihood function. This agent makes exact one-period-ahead

forecasts in�nitely often but it also makes mistakes in�nitely often though rarely. We

show that the likelihood ratio of these agents�priors fails to converge with probabil-

ity one implying that the set of paths where the equilibrium portfolio converges has

probability zero.

This paper relates to two branches of the literature on asset markets: models

aiming to explain the dynamic consequences of belief heterogeneity on investors�be-

havior and models analyzing the market selection hypothesis. Harrison and Kreps

[12] and Harris and Raviv [11] are the leading articles of the �rst branch and inspired

subsequent work by Morris [19] and Kandel and Pearson [14], respectively. Those

�rst-generation papers consider partial equilibrium models where a �nite number of

risk-neutral investors trade one unit of a risky asset subject to short-sale constraints.

Investors do not know the value of some payo¤ relevant parameter but they observe

a public signal and have heterogeneous, but degenerate, prior beliefs about the rela-

tionship between the signal and the unknown parameter. Belief heterogeneity implies

that they value the asset di¤erently in spite of having the same information. Since

each investor is absolutely convinced their model is the correct one, their disagreement

does not vanish as the data unfold.

Harrison and Kreps [12] consider the case where agents have di¤erent prior be-

liefs over the probability distribution of next period dividends and focuses on its asset

pricing implications. They show that speculative behavior might arise, in the sense

that the asset price might be strictly greater than every trader�s fundamental valu-

ation. This occurs, they argue, whenever the trader who holds the asset anticipates

she will able to resell it in the future for strictly more than her short-term valuation.

Harris and Raviv [11], on the other hand, concentrate on the relationship between

trade volume and asset prices. Agents agree about the probability distribution of

dividends but disagree on the likelihood of the signals. Risk neutrality ensures that

the group with the higher valuation holds the asset and no further trade occurs as
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long as that group remains the one who values it the most. Trade occurs only when

the two groups "switch sides."

The possibility that agents learn is addressed by Morris [19] who considers Har-

rison and Kreps�[12] model but assumes investors have non-degenerate prior beliefs

about the probability distribution of dividends and characterizes the set of prior be-

liefs for which a speculative premium actually exists. He assumes the true process is

i.i.d. and investors know the true likelihood function. Since they are Bayesian, they

eventually learn the truth. Consequently, risk neutrality implies the price converges

and the speculative premium vanishes in the long run. We underscore that even

though in Morris [18] the speculative premium vanishes, asset trading does not be-

cause there is always a period in the future when the asset changes hands once again.

His asymptotic results, however, are a direct consequence of the assumption that

agents are risk-neutral. Indeed, under risk-neutrality the intertemporal marginal

rates of substitution are independent of the equilibrium allocation and, therefore,

they are linear in the agents�one-period-ahead conditional probabilities. This has

two direct implications. On the one hand, when the individuals�one-period-ahead

conditional probabilities switch sides perpetually, so do their intertemporal marginal

rates of substitution and, therefore, new incentives for a change in the ownership of

the asset arise in�nitely often. On other hand, asset prices themselves are parame-

terized by the one-period-ahead conditional probabilities and, thus, they converge

together. We argue that these forces do not operate in a setting where agents are

risk-averse and allocations are Pareto Optimal. Indeed, the persistent switching in

intertemporal rates of substitution in Morris [18] is not robust to the introduction

of risk-aversion since in that case the agents� intertemporal marginal rates of sub-

stitution are always equalized in any e¢ cient allocation. Portfolio changes might

still occur persistently but this depends purely on the asymptotic behavior of the

e¢ cient allocation. Furthermore, as we emphasized above, the convergence of the

one-period-ahead conditional probabilities by itself does not guarantee the conver-

gence of allocations, asset prices and portfolios.

The aforementioned work assumes a capital market imperfection (i.e., short-sale

constraints) to argue that belief heterogeneity can have a fundamental e¤ect on asset

prices and the volume of trade. But this source of heterogeneity may matter even if

they do not give rise to a speculative premium and even in the absence of any market

imperfection. As a notable exception, Cogley and Sargent [5] focus on the e¤ect on

asset prices due solely to prior belief heterogeneity under the assumption that agents

know the true likelihood function. They consider a Lucas [16] tree model with a
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risk-neutral representative agent with a pessimistic but non-degenerate prior belief

over the growth rate of dividends. Even though learning eventually erases pessimism,

pessimism contributes a volatile multiplicative component to the stochastic discount

factor that an econometrician assuming correct priors would attribute to implausible

degrees of risk aversion.3 Thus, their work is close in spirit to ours in that they

use a general equilibrium model without any additional market imperfection. Since

they study a representative agent framework, however, they are silent about the

implications for trading volume.

This literature has not disentangled yet the asset trading implications stemming

purely from di¤erences in priors and, more importantly, it is still an open question

what the limiting behavior of asset trading is when agents eventually learn the true

one-period-ahead conditional probability.

The second branch of the literature related to our paper analyses the market

selection hypothesis and is exempli�ed by the work of Sandroni [22] and Blume and

Easley [3]. Sandroni [22] shows that, controlling for discount factors, if some trader�s

prior merge with the true distribution then she survives and any other trader survives

if and only if her prior merges with the true distribution as well.4 He also considers

some cases in which no agent�s prior merges with the truth. He shows that the

entropy of priors determines survival and, therefore, an agent who persistently makes

wrong predictions vanishes in the presence of a learner. To see the scope of Sandroni�s

results, recall that an agent�s prior merges with the true distribution if and only if

the true distribution is absolutely continuous with respect to that agent�s prior. This

is a strong restriction on priors that is not satis�ed, for instance, if the true process is

i.i.d., the agent knows this fact but her prior beliefs over the probability of the states

of nature have continuous and positive density. In that case, since the entropy of

every agent�s prior is the same, one cannot apply Sandroni�s results relating survival

with the entropy of priors either. This is precisely the case that Blume and Easley

[3] consider. In a setting similar to ours, they show that the evolution of the agents�

consumption in any e¢ cient allocation depends only on the discount rates and on

the likelihood ratio of their priors. They prove that among Bayesian learners who

know the true likelihood function generating the data, have prior beliefs over the

parameter with positive and continuous density on a set containing the truth, only

those with the lowest dimensional support can have positive consumption in the long
3Their model can generate substantial and declining values for the market prices of risk and the

equity premium and, additionally, can predict high and declining Sharpe ratios and forecastable
excess stock returns.

4An agent is said to survive if her consumption does not converge to zero.
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run. Technically speaking, Blume and Easley�s notion of convergence is in probability

and they establish their asymptotic result for almost all parameters in the support of

the agent�s prior belief. Although we do not focus on survival, one side contribution

of this paper is to make Blume and Easley�s results more robust because we show

that every Bayesian agent with a prior belief with the lowest dimensional support

actually survives with probability one (not just in probability), not only for almost

every parameter in the support of her prior belief but actually for all parameters

in the support of her prior belief.5 Our treatment of priors is very general in that

we consider a family that includes priors for which the one-period-ahead conditional

probability converges to the truth regardless of whether the agents� priors merge

with the truth or whether traders know the true likelihood function. In addition, it

includes cases in which the entropy of all agents is the same but some agents do not

learn the true one-period-ahead conditional probability.

Our results on the dynamics of portfolios that support a Pareto Optimal allocation

are a novel contribution to the literature because neither Sandroni [22] nor Blume and

Easley [3] analyze portfolio dynamics. However, one might hastily conjecture that

their results on the asymptotic behavior of consumption when agents have di¤erent

priors would map easily into properties on the asymptotic behavior of the supporting

portfolios. On the contrary, this mapping can actually be rather intricate. To grasp

the di¢ culty, consider the simplest case in which investors have homogeneous priors.

In that case it has been known for a long time that Pareto optimal individual con-

sumption in a stationary Markovian economy is a time homogeneous process with

�nite support (see section 20 in Du¢ e [6] for example). Nonetheless, it has been

surprisingly di¢ cult to establish how these properties translate into properties of the

portfolio in a dynamically complete markets equilibrium (see Judd et al. [15]).

This paper is organized as follows. In Section 2 we describe the model. In section 3

we present a simple example that illustrate the main ideas in this paper. The recursive

characterization of Pareto optimal allocations is in section 4. Section 5 characterizes

the asymptotic behavior of the agents present discounted value of excess demand.

Finally, sections 6 and 7 discuss when the agents� portfolio converge and when it

does not. Conclusions are in section 8. Proofs are gathered in the Appendix.
5This distinction is economically relevant because both in Blume and Easley�s [3] setting as well

as in ours the data (and agents� ultimate fate) may be produced by a probability measure with
parameters that may lie in a zero measure set of the agents�support.
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2 The Model

We consider an in�nite horizon pure exchange economy with one good. In this

section we establish the basic notation and describe the main assumptions.

2.1 The Environment

Time is discrete and indexed by t = 0; 1; 2; :::. The set of possible states of

nature at date t � 1 is St � f1; :::;Kg. The state of nature at date zero is known
and denoted by s0 2 f1; :::;Kg. We de�ne the set of partial histories up to date t as
St = fs0g �

�
�tk=1Sk

�
with typical element st = (s0; :::; st). S1 � fs0g � (�1k=1Sk)

is the set of in�nite sequences of the state of nature and s = (s0; s1; s2; � � � ), called a
path, is a typical element.

For every partial history st, t � 0, a cylinder with base on st is the set C(st) �
fs 2 S1 : s = (st; st+1; � � � )g of all paths whose t initial elements coincide with st.
Let Ft be the �-algebra that consists of all �nite unions of the sets C(st). The �-
algebras Ft de�ne a �ltration on S1 denoted fFtg1t=0 where F0 � ::: � Ft � ::: � F
where F0 � f;; S1g is the trivial ��algebra and F is the �-algebra generated by the
algebra

1S
t=0
Ft.

For any probability measure � : F ! [0; 1] on (S1;F), �st : F ! [0; 1] denotes

its posterior distribution after observing st.6 Let �t (s) be the probability of the �nite

history st, i.e. the Ft�measurable function de�ned by �t(s) � �(C(st)) and �0 � 1.
Let �

�
st
��st�1 � � �t(s)

�t�1(s)
denote the one-period-ahead conditional probability of state

st. Finally, for any random variable x : S1 ! <, E� (x) denotes its mathematical
expectation with respect to �:

Let �K�1 be the K � 1 dimensional unit simplex in <K , B
�
�K�1

�
be its Borel

sets and P(�K�1) be the set of probability measures on
�
�K�1;B

�
�K�1

��
. Con-

sider a set of probability measures on (S1;F) parameterized by � 2 �K�1, with
typical element ��, with the additional property that the mapping � 7! �� (B) is

B
�
�K�1

�
�measurable for each B 2 F . This set includes the subset of probability

measures on (S1;F) uniquely induced by i.i.d. draws from a common distribution

� : 2K ! [0; 1], where �(�) > 0 for all � 2 f1; :::;Kg, with typical element P �. We
make the following assumption.

A.0 The true stochastic process of states of nature is P �
�
for some ��.

6Formally, �st (A) �
�(Ast)
�(C(st))

for every A 2 F , where Ast �
�
s 2 S1 : s =

�
st; s0

�
; s0 2 A

	
.
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2.2 The Economy

There is a single perishable consumption good every period. The economy is

populated by I (types of) in�nitely-lived agents where i 2 I = f1; :::; Ig denotes an
agent�s name. A consumption plan is a sequence of functions fctg1t=0 such that ct :
S1 ! R+ is Ft�measurable for all t and sup(t;s) ct(s) <1: The agent�s consumption
set, denoted by C, is the set of all consumption plans.

2.2.1 Preferences

We assume that agents�preferences satisfy Savage�s [23] axioms and, therefore,

they have a subjective expected utility representation. This representation provides a

prior Pi over paths and, as it is well-known, it also implies that agents are Bayesians

(i.e., they update their prior using Bayes� rule as information arrives). But, most

importantly, it does not otherwise restrict agent�s priors in any particular way.7

We denote by Pi the probability measure on (S1;F) representing agent i�s prior
and we make the standard assumptions that the utility function is time separable and

the discount factor is the same for all agents. That is, her preferences are represented

by

UPii (ci) = E
Pi

 1X
t=0

�t ui(ci;t)

!
;

where � 2 (0; 1) and ui : R+ ! R+ is continuously di¤erentiable, strictly increasing,
strictly concave and lim

x!0
u0i(x) = +1 for all i.

One particular family of priors is that where the agent believes that the true

process of states of nature belongs to a parametric family of probability measures,�
��
	
, but the agent does not know the parameter � 2 �K�1. That is,

�(A) =

Z
�K�1

�� (A)� (d�) for every A 2 F , (1)

where � 2 P(�K�1) is the prior belief over the unknown parameters. The hypothesis
of rationality can be further strengthened to require that the agent is a Bayesian who

knows that the true process generating the data is i.i.d. but does not know the true

probability of the states of nature. Accordingly, we say that an agent with prior �

knows the likelihood function (of the stochastic process) generating the data if A:1

holds.8

A.1 �� = P � for every � 2 �K�1.
7See Blume and Easley [2] for a complete discussion on the implications of Savage�s axioms.
8The celebrated De Finetti theorem states that this is equivalent to the prior being exchangeable.
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We want to emphasize that even though under A.1 agents agree that the states

of nature are generated by i.i.d. draws from a common distribution �, they might

still disagree about � itself. The following assumption imposes more structure on the

subjective distribution of � and it will be discussed further below.

A.2 � has density f with respect to Lebesgue that is continuous at �� with f (��) > 0.

Another interesting speci�cation of prior beliefs is a point mass probability mea-

sure on � de�ned as �� : F ! [0; 1] where

�� (B) �
�
1 if � 2 B
0 otherwise.

When priors belong to the class represented by (1), Bayes�rule implies that prior

beliefs evolve according to

�i;st (d�) =
��(st

��st�1 ) �i;st�1 (d�)R
�K�1 �

�(st jst�1 ) �i;st�1 (d�)
, (2)

where �i;0 2 P(�K�1) is given at date 0 and ��(st
��st�1 ) � ��(C(st))

��(C(st�1))
: Observe that

under A.1, ��(st
��st�1 ) = � (st).

Lemma 1 Suppose agent i�s prior satis�es (1). Then,

Pi;st (B) =

Z
�K�1

��st (B)
��(st

��st�1 ) �i;st�1 (d�)R
�K�1 �

�(st jst�1 ) �i;st�1 (d�)
: (3)

It is well-known that Bayesian learning is consistent for any prior satisfying A:1.

However, this property applies to more general speci�cations of priors (for instance,

those satisfying (1), see Schwartz [26, Theorems 3.2 and 3.3]), and since our example

4 in Section 7.2 does not satisfy A.1 but it does satisfy (1), we state the consistency

result in the following Lemma to make precise its scope.

Lemma 2 Suppose that for �i;0� almost all � 2 �K�1 the probability measures ��

on (S1;F) are mutually singular. Then
�
�i;st

	1
t=0

converges weakly to �1 = �� for

���almost all s 2 S1, for �i;0� almost all � 2 �K�1:

2.2.2 Endowments

Agent i�s endowment at date t is yi;t(s) = yi(st) for all s and the aggregate

endowment is y(st) = yt(s) �
PI
i=1 yi;t(s) � y < 1. An allocation fcig

I
i=1 2 CI is

feasible if ci 2 C for all i and
PI
i=1 ci;t(s) � yt(s) for all s 2 S1. Let Y1 denote the

set of feasible allocations.
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3 Heterogeneous Priors and Portfolios: Examples

The main purpose of this section is to illustrate our main results using simple

examples of dynamically complete markets equilibria.

Suppose there are two states, A:0 holds with �� (1) = 1
2 , two agents, u(c) = ln c

and yi(�) = �iy(�) > 0 for all � 2 f1; 2g where �1 + �2 = 1. Agents can trade a

full set of Arrow securities. Arrow security �0 pays 1 unit of the consumption good

if st+1 = �0 and 0 otherwise. The price of Arrow security �0 2 f1; 2g and agent i�s
holdings at date t on path s are denoted by m�0

t (s) and a
�0

i;t(s), respectively.

In Appendix A we show that equilibrium consumption and portfolios are

ci;t(s) =
�
�i + �j

Pj;t(s)
Pi;t(s)

��1
�i yt(s);

a�
0

i;t(s) =
1

1� � y(�
0) �i

 �
�i + �j

Pj;t(s)
Pi;t(s)

pj(�
0jst )

pi(�
0jst )

��1
� 1
!
; �0 2 f1; 2g : (4)

Observe that the evolution of individual portfolios is completely determined by the

evolution of the likelihood ratio, Pj;t(s)Pi;t(s)
; and the ratio of the one-period-ahead condi-

tional probabilities,
pj(�

0jst )
pi(�

0jst ) . Portfolios converge if and only if the product of these

two ratios converge. Thus, trading is purely determined by the heterogeneity of

priors.

The relevant margin of heterogeneity, described by likelihood ratios and one-

period-ahead conditional probabilities, changes as time and uncertainty unfold. Con-

sequently, (4) suggests that the conventional wisdom that changes in portfolios are

fundamentally driven by heterogeneity in priors is correct as long as this margin of

heterogeneity persists. Bayesian updating, however, imposes a strong structure on

the limit behavior of beliefs, in the sense that agents typically end up agreeing on

one-period-ahead conditional probabilities. What is pending to explain is the limit

behavior of likelihood ratios when one-period-ahead conditional probabilities con-

verge. Before addressing this issue in a general setting, we consider some examples

to illustrate some widespread conjectures.

Benchmark Case: Homogeneous Priors

This is a particular case of the framework analyzed by Judd et al. [15]. Agents

have identical one-period-ahead conditional probabilities of state 1 after observing

partial history st, pi
�
1j st

�
. Then, the likelihood ratio Pj;t(s)

Pi;t(s)
= 1 for all t and s.

Consequently,

a�
0

i;t(s) = 0 for all t, s and �
0,
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and thus portfolios are �xed forever. In every equilibrium, agents consume their

endowment every period and, then, consumption and Arrow Securities prices are

simple random variables with support depending only on the aggregate endowment.

More precisely,

ci;t (s) = �i yt(s)

m�0

t (s) = �
1

2

yt(s)

y(�0)
: �

From this result and as a direct consequence of the convergence of the one-period-

ahead conditional probabilities, one might hastily make the following conjectures:

� Conjecture I: Portfolios converge to a �xed vector while consumption and Ar-
row security prices converge to some simple random variable depending only on the

aggregate endowment.

� Conjecture II: Limiting portfolios, consumption and Arrow security prices are
those of an otherwise identical economy where agents begin with homogeneous priors.

Example 1 shows that Conjecture II might fail even if Conjecture I holds.

Example 1: Heterogeneous Priors I

The agents�one-period-ahead conditional probabilities of state 1 are given by

p1
�
1j st

�
=
n1t (s)

t
and p2

�
1j st

�
=
n2t (s) + 2

t+ 4
;

where n�t (s) stands for the number of times state � 2 f1; 2g has been realized up to
date t on path s. Since we assume A:0 holds with �� (1) = 1

2 , the Strong Law of Large

Numbers implies that pi
�
1j st

�
! 1

2 (P
��� a:s:) as t!1, for every agent i 2 f1; 2g.

By the Kolmogorov�s Extension Theorem (Shiryaev [25, Theorem 3, p. 163]),

there exists a unique Pi on (S1;F) associated to the agents�one-period-ahead con-
ditional probabilities. Moreover, Pi satis�es A:1 and A2 and prior beliefs over � have

density f i (�) � ��i1�1 (1� �)�
i
2�1 on (0; 1), where �i1 = �

i
2 = i.

9 The likelihood ratio

is

P1;t (s)

P2;t (s)
=

R 1
0 P

�
t (s) d�R 1

0 P
�
t (s) � (1� �) d�

=

�[n1t (s)+1] �[n2t (s)+1]
�[t+2]

�[n1t (s)+2] �[n2t (s)+2]
�[t+4]

= (t+3) (t+2)

(n1t (s)+1) (n2t (s)+1)
;

where � stands for the Gamma function.10 The Strong Law of Large Numbers can

9Prior beliefs over � follow a Beta distribution B
�
�i1; �

i
2

�
on (0; 1), as in Morris [18].

10Recall that if n is an integer, then � (n) = (n� 1)!

12



be applied once again to show that

P1;t (s)

P2;t (s)
! 4 =

f1
�
1
2

�
f2
�
1
2

� P �
� � a:s:

It follows from (4) that portfolios converge to a �xed vector, that is

a�
0

1;t(s)!
1

1� � y(�
0) �1

 �
�1 + �2

1

4

��1
� 1
!
; �0 2 f1; 2g P �

� � a:s:

Although security prices, asset holdings and consumption all converge, we want to

underscore that only prices converge to those of an otherwise identical economy with

homogeneous priors. Indeed,

c1;t (s)! �1
�1+�2

1
4

yt(s) > �1 yt(s);

m�0

t (s)! � 1
2
yt(s)
y(�0)

;

and thus Conjecture I holds but Conjecture II does not. The reason is that even

though in the limit economy agents have identical beliefs, the agents��nancial wealth

need not be zero as in the economy that starts with homogenous priors. In fact, the

limit �nancial wealth distribution is endogenous and depends critically on priors as

we show in Section 6. �

The following example shows that Conjecture I might be false as well.

Example 2: Heterogeneous Priors II

The agents�one-period-ahead-conditional probabilities of state 1 are given by

p1
�
1j st

�
=

1

1 + e
p
1=t

and p2
�
1j st

�
=

e
p
1=t

1 + e
p
1=t
:

Observe that one-period-ahead conditional probabilities converge to 12 for both agents

and have the same entropy. That is,

EP
��
( log p1;t+1j Ft) = EP

��
( log p2;t+1j Ft) :

The ratio of one-period-ahead conditional probabilities, p1;t(s)p2;t(s)
, is a random vari-

able that takes values in
n
e
p
1=t; 1

e
p
1=t

o
. The logarithm of the likelihood ratio can
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be written as the sum of conditional mean zero random variables as follows

log

�
P1;t(s)

P2;t(s)

�
= log

tY
k=1

p1;k (s)

p2;k (s)

=
tX

k=1

�
1sk=1 (s) log

�
e
p
1=t
�
+ (1� 1sk=1 (s)) log

�
1

e
p
1=t

��

=

tX
k=1

xk (s)

where xk (s) 2
n
�
q

1
k ;
q

1
k

o
, EP

��
(xkj Fk�1) (s) = 0 and V arP

��
(xkj Fk�1) (s) =

EP
�� �

x2k
��Fk�1� (s) = 1

k . Consequently, the log-likelihood ratio is the sum of uni-

formly bounded random variables with zero conditional mean. Additionally, since the

sum of conditional variances of xk diverges with probability 1, it follows by Freedman

[10, Proposition 4.5 (a)] that

sup
t

tX
k=1

xk (s) = +1 and inf
t

tX
k=1

xk (s) = �1 P �
� � a:s:

and, therefore,

lim inf
P1;t(s)

P2;t(s)
= 0 and lim sup

P1;t(s)

P2;t(s)
= +1 P �

� � a:s:

This behavior of the likelihood ratio implies that individual portfolios �uctuate

in�nitely often. In particular,

lim inf a�
0

i;t(s) = �
1

1� � �i y(�
0) and lim sup a�

0

i;t(s) =
1

1� � (1� �i) y(�
0):

Individual portfolios, therefore, are highly volatile because each agent�s debt attains

its so-called natural debt limit in�nitely often. Consequently, Conjecture I does not

hold in this example and, a priori, this is rather surprising since every agent learns

the true one-period-ahead-conditional probabilities.�

Why does Conjecture I hold in example 1 while it fails in example 2? The main

di¤erence is that priors satisfy A:1 in example 1 but not in example 2. It turns out

that when A:1 holds for every agent, the likelihood ratios always converge and, thus,

Conjecture I holds in general.

However, to generalize these lessons to the setting described in section 2 one

faces two di¢ culties that we avoid in the examples by carefully choosing preferences,

individual endowments and priors. First, equilibrium portfolios in a more general
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setup are typically history dependent. Closed-form solutions for asset demands as in

(4) are useful to tackle this di¢ culty but are a particular feature derived from log

preferences and constant individual endowment shares. Second, likelihood ratios are

typically complicated objects which makes the analysis of their behavior a nonstan-

dard task. Closed-form representation for the likelihood ratio, as in the examples

above, simpli�es the analysis of its asymptotic properties but it is a consequence of

the particular family of priors that we choose.

The rest of the paper tackles the di¢ culties to extend the lessons from the exam-

ples to the more general setup described in section 2. Here we o¤er an outline. We

begin with a recursive characterization of e¢ cient allocations and their corresponding

supporting portfolios under the assumption that A.1 holds. In section 4, we show

that the evolution of any Pareto optimal allocation is driven solely by the evolution

of the likelihood ratios of the agents�priors and the agents�posterior beliefs over the

unknown parameters, as in the examples. In section 5, we prove that the agents�

�nancial wealth converges if and only if both the likelihood ratio as well as their be-

liefs (over the unknown parameters) converge. Afterwards, we tackle the di¢ culties

associated with the lack of closed form for the likelihood ratios. In section 6, we

consider a broad class of priors containing those satisfying A.1 and A.2. We apply

recent results in probability theory to prove that the likelihood ratios converge with

probability one, as in example 1. Finally, in section 7, we argue that is key that A.1

holds for every agent. More precisely, we construct priors such that A.1 does not hold

for only one agent while it does for the other. We show that the likelihood ratio does

not converge and, consequently, neither their �nancial wealth, nor their consumption

nor their portfolios converge, as in example 2.

4 A Recursive Approach to Pareto Optimality

In this section, we provide a recursive characterization of the set of Pareto op-

timal allocations and prove a version of the Principle of Optimality for economies

with heterogeneous prior beliefs. Throughout this section we assume that A:0 and

A:1 hold.

4.1 Pareto Optimal Allocations

A feasible allocation fc�i g
I
i=1 is Pareto optimal (PO) if there is no alternative

feasible allocation fbcigIi=1 such that UPii (bci) > UPii (c�i ) for all i 2 I.
Given the state of nature and prior beliefs at date zero, s0 = � and �0 �
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�
�1;0; :::; �I;0

�
= �, de�ne the utility possibility correspondence by

U(�; �) = fu 2 RI : 9 fcigIi=1 2 Y
1; UPii (ci) � ui 8i; s0 = �; �0 = �g:

Now we show that the utility possibility correspondence is well-behaved, i.e. it

is compact and convex-valued. Convexity follows from the strict concavity of the

utility functions while compactness is a direct consequence of the compactness of the

consumption set and the continuity of the utility functions.

Lemma 3 U(�; �) is compact and convex-valued for all (�; �)

Lemma 3 suggests that the set of PO allocations can be characterized as the

solution to the following planner�s problem. Given �0, s0 and welfare weights � 2 RI+,
de�ne

v�(s0; �0; �) � sup
fcigIi=12Y1

IX
i=1

�i E
Pi

 X
t

�t ui(ci;t)

!
; (5)

It is straightforward to prove that this problem can be written as

v�(�; �; �) = sup
u 2 U(�;�)

IX
i=1

�i � ui; (6)

The maximum in (6) is attained since the problem consists in maximizing a continuous

function on a set that is compact by Lemma 3.

First order conditions are necessary and su¢ cient to characterize the solution for

the planner�s problem and, consequently, the set of PO allocations. These conditions

can be written as

�i Pi;t(s)

�j Pj;t(s)

u0i(ci;t(s))

u0j(cj;t(s))
= 1 for all i, j 2 I, for all t and all s. (7)

IX
i=1

ci;t(s) = y(st). (8)

Here we explain in detail why conditions (7) and (8) imply that PO allocations are

history dependent in general. Since �j
�i
=

u0i(ci;0)
u0j(cj;0)

, the planner distributes consump-

tion such that the ratio of marginal valuations of any two agents -which, we recall,

include priors that could be subjectively held- is constant along time. Consequently,

under the optimal distribution rule, the ratio of marginal utilities, u0i(ci;t(s))
u0j(cj;t(s))

, must

be proportional to the likelihood ratio of the agents�priors, Pj;t(s)Pi;t(s)
. Whenever this
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ratio is constant along time (for instance, when all agents have the same priors), the

optimal distribution rule is both time and history independent. Therefore, individual

consumption depends only upon the current shock st (because it determines aggregate

output) and the �xed vector of welfare weights �. When agents have heterogeneous

priors, instead, the likelihood ratio is typically history dependent.

Now we argue that this history dependence can be handled with a properly chosen

set of state variables. Note that since condition (7) holds if and only if

u0i(ci;t(s))

u0j(cj;t(s))
=

Pi;st(C (s1; :::; sk))

Pj;st(C (s1; :::; sk))

u0i(ci;t+k(s))

u0j(cj;t+k(s))

=

R
�K�1 � (s1) :::� (sk) �i;st (d�)R
�K�1 � (s1) :::� (sk) �j;st (d�)

u0i(ci;t+k(s))

u0j(cj;t+k(s))
;

then the planner does not need to know the partial history itself in order to con-

tinue the date 0 optimal plan from date t onwards. Indeed, since �i;st (d�) =
�(st) �i;st�1 (d�)R

�K�1 �(st) �i;st�1 (d�)
, it is su¢ cient that he knows the ratio of marginal utilities at

date t induced by the original plan, u
0
i(ci;t(s))
u0j(cj;t(s))

, the state of nature at date t, st, and

the posterior beliefs, �st�1 (d�) : Moreover, since the ratio of marginal utilities at date

t equals the likelihood ratio weighted by the date zero welfare weights, �j Pj;t(s)�iPi;t(s)
, the

di¢ culties stemming from the optimal plan history dependence can be handled by

using (�1P1;t(s); :::; �IPI;t(s); �st�1) as state variables summarizing the history and

the state of nature at date t, st, describing aggregate resources.

From the discussion above, we conclude that a PO allocation cannot be fully

characterized using only the agents�beliefs over the unknown parameters (that is,

�st�1) and st as state variables as in the single agent setting (see, for example, Easley

and Kiefer [7]). In a multiple agent setting, instead, the planner needs to distribute

consumption and because of this one needs to introduce (�1P1;t(s); :::; �IPI;t(s)) as

an additional state variable.

In Section 4.2 below we present a formal exposition of this result. But �rst, we

establish some properties of the value function v�.

Lemma 4 The value function v�(�; �; �) is bounded and continuous for all (�; �; �).

Moreover, v� is homogeneous of degree 1 (hereafter HOD 1) and increasing in �:

To conclude this section, we characterize the utility possibility correspondence

and show that the set of PO allocations can be parametrized by welfare weights �.

Lemma 5 u 2 U(�; �) if and only if u � 0 and v�(�; �; �) � �u for all � 2 �I�1:
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4.2 Recursive Characterization of PO Allocations

Given that PO allocations are typically history dependent, standard recursive

methods cannot be applied. We tackle this issue by adapting the method developed

by Lucas and Stokey [17]. They characterize recursively optimal allocation prob-

lems in a deterministic setting when the history dependence is induced by recursive

preferences. We use the same strategy to characterize recursively the set of PO al-

locations in our stochastic framework where the history dependence is due to prior

belief heterogeneity.

In order to extend the Principle of Optimality to our economy, we �rst provide

a recursive characterization of the frontier of U(�; �). For each agent i, the law of

motion of beliefs is given by

�0i(�; �) (B) =

R
B �(�) �i (d�)R

�K�1 �(�) �i (d�)
for any B 2 B(�K�1). (9)

Given �0i, we de�ne agent i�s one-period-ahead conditional probabilities recursively

as

pr(�0)(�0i(�; �)) =

Z
�K�1

�(�0)�0i(�; �) (d�) ;

De�ne kfk = sup(�;�;�) j f(�; �; �) : � 2 �I�1 j and let

F � ff : S � RI+ � P(�K�1)! R+ : f is continuous and kfk <1g:

FH � ff 2 F : f is increasing and HOD 1 in �g

FH is a closed subset of the Banach space F and thus a Banach space itself.

Continuity is with respect to the weak topology and thus the metric on F is induced

by k:k :
For any v 2 FH ; de�ne the operator

(Tv) (�; �; �) = max
(c;u0(�0))

X
i2I

�i

8<:ui(ci) + �X
�0

pr(�0)(�0i(�; �))u
0
i(�

0)

9=; ; (10)

subject to

IX
i=1

ci = y(�) for all �; ci � 0; u0(�0) � 0 for all �0, (11)

v(�0; �0(�0); �0(�; �)) �
IX
i=1

�0i(�
0)u0i(�

0) for all �0(�0) and �0. (12)

18



In the following proposition we establish that the operator T is a contraction on

FH and then we apply standard arguments to show that the operator has a unique

�xed point in FH .

Proposition 6 There is a unique function v 2 FH solving (10)-(12)and the corre-

sponding policy functions are continuous.

Let v 2 FH be the unique solution to (10) - (12), i.e. v = Tv, where

(c; �0; u0) : S � RI+ � P(�K�1)! R+ � RI+ � RI+

denote the corresponding set of policy functions. Given (s0; �0; �0), we say that a set

of policy functions (c; �0; u
0
) generates an allocation bc if

bci;t(s) = ci(st; �t(s)),

�t+1(s) = �0(st; �t(s); �st�1)(st+1),

�st = �0(st; �st�1),

for all i and all t � 0 and s 2 S1 where �s�1 = �0.

In the recursive dynamic program de�ned by (10) - (12), the planner takes as given

(�; �; �) and allocates current consumption and continuation utility levels among

agents. It follows from convexity of U(�; �) that for a given vector of utility levels in
the frontier, there is an associated vector of welfare weights (which is unique up to a

normalization). Therefore, the optimal choice of continuation utility levels induces a

law of motion for welfare weights. Now we show that there is a one-to-one mapping

between the set of PO allocations and the allocations generated by the optimal policy

functions solving (10) - (12).

Proposition 7 (Principle of Optimality) v� 2 FH is the unique solution to (10)

- (12). Moreover, an allocation (c�i )
I
i=1 is PO given (�; �; �) if and only if it is

generated by the set of policy functions solving (10) - (12).

Informally, this result can be grasped as follows. The characterization of the

solution to the sequential formulation of the planner�s problem hints that once the

planner knows both the likelihood ratio weighted by the date zero welfare weights and

the beliefs at date t, he can continue the optimal plan from date t onwards. It is key

to understand that the consumption plan from date t+1 onwards can be summarized

by its associated utility level. Proposition 7 shows that the date zero optimal plan is
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consistent in the sense that the continuation plan is indeed the solution from date t

onwards.

Now we de�ne the set of policy functions solving problem (10) - (12) . The law of

motion for agent i�s beliefs at (�; �) is given by (9) and ci(�; �) is the unique solution

to

ci(�; �) +
X
h 6=i
(u0h)

�1(
�i
�h

u0i(ci(�; �))) = y(�): (13)

for each i 2 I, where (u0h)�1 denotes the inverse of u0h. Finally, the law of motion for
welfare weights is

�0i(�; �; �)(�
0) =

�i p
r(�0)(�0i(�; �))P

h �h p
r(�0)(�0h(�; �))

=
�i
R
�(�0)�0i(�; �) (d�)P

h �h
R
�(�0)�

0
h(�; �) (d�)

: (14)

It follows by standard arguments that (13) is the corresponding consumption

policy function. The (normalized) law of motion for the welfare weights (14) follows

from the �rst order conditions with respect to the continuation utility levels for each

individual. Observe that the normalization is harmless since optimal policy functions

are HOD zero with respect to �. (see Lucas and Stokey [17] for related results).

5 Determinants of the Financial Wealth Distribution

In this section we study the determinants of the �nancial wealth distribution that

supports a dynamically complete markets equilibrium allocation. First, we charac-

terize individual �nancial wealth recursively as a time invariant function of (�; �; �).

The current state, �, captures the impact of changes in aggregate output while (�; �)

summarizes and isolates the dependence upon history introduced by the evolving

degree of heterogeneity. Later, we employ a properly adapted recursive version of

the Negishi�s approach to pin down the PO allocation that can be decentralized as a

competitive equilibrium without transfers.

Given (�; �; �), we construct individual consumption using (13) and de�ne the

stochastic discount factor by

M(�; �; �)(�0) = � pr(�0)(�01(�; �))
u01(c1(�

0; �0(�; �; �)(�0))

u01(c1(�; �))
, (15)

where the choice of agent 1 to de�ne M is without loss of generality since Pareto

optimality implies that the intertemporal marginal rates of substitution are equalized

across agents.
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The functional equation that determines agent i0s �nancial wealth is

Ai(�; �; �) = ci(�; �)� yi(�) +
X
�0

M(�; �; �)(�0) Ai(�
0; �0; �0), (16)

where �0(�; �) and �0(�; �; �)(�0) are given by (9) and (14), respectively. Note that

(16) computes recursively the present discounted value of agent i�s excess demand.

In Proposition 8, we show that Ai is well-de�ned. Furthermore, we apply Negishi�s

approach to show that there exist a welfare weight such that Ai is zero for every i:

Proposition 8 Suppose A.0 and A.1 hold. Then, there is a unique continuous func-

tion Ai solving (16). Moreover, for each (s0; �0) there exists �0 = �(s0; �0) 2 RI+
such that Ai(s0; �0; �0) = 0 for all i.

5.1 The Fixed Equilibrium Portfolio Property

We say that the �xed equilibrium portfolio (FEP hereafter) property holds if

there exists fai(1); :::; ai(K)g 2 <K such that ai(�) = Ai(�; �; �) for all (�; �; �) and

all i. If the FEP property holds, any portfolio that decentralizes a PO allocation

with a �xed set of non-redundant assets is kept constant over time and across states.

Judd et al. [15] show that the FEP property is always satis�ed after a once-and-for

all initial rebalancing when agents have homogeneous priors. Indeed, in their setting

the solution to (16) is independent of (�; �), i.e. ai(�) = Ai(�; �; �) for all (�; �; �),

and, therefore, the agents� �nancial wealth is a vector in RK in any dynamically

complete markets equilibrium.

In our setting, instead, portfolios typically change as the welfare weights de-

termining the evolution of the wealth distribution change as time and uncertainty

unfold. Therefore, the FEP property does not hold in a dynamically complete mar-

kets equilibrium when priors are heterogenous implying that the result in Judd et

al. [15] is not robust to the introduction of this margin of heterogeneity. However,

since agents observe the same data and update their priors in a Bayesian fashion, a

pending deeper question is whether this trading activity fades out as this margin of

heterogeneity vanishes. Stated in a more technical language: Do welfare weights nec-

essarily converge, exhausting changes in portfolios? Our recursive approach permits

to study this issue directly.

The following proposition, a direct consequence of the continuity of Ai, relates

the asymptotic behavior of �t and �st with the set of paths where the FEP property

holds asymptotically. Given (s0; �0; �0), de�ne

�t+1(s) = �
0(st; �t(s); �st�1)(st+1),

where �st = �
0(st; �st�1), �(s0) = �0 and �s�1 = �0.
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Proposition 9 Suppose A.0 and A.1 hold. If �t(s) and �st converge on s, then

Ai(�; �t(s); �st�1) converges on s for every i and � 2 S and, consequently, the FEP
property holds asymptotically.

Proposition 9 underscores that if a PO allocation can be decentralized through a

sequence of markets, the associated wealth distribution converges to a �xed vector

for each � on every path s on which both �t(s) and �st�1 converge. Consequently,

asset trading reduces to the minimum.

The limit behavior of �st�1 under Bayesian updating is well understood (see

Lemma 2). On the other hand, very little is known about the evolution of the welfare

weights that decentralize a PO allocation. We address this issue in the following

section.

6 Limiting Welfare Weights under A.1

From condition (14) and Proposition 7, the ratio of welfare weights is

�i;t(s)

�j;t(s)
=

R
�K�1 � (st) �i;st�1 (d�)R
�K�1 � (st) �j;st�1 (d�)

�i;t�1(s)

�j;t�1(s)
=
�i;0
�j;0

Pi;t (s)

Pj;t (s)
, (17)

and, therefore, the asymptotic behavior of �t(s) depends on the limit behavior of the

likelihood ratios Pi;t(s)Pj;t(s)
.

Here, we show that when agents agree on the likelihood function generating the

data (A:1 holds), likelihood ratios converge and so do welfare weights. However, we

need to distinguish the case where the support of the agents�prior beliefs is countable

from that when it is uncountable. When the support is countable, the true probability

distribution is always absolutely continuous with respect to the agents�priors and,

therefore, the convergence of likelihood ratios follows from the well-known result in

Blackwell and Dubins [1]. The assumption of countable support, however, seems too

strong since it rules out, for instance, the case of prior beliefs that satisfy assumption

A:2. When A:2 holds, the probability distribution that generates the data is never

absolutely continuous with respect to the agents�priors and so Blackwell and Dubins�

result does not apply.11 Nonetheless, we show that likelihood ratios converge applying

a recent result by Phillips and Ploberger [21].

11Blume and Easley [3] also emphasize this point.

22



6.1 Countable Support

We �rst consider the case where the support of every agent�s prior belief is

countable (i.e., for every i, the set B 2 B(�K�1) such that �i;0(B) = 1 is countable)
and, therefore, the true probability distribution is absolutely continuous with respect

to the agents�priors. As Blackwell and Dubins [1] show, this condition is equivalent to

the convergence to a positive (�nite) number of the ratio of the agent�s prior through

date t to the true probability distribution of the �rst t states. Indeed, in Proposition

10 we show that for every agent i,

Pi;t (s)

P �
�
t (s)

! �i;0 (�
�) P �

� � a:s: (18)

Proposition 10 Suppose A.0 and A.1 hold. If the support of every agent�s prior

belief is countable and �i;0 (�
�) > 0, then (18) holds.

In turn, Proposition 10 implies that the agent�s likelihood ratios also have a �nite

positive limit and consequently

�i;t(s)

�j;t(s)
=
�i;0
�j;0

Pi;t (s)

Pj;t (s)
! �i;0
�j;0

�i (�
�)

�j (�
�)

P �
� � a:s:

Since Ah is homogeneous of degree zero and �h;st�1 converges weakly to ��� for

every agent h, it follows by Lemma 2 that for every state � 2 f1; :::;Kg,

Ah(�; �t(s); �st�1)! Ah(�; �
�; ���) P �

� � a:s:

where, for every h, ��h = �h;0 �h;0 (�
�) and �h;0 is the welfare weight de�ned in Propo-

sition 8. Therefore, we obtain the following result which completely characterizes the

limiting properties of the economy.

Theorem 11 Suppose A.0 and A.1 hold. If the support of every agent�s prior belief

is countable and �i;0 (�
�) > 0, then every e¢ cient allocation converges to the Pareto

optimal allocation parametrized by
�
�1;0 �1;0 (�

�) ; :::; �I;0 �I;0 (�
�)
�
, P �

��a.s. Fur-
thermore, the FEP property holds asymptotically where ah(�) = Ah(�; ��; ���) for all

� and h 2 I.

6.2 Uncountable Support

Now we turn to the case where the agent�s prior satis�es A:1 and A:2. Since

Blackwell and Dubins� result does not apply, we invoke a result in Phillips and

Ploberger [21, Theorem 4.1] (stated in the appendix for completeness) to establish
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that there exists a sequence of measures Qh;t on (S1;Ft) that approximates Ph;t in
the sense that the likelihood ratio Ph;t

Qh;t
converges to 1.

Although there are several alternative asymptotically equivalent forms for Qh;t,

we �nd the following representation particularly useful

Qh;t (s)

P �
�
t (s)

=

p
2 � fh (��)

B
1=2
t (s)

elt(
b�t(s)), (19)

where lt (�) � ln P �t
P �

�
t

, b�t is the Maximum Likelihood Estimator (MLE) of �, Bt (�) is

the conditional quadratic variation of the score and Bt = Bt (��).

In fact, under assumptions A:0, A:1 and A:2, the aforementioned result by Phillips

and Ploberger can be handled to show that

1
p
2 � fh(��)

(t ��)1=2

Ph;t (s)

P
b�t
t (s)

! 1 P �
� � a:s:, (20)

where �� is a constant depending upon �� that we de�ne properly in the Appendix.

Proposition 12 Suppose A.0 and A.1 hold. If every agent�s prior belief satis�es

A.2, then (20) holds.

This result can be manipulated to show that if agent i and j�s priors satisfy A.1

and A.2, then

�i;t(s)

�j;t(s)
=
�i;0
�j;0

Pi;t (s)

Pj;t (s)
! �i;0
�j;0

fi (�
�)

fj (�
�)

P �
� � a:s.

By a reasoning analogous to the one we used in the countable case, it follows that

for every state � 2 f1; :::;Kg,

Ah(�; �t(s); �st�1)! Ah(�; �
�; ���) P �

� � a:s:

where, for every h, ��h = �h;0 fi (�
�) and �h;0 is the welfare weight de�ned in Propo-

sition 8. We summarize all these results in the following theorem.

Theorem 13 Suppose A.0 and A.1 hold. If every agent�s prior belief satis�es A.2,

then every e¢ cient allocation converges to the Pareto optimal allocation parametrized

by [�1;0 f1 (��) ; :::; �I;0 fI (��)], P �
��a.s. Furthermore, the FEP property holds as-

ymptotically where ah(�) = Ah(�; ��; ���) for all � and h 2 I.
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6.3 Discussion

Theorems 11 and 13 argue forcefully that when the true parameter is in the

support of every agent�s prior belief and they know the true likelihood function gen-

erating the data (i.e., A:1 holds), the equilibrium allocation of the economy with

heterogeneous priors converges to that of an economy with correct priors where the

wealth distribution is determined by f��hgh2I : That is, the density of the agents�
prior beliefs, evaluated at the true parameter, is su¢ cient to pin down the limiting

wealth distribution. This result is particularly appealing since it only requires to

know exogenous parameters describing the economy at date zero. Indeed, it allows

to compute the limiting allocation without solving for the equilibrium.

The mechanics to obtain our results, then, is to exploit Ah�s homogeneity of de-

gree zero to normalize welfare weights and then to show the convergence of these

normalized welfare weights. To get a thorough understanding, it is key �rst to recog-

nize that the driving force of the equilibrium allocation dynamics is the evolution

of the welfare weights. Observe that agent i�welfare weight, �i, is the planner�s

current valuation of an additional unit of agent i�s utility. By consistency, then,

�i�
R
�
�
�0
�
�0i(�; �; �) (d�) is the planner�s current valuation of an additional unit of

agent i�s next period utility at state �0. This is the economics behind the law of

motion (17), before normalizing the welfare weights. Secondly, since the evolution of

these weights is fully driven by the behavior of likelihood ratios, we are lead to study

their dynamics.

However, the study of the limit behavior of these ratios is a non-trivial task. The

�rst problem one faces is that both the numerator and the denominator are vanish-

ing and, consequently, it is crucial to understand their relative rate of convergence.

Evidently, this asks for an appropriate normalization. While looking for the proper

normalization, we found some technical di¢ culties that forced us to treat separately

the cases with countable and uncountable support. In the countable case, the analy-

sis in Blackwell and Dubins [1] suggests that P �
�
t is the normalization that works.

In the uncountable case, on the other hand, the work of Phillips and Ploberger [21]

suggests that Qh;t is the proper normalization. Therefore, as long as A:1 holds and

the true parameter is in the support of every agent�s prior belief, we can conclude

that relative welfare weights converge to positive numbers for both the countable and

the uncountable case.

So far we have made two critical assumptions regarding the support of the agent�s

prior belief, namely, (i) it contains the true parameter and (ii) it has the same di-
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mension for every agent. The logic behind these two assumptions is as follows. As

Blume and Easley [3] and Sandroni [22] argue forcefully, when some agent learns the

truth, (i) and (ii) are necessary to rule out that the likelihood ratio converges to zero

for some pair of agents and, therefore, to rule out that the welfare weight goes to

zero for some agent. Evidently, consumption vanishes and their wealth approaches

the so-called natural debt limit (see condition (16)) for those agents whose welfare

weights converge to zero. The limiting economy, therefore, mimics the economy where

those agents�property rights on their individual endowments have been redistributed

among the remaining agents. But then those agents are basically irrelevant to under-

stand the properties of the long-run behavior of the individuals�portfolios supporting

PO allocations.

7 Persistent Trade

In this section we give examples to illustrates the necessity of assuming that the

support of every agent�s contains the true parameter (section 7.1) and that every

agent knows the true likelihood function (section 7.2) for the FEP property to hold

asymptotically.

7.1 Example 3: Dogmatic Priors

Judd et al. [15] show that, after a once-and-for all initial rebalancing, the FEP

property holds for economies with homogeneous priors. On the one hand, we have

shown forcefully that the FEP property holds asymptotically provided that the agents

have priors satisfying A:1 and the support of their prior beliefs contains the true

parameter. Here we show that this last condition is necessary in the sense that when

it is not satis�ed, the FEP property may not hold even if agents�priors satisfy A:1,

no matter how close they are to the truth and with respect to each other.

We assume there are only two agents whose priors beliefs are point masses on �1
and �2, respectively, where �1 6= �2 and �� ln �1�2 + (1� �

�) ln 1��11��2 = 0: Since agents

have heterogeneous "dogmatic" priors with the same entropy, then it can be shown

that both agents survive.12 The ratio of one-period-ahead conditional probabilities,
p1( �0jst)
p2( �

0jst) , is a simple random variable that takes values in
n
�1
�2
; 1��11��2

o
. The logarithm

of the likelihood ratio can be written as the sum of conditional zero mean random
12An agent survive on a path if his consumption does not converge to zero on that path. See

Blume and Easley [4] for a general analysis of optimal consumption paths in i.i.d. economies where
agents have degenerate prior beliefs.

26



variables as follows

log

�
P1;t(s)

P2;t(s)

�
= log

tY
k=1

�
�1
�2

�1sk=1(s) �1� �1
1� �2

�1�1sk=1(s)
=

tX
k=1

�
1sk=1 (s) log

�
�1
�2

�
+ (1� 1sk=1 (s)) log

�
1� �1
1� �2

��

=
tX

k=1

xk (s) ,

where EP
��
(xkj Fk�1) (s) = 0 and varP

��
(xkj Fk�1) (s) = EP

�� �
x2k
��Fk�1� (s) =

EP
�� �
x2k
�
> 0. So, the log likelihood ratio is the sum of uniformly bounded random

variables with zero conditional mean and conditional variance bounded away from

zero. Once again, it follows by Freedman [10, Proposition 4.5 (a)] that

sup
t

tX
k=1

xk (s) = +1 and inf
t

tX
k=1

xk (s) = �1 P �
� � a:s:,

and, therefore,

lim inf
P1;t(s)

P2;t(s)
= 0 and lim sup

P1;t(s)

P2;t(s)
= +1 P �

� � a:s:

Inspecting condition (17), it is evident that welfare weights do not converge in this

example. Since prior beliefs are degenerate at �i, posteriors are also degenerated at

�i and, therefore, agent i�s �nancial wealth is Ai(�; �t(s); (��1 ; ��2)). We can conclude

that the FEP property does not necessarily hold asymptotically.

7.2 Example 4: Di¤erent Likelihood Functions

In example 2 we show that the FEP property does not hold asymptotically when

no agent satis�es A:1. To underscore the importance of assuming that A:1 holds for

every agent, here consider, instead, the case in which A:1 does not hold for one agent

while it holds for the other. One agent, on the one hand, has a prior satisfying A:1

and A:2 and, therefore, he ends up learning the true parameter with the implication

that his one-period-ahead conditional probabilities converge to the truth. The other

agent, on the other hand, does not know the likelihood function generating the data

(i.e., he has a wrong "model" in mind). For some partial histories his one-period-

ahead conditional probabilities are correct while for some others they are incorrect.

The appealing feature of this example is not only that he survives but also the FEP

property does not hold since agent 2 generates genuine asset trading in�nitely often.
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For simplicity, we assume there are only two states of nature every period, that

is K = 2. For a �xed prior satisfying A:1 and A:2 for agent 1, let �� 2 �1 be an
element of the support of agent 1�s prior belief such that �1;st

w! ��� , P �
� � a:s: By

Lemma 2 we know �� lies in a �1;0�full measure subset of �1. Choose also � 2 �1

and for each partial history st de�ne

ep� �� ��st � �
8>><>>:
�� (�) if �tk=1

ep�(skjsk�1 )
p1(skjsk�1 ) � 1

� (�) if �tk=1
ep�(skjsk�1 )
p1(skjsk�1 ) > 1

Clearly, ep� �� ��st � is given by the true one period-ahead conditional probability when-
ever the likelihood ratio �tk=1

ep�(skjsk�1 )
p1(skjsk�1 ) is smaller than or equal to one. When that

ratio is strictly greater than one, on the other hand, ep� �� ��st � is given by � 2 �1.
Now we construct a probability measure on (S1;F) with the property that, after

each partial history st, its one period-ahead conditional probability coincides withep� �� ��st �. We de�ne probability measures n eP �t o1
t=1
on f(S1;Ft)g1t=0 as follows:

eP �1 (s) � ep� (s1 js0 )eP �t+1 (s) � ep� �st+1 ��st � eP �t (s) 8s =
�
st; :::

�
and 8t � 1.

By the Kolmogorov�s Extension Theorem there exists a unique probability measureeP � on (S1;F) that coincides with n eP �t o1
t=1

when restricted to f(S1;Ft)g1t=0.

Remark 1: If � = ��, then eP �� = P �� .
Clearly, the family

n eP � : � 2 �1o consist of probability measures on (S1;F) such
that for each B 2 F , � ! eP � (B) is B ��1��measurable.
7.2.1 Agent 2�s priors

Now we are ready to de�ne agent 2�s priors. Clearly, there exists 0 < " < 1 such

that

" < min f��; 1� ��g � max f��; 1� ��g < 1� ":

De�ne

m� � argmin
"�m�1�"

(�� logm+ (1� ��) log (1�m)) ,

and letm�
t denote the i.i.d. random variable that takes valuesm

� and 1�m� in states

1 and 2, respectively. Let ��t denote the i.i.d. random variable that takes values ��

and 1� �� in states 1 and 2, respectively.
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Agent 1 knows the likelihood function generating the data and so his prior is

P1 (B) �
Z
�1
P � (B)�1;0 (d�) for any B 2 F .

The prior of agent 2 is

P2 (B) �
Z
�K�1

eP � (B)�2;0 (d�) = ePm�
(B) ,

and agent 2�s one period ahead conditional probabilities are given by

p2;t (s) �
P2;t+1 (s)

P2;t (s)
=
ePm�
t+1 (s)ePm�
t (s)

= epm� �
st+1

��st � .
Remark 2: Notice that agent 2�s one period-ahead probabilities are in�nitely

often bounded away from the true one period-ahead conditional probability and so

he never learns the true parameter. At �rst reading this seems to contradict Lemma

2 above. However, that Lemma only asserts that for almost all possible parameters,

according to agent 2�prior belief, he almost surely learn the parameter value. But

according to agent 2�s prior belief, �� is in a zero measure set and so there is no reason

to expect consistency when �� is the true parameter generating the data.

The following proposition shows that the likelihood ratio of 2�s prior to 1�s prior

�uctuates between 1 and +1. The intuition behind this result is as follows. On
the one hand, the likelihood ratio cannot be both bounded away from and greater

than one eventually. If this were the case, agent 2�s one-period-ahead conditional

probability would be bounded away from the truth eventually. Since agent 1�s one-

period-ahead conditional probability converges to the truth, the likelihood ratio would

converge to zero almost surely. But this contradicts the assumption that the likeli-

hood ratio is greater than one eventually. On the other hand, the set of paths where

the likelihood ratio is greater than one in�nitely often has full measure. To see this,

consider its complement, the set of paths where the likelihood ratio is smaller or

equal to one in �nite time. On those paths, agent 2�s one-period-ahead conditional

probability is correct in �nite time and, since agent 1�s prior satis�es A:1 and A:2,

the likelihood ratio diverges almost surely, contradicting the initial assumption.13

Therefore, the set of paths where the likelihood ratio is smaller than or equal to one

in �nite time must have zero measure. Finally, since the ratio of one-period-ahead

conditional probabilities is bounded away from one in�nitely often, the likelihood
13 If agent 1 had a prior belief with countable support (so that A:2 does not hold) then the truth

would be absolute continuous with respect to 1�s prior and so the likelihood ratio would not diverge
even if 2 were correct every period.
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ratio exceeds any pre-speci�ed upper bound in�nitely often on the set of paths where

the likelihood ratio is greater than one in�nitely often.14 Thus, it must diverge along

some subsequence of periods.

Proposition 14 Suppose A.0 holds. If agent 1�s prior satis�es A:1 and A:2, then

lim inf
P2;t(s)
P1;t(s)

� 1 and lim sup P2;t(s)P1;t(s)
= +1 P �

� � a:s:

7.2.2 Dynamics of Portfolios: On the Failure of the FEP property

We consider again the economy described in Section 3 where portfolios are given

by (4). Proposition 14 makes it clear that agents 1 and 2 survive. Agent 1�s one-

period-ahead conditional probabilities converge to the truth while agent 2 makes mis-

takes in�nitely often. However, agent 2�s one-period-ahead conditional probabilities

are also correct in�nitely often. Whether this is su¢ cient to o¤set the disadvantage

stemming from his mistakes depends on the speed of agent 1�s learning process. As-

sumption A:2 ensures that this convergence rate is small enough to make both agents

survive. Moreover, since the likelihood ratio �uctuations do not damp out, wealth

�uctuations do not damp out either. It follows immediately that the FEP property

fails and, consequently, asset trading purely generated by heterogeneous priors does

not vanish. We summarize these results in the following proposition; the proof is

omitted since it is a direct consequence of Proposition 14 and the arguments above.

Proposition 15 Suppose A.0 holds. If agent 1�s prior satis�es A:1 and A:2, then,

P �
� � a:s::

(a) agents 1 and 2 survive on s.

(b) the wealth of agent 1 is in�nitely often close to its lower bound on s.

(c) the FEP property does not hold on s.

7.2.3 Further Remarks

In Sandroni�s [22] terminology, agent 1 eventually makes accurate next period

predictions while agent 2 does not and yet both agent survive. At a �rst glance,

14To see why, consider the event where the ratio of agent 2�s to agent 1�s one-period-ahead condi-
tional probabilities is bounded away from one. The conditional probability of that event is bounded
away from zero in�nitely often on the set of paths where the likelihood ratio is greater than one
in�nitely often. This is because only agent 1�s one-period-ahead conditional probability converges
to the truth on those paths. Therefore, the conditional probability of the event "the likelihood ratio
exceeds a pre-speci�ed upper bound in a �xed number of periods" is also bounded away from zero
in�nitely often on the set of paths where the likelihood ratio is greater than one in�nitely often. To
clinch the result we need to argue that such event actually occurs in�nitely often. An application of
Levy�s conditional form of the Second Borel-Cantelli Lemma shows the latter is true on the set of
paths where the likelihood ratio exceeds one in�nitely often.
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then, Proposition 15 (a) might seem to contradict the results in Sandroni. However,

no contradiction exists because this example does not satisfy the assumptions of

his propositions. Indeed, his �rst result applies to the case in which the truth is

absolutely continuous with respect to some agent�s prior, an assumption that is not

satis�ed in this example (again, A:0, A:1 and A:2 rule out absolute continuity for

agent 1). His second result concerns economies where agents whose one-period-ahead

conditional probabilities converge to the truth coexist with others whose one-period-

ahead conditional probabilities are bounded away from the truth eventually. This

result does not apply either because agent 2 does not belong to any of these categories.

This example does not �t in the general setting described by Blume and Easley

[3] either since they only consider economies where every agent�s prior satis�es A:1.15

That is, the margin of heterogeneity in priors they consider is the one arising from

di¤erences in the dimension of the agents�support. However, since nothing in the

Savage approach to decision making imposes assumption A:1, it is also important to

address the e¤ect of the margin of heterogeneity stemming from di¤erences in the

agents�likelihood functions (i.e., agents having di¤erent models). Since we assumed

that agent 1�s prior satis�es A:1 while agent 2�s prior does not (because he does not

know the true likelihood function), our example explores that margin. Our �ndings,

stated in Proposition 15, strongly suggest that the additional assumption A:1 shuts

down a margin of heterogeneity that might be critical not only for survival but also

for asset pricing and trading volume.

8 Concluding Remarks

If agents know the likelihood function generating the data and every agent has

the true probability distribution over states of nature in the support of her prior

beliefs, then investors change their portfolios with the arrival of new information but

these changes necessarily vanish in any dynamically complete markets equilibrium.

Therefore, persistent changes in portfolios can be attributed to di¤erences of opinion

about the content of new information only if one assumes that either (i) no agent has

the true parameters in the support of her prior beliefs or (ii) agents disagree on the

likelihood function generating the data or (iii) the probability of the states of nature

changes along time.

15They do have an example in which agent 1 satis�es A:1 while agent 2 does not and yet the
latter survives. However, their example di¤ers from ours in that agent 2 not only learns the true
one-period-ahead conditional probability but also, and most importantly, likelihood ratios converge
with probability one.
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9 Appendix A

In this Appendix we show that (4), used throughout Examples 1 - 4, denotes the

equilibrium Arrow security holdings.

First, observe that the planner�s problem is

v�(s0; �0; �) = max
fcig2i=12Y1

2X
i=1

�i E
Pi

 1X
t=0

�t log ci;t

!

The �rst order conditions imply that

�i �
t Pi;t (s)

1

ci;t (s) (�)
= �t(s)(�) for all i, t and s, (21)

where �t(s)(�) denotes the Lagrange multiplier corresponding to the feasibility con-

straint at date t on s. The corresponding optimal allocation is fully characterized

by

ci;t (s) (�) =
�i Pi;t(s)

�i Pi;t(s)+�j Pj;t(s)
yt (s) for all i, t and s. (22)

Let �i;t(s)(�) =
�t(s)(�)
Pi;t(s)

and qi;t(s)(�) =
�i;t(s)(�)

�i;0(s)(�)
. Now, de�ne

Ai;0(�) = EPi

 1X
t=0

qi;t(�) (ci;t(�)� yi;t)
!

= EPi

 1X
t=0

qi;t(�)
�

�i Pi;t
�i Pi;t+�j Pj;t

� �i
�!

:

Using (21) and (22) it is easy to check that

Ai;0(�) =
y(s0)
1�� (�i � �i) :

It is a routine exercise to show that the PO allocation corresponding to (�1; �2) =

(�1; �2) can be decentralized a competitive equilibrium with sequential trading where

a full set of Arrow securities can be traded. To pin down the corresponding asset

holdings, we �rst compute the value of excess demand at date t on path s

Ai;t(s) = EPi

0@ 1X
j=0

qi;t+j(�1;�2)
qi;t(�1;�2)

(ci;t+j(�1; �2)� �iyt+j)

������Ft
1A (s)

= �i y(st)
1��

"�
�i + �j

Pj;t�1(s)
Pi;t�1(s)

pj(stjst�1 )
pi(stjst�1 )

��1
� 1
#
:

Thus, equilibrium portfolios are

a�
0

i;t(s) =
�i y(�

0)
1��

 �
�i + �j

Pj;t(s)
Pi;t(s)

pj(�
0jst )

pi(�
0jst )

��1
� 1
!
; �0 2 f1; 2g :
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10 Appendix B

Proof of Lemma 1:. Observe �rst that

pi(sk

���sk�1 ) = Z
�K�1

��(sk

���sk�1 )�i;sk�1 (d�)
for any 1 � k � t. Then, we have thatZ
�K�1

��st (B)�i;st (d�) =

Z
�K�1

��st (B)
��(st

��st�1 )�i;st�1 (d�)R
�K�1 �

�(st jst�1 )�i;st�1 (d�)

=
1

pi(st jst�1 )
:::

1

pi (s1 js0 ))

Z
�K�1

��st (B) �
�(st

��st�1 ):::�� (s1 js0 )�i;0 (d�)
=

1

Pi (C(st))

Z
�K�1

�� (Bst)

�� (C(st))
��
�
C(st)

�
�i;0 (d�)

=
1

Pi (C(st))

Z
�K�1

�� (Bst) �i;0 (d�)

=
1

Pi (C(st))

Z
�K�1

��
�
C(st) \Bst

�
�i;0 (d�)

=
Pi
�
C(st) \Bst

�
Pi (C(st))

= Pi;st (B)

since Bst � C(st).
Proof of Lemma 3. Boundedness follows because Y1 is bounded: Convexity

follows from the strict concavity of ui:

To prove that U(�; �) is closed, take any sequence fung such that un 2 U(�; �) for
all n and un ! u 2 RI+: Take the corresponding sequence fcng � Y1. Since Y1 is

compact under the sup-norm, there exists a convergent subsequence fcnkg such that
cnk ! c 2 Y1. Thus, it follows by de�nition that UPii (c

nk
i ) � u

nk
i for all k and for

all i: Since UPii is continuous and C is compact, then UPii is continuous under the

sup-norm. Thus, it follows that UPii (ci) � ui; for all i: Consequently, u 2 U(�; �) by
de�nition and U(�; �) is closed.

Proof of Lemma 4. Boundedness follows because Y1 is bounded and � 2
(0; 1):

Let Y k � fc 2 Y : ci(s
t) � ci;t (s) = 0 for all t � kg be the k�truncated set of

feasible allocations. Note that Y k � Y k+1 � Y1 and de�ne

v�k(�; �; �) � max
c 2 Y k

X
i2I

�i U
Pi
i (ci)

Suppose that
n
(�ni )

I
i=1

o
is a sequence of probability measures such that �ni converges
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weakly to �i 2 P(�K�1) for all i: Given k; note that

kX
t=0

�t
Z
�K�1

 X
st

P �
�
C(st)

�
ui(ci(s

t))

!
�ni (d�) ;

converges to
kX
t=0

�t
Z
�K�1

 X
st

P �
�
C(st)

�
ui(ci(s

t))

!
�i (d�) ;

since P �
�
C(st)

�
is continuous and bounded for all t and st. Thus, it follows from the

Maximum Theorem that v�k(�; �; �) is continuous in (�; �) for all �:

Note that v�k(�; �; �) � v�k+1(�; �; �) � v�(�; �; �) for all (�; �; �):Hence, v�k(�; �; �)!
v�(�; �; �) for each (�; �; �) since there exists some c� 2 Y1 attaining v�(�; �; �): Now
we show that this convergence is uniform.

Given any (�; �; �); let c� 2 Y1 attain v�(�; �; �) and de�ne c�k as its k�truncated
version: Then,

0 � v�(�; �; �)� v�k(�; �; �) �
IX
i=1

�i(U
Pi
i (c

�
i )� UPii (c

�k
i )) �

�k

1� � maxi ui(y):

Since � 2 (0; 1), this convergence is uniform (i.e., the RHS is independent of (�; �; �))
and thus v�(�; �; �) is continuous.

Proof of Lemma 5. For any u 2 U(�; �); it follows by de�nition (6) that
v�(�; �; �) � �u for all � 2 �I�1: To show the converse, suppose that u � 0 and

v�(�; �; �) � �u for all � 2 �I�1 but u =2 U(�; �): This implies that @ eu 2 U(�; �)
such that eu � u: Since U(�; �) is convex, it follows by the separating hyperplane
theorem that 9 ! 2 RI+=f0g such that !u � !eu for all eu 2 U(�; �): Since U(�; �) is
closed, !u > !eu for all eu 2 U(�; �), where ! can be normalized such that ! 2 �I�1:
But then v�(�; !; �) � ! u > !eu for all eu 2 U(�; �): This contradicts (6).

Proof of Proposition 6. We �rst show that T : FH ! FH .

Suppose that f 2 FH : Since ui(ci) � maxui(y) and 0 � u0i(�0) �
f(�0) for all

i and all �0, it follows that kTfk < 1: Since �0(�; �) is weakly continuous in � for
all � (Easley and Kiefer [7, Theorem 1]), it follows by the Maximum Theorem that

(Tf) (�; �; �) is continuous in (�; �) for all � (Easley and Kiefer [7, Theorem 3]). Note

that this implies that there exists a solution that attains (Tf) (�; �; �):

Observe that �
0
(�; �) does not depend on � and consequently the constraint cor-

respondence is independent of welfare weights. Thus, it follows from standard argu-

ments that (Tf) (�; �; �) is HOD 1 and increasing in �. Consequently, T : FH ! FH :

Now we show that the operator T satis�es Blackwell�s su¢ cient conditions.
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(i) Monotonicity. Suppose that f � g: Then, if for all �0

min
�0(�0)2�I�1

"
f(�0; �0(�0); �0(�; �))�

IX
i=1

�0i(�
0)u0i(�

0)

#
� 0;

it follows that

min
�0(�0)2�I�1

"
g(�0; �0(�0); �0(�; �))�

IX
i=1

�0i(�
0)u0i(�

0)

#

� min
�0(�0)2�I�1

"
f(�0; �0(�0); �0(�; �))�

IX
i=1

�0i(�
0)u0i(�

0)

#
� 0:

and then the constraint set is enlarged. Consequently, (Tv) (�; �; �) � (Tg) (�; �; �)
for all (�; �; �):

(ii) Discounting. Consider any arbitrary a > 0 and let
�bc; bu0(�0)� attain T (f + a).

Fix (�0; �0(�; �)); denote f(�) = f(�0; �; �0) and de�ne

Ua � fu 2 RI+ : f(�) + a � � � u; 8� 2 �I�1g;

B � fu 2 RI+ : u � u0 + a; for some u0 2 U0g:

To show that B � Ua, notice that u 2 B implies that � � u � � � (u0 + a) �
� � f (�)+ a for all � 2 �I�1, since u0 2 U0 implies � �u0 � � � f (�) for all � 2 �I�1.

To check that Ua � B, consider any u 2 Ua: There are three cases to consider
corresponding to di¤erent regions in Figure 1 below. (i) If u � a (see Region I, Figure
I), let u0 = 0 2 U0 and thus u 2 B (see Region I). (ii) If u � a (see Region II); let
u0 = u � a � 0 and thus u0 2 U0 since for any � 2 �I�1, � � u0 = � � (u� a) =
� � u� a � f(�).

(iii) To consider the third case (see Regions III and IV), suppose to simplify that

I = 2 and let u1 � a and u2 < a. Fix u2, let � 2 [0; 1] and de�ne

Ua1 (u2) � fu1 � 0 : f(�; 1� �) + a � �u1 + (1� �)u2; 8� 2 [0; 1]g

= fu1 � 0 : f(�; 1� �) + (a� u2) � �(u1 � u2); 8� 2 [0; 1]g:

De�ne ua1(u2) � supUa1 (u2) and note that

ua1(u2) = min
0���1

�
f(�; 1� �)

�
+
(a� u2)
�

�
+ u2

= min
0���1

�
f(1;

1

�
� 1) + (a� u2)

�

�
+ u2

= f(1; 0) + (a� u2) + u2 = f(1; 0) + a;
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where the second line follows from HOD 1 and the last line from the monotonicity as-

sumption about f and (a�u2) > 0: Very importantly, note that ua1(u2) is independent
of u2 for all u2 � a, i.e. ua1(u2) = ua1 = f(1; 0) + a for all u2 � a.

De�ne u0 = (f(1; 0); 0) � 0 and let � 2 �I�1. If �1 = 0, then � � u0 = 0 � f (�) :
If �1 > 0; then

f (�) = �1 f

�
1;
�2
�1

�
� �1 f (1; 0) = � � u0;

and thus u0 2 U0:16 Finally, notice that u � (ua1; a) = u0 + a and u0 2 U0: Conse-
quently, we can conclude that B = Ua: See Figure 1 below.

f(0,1)+af(0,1)

a

a

I

II

III

IV

Ua

U0

u2

u1

f(1,0)

f(1,0)+a

Figure 1: Figure 1

Notice that if (bc; bu0) attain T (f + a); then there exists eu0(�0) 2 U0 such that

16We underscore here that without assuming that f is HOD 1 and monotone (i.e., f 2
FH), this result does not necessarily hold. More precisely, these assumptions guarantee that

argmin
�
f(�;1��)

�
+ a�u2

�

�
= 1: If any of these two assumptions is not satis�ed (i.e., f =2 FH),

on the other hand, it is easy to construct examples such that

ua1 = min

�
f(�; 1� �)

�
+
a� u2
�

�
> min

f(�; 1� �)
�

+min
a� u2
�

= u01 + a� u2:
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eu0(�0) � bu0(�0) � a for all �0: By monotonicity, �bc; eu0(�0) + a� also attain T (f + a):
Observe that for any (�; �; �); it follows by de�nition that

Tf(�; �; �) �
IX
i=1

�ifui(bci) + �X
�0

pr(�0)(�0i(�; �); �)eu0i(�0)g;
and thus

T (f + a)(�; �; �)� Tf(�; �; �)

�
IX
i=1

�ifui(bci) + �X
�0

pr(�0)(�0i(�; �); �)(eu0i(�0) + a)g
�

IX
i=1

�ifui(bci) + �X
�0

pr(�0)(�0i(�; �); �)eu0i(�0)g
= �a;

and therefore, since (�; �; �) was arbitrarily chosen, we can conclude that the operator

T satis�es discounting. Consequently, it follows by the contraction mapping theorem

that there exists a unique v 2 FH such that v = Tv:
Proof of Proposition 7. Given s0 = � and ci 2 C; de�ne for each �0

�0ci = f�0ci(st) = ci(st) for all t � 1 : (s0; s1) =
�
�; �0

�
g;

as the �0�continuation of ci: Also, let

Pi;�0(s
t) =

Pi(C(s
t))

pr(�0)(�0i(�; �))
;

for all st such that t � 1. Note that

v�(�; �; �) = max
u2U(�;�)

IX
i=1

�iui = max
c2Y1

X
i2I

�iU
Pi
i (ci)

= max
c2Y1

IX
i=1

�i

8<:ui(ci(�)) + �X
�0

pr(�0)(�0i(�; �))U
Pi;�0
i (�0ci)

9=;
= max

c2Yeu0(�0)2U(�0;�0(�;�))
IX
i=1

�i

8<:ui(ci(�)) + �X
�0

pr(�0)(�0i(�; �))eu0i(�0)
9=;

= max
c2Yeu0(�0)�0

IX
i=1

�i

8<:ui(ci(�)) + �X
�0

pr(�0)(�0i(�; �))eu0i(�0)
9=;
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subject to
h
v�(�0; �0(�0); �0(�; �))�

PI
i=1 �

0
i(�

0)u0i(�
0)
i
� 0 for all �0(�0) 2 �I�1: Here,

the second line follows from the de�nition of UPii (ci); the third follows from the

de�nition of U(�0; �0(�; �)) and the last from Lemma 5. Consequently, v� uniquely

solves (RPP) by de�nition.

Now we claim that the set of policy functions (c; �0; u
0
) solving (RPP) generates

a Pareto optimal allocation. Consider the allocation bc given by
bci;t(s) = ci(st; �t(s))

�t+1(s) = �0(st; �t(s); �st�1)(st+1)

�st = �0(st; �st�1),

with �(s0) = �0 and �s�1 = �0: Suppose that this allocation is not Pareto optimal.

Then, there exists an alternative allocation (c�i )
I
i=1such that

IX
i=1

�i

8<:ui(c�i (�)) + �X
�0

pr(�0)(�0i(�; �))U
Pi;�0
i (�0c

�
i )

9=;
>

IX
i=1

�i

8<:ui(bci(�)) + �X
�0

pr(�0)(�0i(�; �))U
Pi;�0
i (�0bci)

9=;
= v�(�0; �0; �0(�; �))

Observe that
PI
i=1 c

�
i (�) = y(�) and

�
U
Pi;�0
i (�0c

�
i )
�I
i=1

2 U(�0; �0(�; �)) for all �0.
It follows by Lemma 4 that

v�(�0; �0; �0(�; �)) �
IX
i=1

�0iU
Pi;�0
i (�0c

�
i )

for all �0 2 �I�1 and all �0: But this contradicts that the policy functions (c; �0; u0)
solves (RPP) for v�:

On the other hand, since the argument holds for any arbitrary feasible bc; the
converse follows and, thus, we can conclude that any PO allocation (c�i )

I
i=1 coupled

with its corresponding
�
U
Pi;�0
i (�0c

�
i )
�I
i=1

solve (10) - (12).

Proof of Proposition 8. Let F be de�ned as before. Consider the alternative

operator eT de�ned by
( eTM)(�; �; �) = (ci(�; �; �)� yi(�))u01(c1(�; �; �))

+
X
�0

�pr(�
0)(�01(�; �))M(�

0; �0(�; �; �)(�0); �0(�; �)):
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Step 1. First we check that eT : F ! F: Suppose that M 2 F: Consider �rstX
�0

� pr(�
0)(�01(�; �)) M(�

0; �0(�; �; �)(�0); �0(�; �)); (23)

and observe that �0 and �0 are both continuous. Also, it follows by de�nition that

pr(�
0)(�01(�; �)) is continuous. Thus, the expression 23 is continuous in (�; �; �): Since

M is bounded, its boundedness is a direct consequence of
P
�0 P (�

0 k �0i(�; �)) = 1.
Notice now that u01(c1(�; �; �)) =

�i
�1
u0i(ci(�; �; �)) for all i. Since ui is concave for

all i, it follows that

0 � cu0i(c) � ui(c) � ui(y);

for all c > 0. Also, observe that this implies that

0 � yiu01(c1) � yu01(c1) =
 

IX
i=1

ci

!
u01(c1) � u1(y)I:

Consequently, (ci(�; �; �)� yi(�))u01(c1(�; �; �)) is uniformly bounded. Clearly, it
is also continuous since the policy functions are continuous. Thus, we can conclude

that eTM 2 F:
Step 2. Now we check that eT satis�es Blackwell�s su¢ cient conditions and, thus,

it is a contraction mapping.

We start with discounting. Consider any a > 0 and note that

eT (M + a)(�; �; �) = (ci(�; �; �)� yi(�))u01(c1(�; �; �))

+
X
�0

�pr(�
0)(�01(�; �))M(�

0; �0(�; �; �)(�0); �0(�; �)) + �a:

= ( eT (M)(�; �; �) + �a:
Monotonicity is obvious. IfM(�; �; �) � D(�; �; �) for all (�; �; �), it is immediate

that ( eTM)(�; �; �) � ( eTD)(�; �; �) for all (�; �; �):
Therefor, we can apply the contraction mapping theorem to conclude that eT is a

contraction with a unique solution Mi 2 F for each i.
To complete the proof, de�ne Ai(�; �; �) = Mi(�; �; �)=u

0
1(c1(�; �; �)): It can be

checked immediately that Ai is a continuous function which is the unique �xed point

of the operator T de�ned by (16) Notice thatX
i

Ai(�; �; �) =
X
i

(ci(�; �; �)� yi(�)) +
X
i

X
�0

M(�; �; �)(�0)Ai(�
0; �0; �0)(24)

=
X
�0

M(�; �; �)(�0)
X
i

Ai(�
0; �0; �0):
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Note that the operator de�ned by (24) has a unique solution as well. SinceR(�; �; �) =

0 for all (�; �; �) solves (24), it follows by uniqueness thatX
i

Ai(�; �; �) = 0; for all (�; �; �).

Step 3. Finally, we show that there exists some �0 = �(s0; �0) such thatAi(s0; �0; �0) =

0 for all i, given (s0; �0):

Note �rst that if �i = 0; then ci(�; �; �) = 0 and consequently Ai(�; �; �) < 0 for

all (�; �): De�ne the vector-valued function g as follows:

gi(�) =
max[�i �Ai(s0; �; �0); 0]P
imax[�i �Ai(s0; �; �0); 0]

, (25)

for each i: Note that H(�) =
P
imax[�i�Ai(s0; �; �0); 0] is positive for all � 2 �I�1.

Also, gi(�) 2 [0; 1] and
P
i gi(�) = 1 for all �: Thus, g is a continuous function

mapping �I�1 into itself. The Brower�s �xed point theorem implies that there exists

some �0 = �(s0; �0) such that �0 = g(�0).

Suppose now that �i;0 = 0 for some i. By de�nition (25), this implies that

�Ai(s0; �0; �0) � 0: But we have already argued that �Ai(s0; �0; �0) > 0 if �i;0 =

gi(�0) = 0. This would lead to a contradiction and, hence, �i;0 > 0 for all i. This

implies that �i;0 �Ai(s0; �0; �0) > 0 for all i. Therefore,

H(�0)�i;0 = H(�0)gi (�0) = max[�i;0 �Ai(s0; �0; �0); 0] = �i;0 �Ai(s0; �0; �0).

This implies that H(�0) = H(�0)
P
i �i;0 =

P
i �i;0 �

P
iAi(s0; �0; �0) = 1. There-

fore, �i;0 = �i;0 �Ai(s0; �0; �0) for all i and thus Ai(s0; �0; �0) = 0 for all i.
Proof of Proposition 10. Since the support of agent i�s prior belief is count-

able, then the true probability distribution over paths is absolutely continuous with

respect to agent i�s prior distribution. By Proposition B.2 in Sandroni [22], P �
��a:s:,

0 < lim
t!1

Pi;t(s)

P �
�

t (s)
<1, (26)

and since P �
�
is not absolutely continuous with respect to P � for all � 6= ��, then

P �
�
is not absolutely continuous with respect to

X
� 6=��

P �t (s)
�i;0(�)

1��i;0(�)
. It follows by

Propositions B.1 and B.2 in Sandroni [22] that, P �
� � a:s:,

lim
t!1

X
� 6=��

P �t (s)
�i;0(�)

1��i;0(��)

P �
�
t (s)

= 0. (27)
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Therefore, P �
� � a:s:,

lim
t!1

Pi;t(s)

P �
�

t (s)
= �i;0 (�

�) + lim
t!1

X
� 6=��

P �t (s)�i;0 (�)

P �
�
t (s)

= �i;0 (�
�) +

�
1� �i;0 (��)

�
lim
t!1

X
� 6=��

P �t (s)
�i;0(�)

1��i;0(��)

P �
�
t (s)

= �i;0 (�
�)

where the last equality follows by (27).

The following Theorem which is due to Phillips and Ploberger [21, page 392] will

be used in the proof of Proposition 12.

Theorem 16 (Phillips and Ploberger) Assume the following conditions hold:

(C1) lt (�) is twice continuously di¤erentiable with derivatives l
(1)
t (�) and l(2)t (�).

(C2) Under P �t , l
(1)
t (�) is a zero mean L2 martingale and lim

t!1
Bt (�)!1, P ��a.s.

(C3) lim
t!1

l
(2)
t (�)
Bt(�)

+ 1 = 0 P ��a.s.
(C4) There exist continuous functions wt

�
�; �0

�
such that wt (�; �) = 0 and such that

for some � > 0 and for all �; �0 2 N� (��) = f� : j� � ��j < �g we have

l
(2)
t (�)� l(2)t

�
�0
�

Bt
� wt

�
�; �0

�
P �

� � a:s: for each t � 0;

lim
t!1

wt
�
�; �0

�
= w1

�
�; �0

�
P �

��a.s. uniformly for �; �0 2 N� (��) and w1 (�; �) = 0.

(C5) lim
t!1

b�t = ��, P ���a.s.
(C6) For any � > 0 and !� = f� : j� � ��j � �g we have

lim
t!1

B
1=2
t

Z
!�

f (�)
P �t (s)

P �
�
t (s)

d� = 0 P �
� � a.s.

(C7) The density of the prior belief, f (�), is continuous at �� with f (��) > 0.

If Qh;t is the measure de�ned by the Radon Nykodim derivative in (19), then

lim
t!1

Ph;t(s)

P �
�

t (s)

Qh;t(s)

P �
�

t (s)

= 1 P �
� � a.s.

Proof of Proposition 12. We need to verify that (C.1) - (C.7) hold. Let nt
be the number of times that state 1 has occurred up to date t.

(C.1) holds trivially since ln P �t
P �

�
t

= ln �nt (1��)t�nt
(��)nt (1���)t�nt is twice continuously di¤er-

entiable.
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(C.2) holds because l(1)t (�) = nt
� �

t�nt
1�� and so

EP
�
st�1

h
l
(1)
t (�)

i
= �

�
n1;t�1 + 1

�
� n2;t�1
1� �

�
+ (1� �)

�
n1;t�1
�

� n2;t�1 + 1
1� �

�
=

�
n1;t�1 + 1�

�

1� �n2;t�1
�
+

�
1� �
�

n1;t�1 � n2;t�1 � 1
�

=

�
n1;t�1 +

1� �
�

n1;t�1

�
�
�
�

1� �n2;t�1 + n2;t�1
�

=
n1;t�1
�

� n2;t�1
1� �

= l
(1)
t�1 (�)

Let "k (�) = l
(1)
k (�)� l(1)k�1 (�). Then "k (�) takes values

1
� and �

1
1�� with probabilities

� and 1� �. Therefore,

Bt (�) =
Xt

k=1
EP

�
st�1

h
"k (�)

2
i

=
Xt

k=1

 
�

�
1

�

�2
+ (1� �)

�
� 1

1� �

�2!

=
Xt

k=1

�
1

�
+

1

1� �

�
= t

�
1

�
+

1

1� �

�
and we conclude that Bt (�)!1 P ��a.s., as t!1.

(C.3) Notice that

l
(2)
t (�)

Bt (�)
=
�
�
n1;t
�2
+

n2;t
(1��)2

�
t
�
1
� +

1
1��

� ! �1 P � � a:s:; as t!1:

so the desired result holds.

(C.4) De�ne wt
�
�; �0

�
= w1

�
�; �0

�
�

max

�
1

(�0)2
� 1
�2
; 1

(1��0)2
� 1

(1��)2

�
1
��+

1
1���

. Clearly, wt
�
�; �0

�
is continuous, wt (�; �) = w1 (�; �) = 0 and, trivially, wt

�
�; �0

�
! w1

�
�; �0

�
a:s:�

P �
��
uniformly for every �; �0 2 N� (��). In addition,

l
(2)
t (�)� l(2)t

�
�0
�

Bt
=

n1;t

�
1

(�0)2
� 1

�2

�
+ n2;t

�
1

(1��0)2
� 1

(1��)2
�

t
�
1
�� +

1
1���

�
=

n1;t
t

�
1

(�0)2
� 1

�2

�
+

n2;t
t

�
1

(1��0)2
� 1

(1��)2
�

�
1
�� +

1
1���

�
� wt

�
�; �0

�
P �

� � a:s:
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(C.5) Notice that b�t = n1;t
t ! �� P �

� � a:s: by the SLLN.
(C.6) By the SLLN, we can take T (s) such that for all t � T (s) a:s: P �

�
,

n1;t
t 2 (�� � �=2; �� + �=2). In addition, there exists e� such that for every � 2 !�,

sup
x2(����=2;��+�=2)

�x(1��)1�x

(��)x(1���)1�x � 1�
e�. Then,

B
1=2
t

Z
!�

f (�)
P �t
P �

�
t

d� = B
1=2
t

Z
!�

f (�)
�n1;t (1� �)n2;t

(��)n1;t (1� ��)n2;t d�

= B
1=2
t

Z
!�

f (�)

 
�
n1;t
t (1� �)

n2;t
t

(��)
n1;t
t (1� ��)

n2;t
t

!t
d�

� B
1=2
t

�
1� e��t

=
p
t ��

�
1� e��t

where the inequality in the third line holds P �
� � a:s: The result follows because

p
t
�
1� e��t ! 0 as t!1.
(C.7) It follows by assumption (A.2).

Proof of Proposition 14. We begin with four claims that will be useful to prove

the main result. Claim 17 shows that the set of paths where lim inf P2;t(s)P1;t(s)
� 1 has

full measure. Claim 20 argues that lim sup P2;t(s)P1;t(s)
= +1 on the set of paths where

the likelihood ratio is greater than one in�nitely often. Claims 21 and 22 show that

the latter set also has full measure.

Claim 17 lim inf P2;t(s)P1;t(s)
� 1 P � a:s:

Proof of Claim 17. Suppose not. Then, there exists a set of paths 
1 with

P �
�
(
1) > 0 such that

lim inf
P2;t (s)

P1;t (s)
> 1 8s 2 
1

Hence, there exists T2 (s) such that for all t � T2 (s)

P2;t (s)

P1;t (s)
> 1 8s 2 
1

Since p1;t (s) ! �� (st) P �
� � a:s:, there exists T1 (s) such that for every t � T1 (s),

" < p1;t (s) < 1 � ". Let T (s) � max fT1 (s) ; T2 (s)g. On the one hand, by the
de�nition of P2 one has that for every T � T (s)

TY
t=T (s)

m�
t (s)

p1;t (s)
=

TY
t=T (s)

p2;t (s)

p1;t (s)
>
P2;T (s) (s)

P1;T (s) (s)
> 0 8s 2 
1
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and so
TY

t=T (s)

m�
t (s)

p1;t (s)
=

TY
t=T (s)

p2;t (s)

p1;t (s)
>
P2;T (s) (s)

P1;T (s) (s)
> 0 8s 2 
1

On the other hand, by the Strong Law of Large Numbers for uncorrelated random

variables with uniformly bounded second moments,

1

T � T (s)

TX
t=T (s)

�
log

�
m�
t (s)

p1;t (s)

�
� EP �

�
�
log

m�
t

p1;t
jFt�1

��
! 0 P �

� � a:s,

and since p1;t (s)! �� (st) P �
� � a:s:, we also have that

1

T � T (s)

TX
t=T (s)

EP
��
�
log

m�
t

p1;t
jFt�1

�
! EP

��
�
log

m�
t

��t

�
< 0 P �

� � a:s.

Then it follows that

1

T � T (s)

TX
t=T (s)

log

�
m�
t (s)

p1;t (s)

�
! EP

��
�
log

m�
t

��t

�
< 0 P �

� � a:s,

and so
TX

t=T (s)

log

�
m�
t (s)

p1;t (s)

�
! �1 as T !1 P �

��a:s ,
TY

t=T (s)

m�
t (s)

p1;t (s)
! 0 as T !1 P �

��a:s,

But this implies that P �
�
(
1) = 0, a contradiction.

We continue with two results that we will need to prove Claim 20. The �rst

is Levy�s conditional form of the Second Borel-Cantelli Lemma which follows from

a more general result due to Freedman ([9, Proposition 39]) and is stated without

proof as Lemma 18. The second result, stated in Lemma 19, shows that on any path

on which some event occurs in�nitely often, the event consisting of the �rst event

followed by any �nite string of realizations of state 1 also occurs in�nitely often.

For E 2 F an event, let 1E denote the indicator function. Recall that

f
t i:o:g =
(
s :

1X
t=1

1
t(s) = +1
)
:

Also, de�ne


N1;t = fs : st�N = ::: = st = 1g :

Lemma 18 (Levy�s Conditional form of the 2nd Borel-Cantelli Lemma) Let

f
tg1t=0 be a sequence of events adapted to the �ltration fFtg1t=0. Then
1X
t=1

1
t(s) = +1 P � a:s: s 2
�es : 1X

t=1

E [1
t jFt�1 ] (es) = +1�:
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Lemma 19 Let f
tg1t=0 be a sequence of events adapted to the �ltration fFtg1t=0.
Then

8N � 1
1X
t=1

1
t�N\
N1;t
(s) = +1 P � a:s: s 2 f
t i:o:g :

Proof of Lemma 19. Notice that

s 2 
t�N \ 
N�11;t�1 ) E
h
1
t�N\
N1;t

���Ft�1i (s) = P �st = 1����Ft�1� (s) = �1 > 0;
where we use the convention that 
01;t = 
 to handle the case where N = 1, and

E
h
1
t�N\
N1;t

���Ft�1i (s) is non-negative otherwise.
For s 2 f
t i:o:g arbitrarily chosen, there exists a sequence ftkg1k=1 such that

s 2 
tk for every k = 1; 2; � � � . Since 
01;t = 
, s 2 
(tk+1)�1 \ 

1�1
1;(tk+1)�1 and

therefore
1X
t=1

E
h
1
t�1\
11;t

���Ft�1i (s) �
1X
k=1

E
h
1
(tk+1)�1\


1
1;tk+1

���Ftki (s)
�

1X
k=1

P

�
st = 1

����Ftk� (s) = +1
and it follows by Lemma 18 that

P1
t=1 1
t�1\
11;t(s) = +1 P � a:s: s 2 f
t i:o:g.

Suppose that the result holds for N � 1. So, for P -a.s s 2 f
t i:o:g arbitrarily
chosen there exists ftkg1k=1 such that s 2 
tk�(N�1)\


N�1
1;tk

= 
(tk+1)�N \

N�1
1;(tk+1)�1

so that
1X
t=1

E
h
1
t�N\
N1;t

���Ft�1i (s) �
1X
k=1

E
h
1
(tk+1)�N\


N
1;tk+1

���Ftki (s)
�

1X
k=1

P

�
st = 1

����Ftk� (s) = +1
and it follows by Lemma 18 that

P1
t=1 1
t�N\
N1;t

(s) = +1 P � a:s: s 2 f
t i:o:g.
That completes the induction argument and the proof.

Claim 20 lim sup Pj;t(s)P1;t(s)
= +1 P �

� � a:s: s 2
nes : Pj;t(es)P1;t(es) > 1 i.o.

o
Proof of Claim 20. Let s 2

nes : P2;t(es)P1;t(es) > 1 i.o.
o
and a > 1. Since p1;t (s) !

�� (st), there exists T (s) such that for every t � T (s), �� (st) � "
2 � p1;t (s) �

�� (st)+
"
2 . Then there exists some state �, say state 1, such that m

�
t (1) > �

�
t (1)+

"
2 .

Let T a be the smallest integer such that
�

m�

��+ "
2

�T
> a. Consider the event


T
a

1;t �
�es : P2;t�1�Ta (es)

P1;t�1�Ta (es) > 1 and est�Ta = ::: = est = 1
�
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By Lemma 19 it follows that


T
a

1;t i.o. P
�� � a:s: s 2

�es : P2;t (es)
P1;t (es) > 1 i.o.

�
Therefore, P �

��a:s: s 2
nes : P2;t(es)P1;t(es) > 1 i.o.

o
, there exists a sub-subsequence ftkg1k=0

such that s 2 
Ta1;tk and so

P2;tk (s)

P1;tk (s)
=

p2;tk (s)

p1;tk (s)
� � � p2;tk�T

a (s)

p1;tk�Ta (s)

P2;tk�1�Ta (s)

P1;tk�1�Ta (s)

=
m�

p1;tk (s)
� � � m�

p1;tk�Ta (s)

P2;tk�1�Ta (s)

P1;tk�1�Ta (s)

>
m�

p1;tk (s)
� � � m�

p1;tk�Ta (s)

>

�
m�

�� + "
2

�Ta+1
> a

where the �rst inequality uses the property that
P2;tk�1�Ta (s)

P1;tk�1�Ta (s)
> 1. It follows that

lim sup
P2;t (s)

P1;t (s)
> a P �

� � a:s: s 2
�es : P2;t (es)

P1;t (es) > 1 i.o.
�

Since a was arbitrarily chosen, it follows that

lim sup
P2;t (s)

P1;t (s)
= +1, P � a:s: s 2

�es : P2;t (es)
P1;t (es) > 1 i.o.

�
as desired.

Claim 21 P �
��a:s: s 2

nes : lim sup P2;t(es)P1;t(es) � 1
o
, there exists T (s) such that P2;t(s)P1;t(s)

�
1 8t � T (s)

Proof of Claim 21. Let 
1 �
nes : lim sup P2;t(es)P1;t(es) � 1 and P2;t(es)

P1;t(es) > 1 i.o.
o
. Let

s 2 
1. Since 
1 �
n
s :

P2;t(es)
P1;t(es) > 1 i.o.

o
then by Claim 20,

lim sup
P2;t (s)

P1;t (s)
= +1 P �

� � a:s: s 2 
1

and it follows that P �
�
(
1) = 0, as desired.

Claim 22 P2;t(s)
P1;t(s)

> 1 i.o. P �
� � a:s:
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Proof of Claim 22. Let 
1 �
n
s : 9T (s) such that P2;t(s)P1;t(s)

� 1 8t � T (s)
o

and suppose that P �
�
(
1) > 0. Then, for every s 2 
1

tY
k=T (s)

p2;k (s)

p1;k (s)
�
P1;T (s)�1 (s)

P2;T (s)�1 (s)
<1 for all t � T (s)

By the de�nition of p2;t (s),

tY
k=T (s)

p2;k (s)

p1;k (s)
=

tY
k=T (s)

��k (s)

p1;k (s)
8s 2 
1

Since A:2 implies that P �
�
is not absolutely continuous with respect to P1, it follows

by Propositions B.1 and B.2 in Sandroni [22] that

tY
k=T (s)

��k (s)

p1;k (s)
! +1 as t!1

and so a contradiction is reached. It follows that P2;t(s)P1;t(s)
> 1 i.o. P �

� � a:s:
Now we conclude the proof arguing that lim sup P2;t(s)P1;t(s)

= +1 P � a:s: Indeed, by
Claim 22,and Claim 21, P �

� � a:s:, lim sup P2;t(s)P1;t(s)
> 1 and by Claim 20 one concludes

that lim sup P2;t(s)P1;t(s)
= +1 P �

� � a:s:
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