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Constrained Optimisation Introduction

Introduction

Suppose D ⊆ RK , K finite, is open.

f : D → R

g : D → RJ , with J ≤ K .

We would like to solve:

max
x∈D

f (x) s.t. g(x) = 0, (1)

In the previous notation, one wants to find

max
x∈D ′

f (x)

where D ′ = {x ∈ D |g(x) = 0}.
We will analyse when the Lagrangean method can be used.

We will derive necessary and sufficient conditions for a constrained global
maximum.
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Constrained Optimisation Pseudo-Theorem

Pseudo-Theorem

The method that is usually applied consists of the following steps:

1 Defining the Lagrangean function L : D ×RJ → R, by

L(x , λ) = f (x) +
J

∑
j=1

λjgj (x);

2 Finding (x∗, λ∗) ∈ D ×RJ such that DL(x∗, λ∗) = 0.

That is, a recipe is applied as though there is a “Theorem” that states:

Let f : D → R and g : D → RJ be differentiable. Then x∗ ∈ D solves
Problem (1) if and only if there exists λ∗ ∈ RJ such that (x∗, λ∗) solves:

∂f (x∗)

∂xi
+

J

∑
j=1

λ∗j
∂g(x∗)

∂xi
= 0, for all i = 1, ...,K .
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Constrained Optimisation Counterexample

Countexample

f (x1, x2) = x1x2 and g(x1, x2) = (1− x1 − x2)
3.

x∗ solves max
x∈R2

f (x) s.t. g(x) = 0⇔ x∗ solves max
x∈R2

+

f (x) s.t. g(x) = 0.

The second problem has a solution by Weierstrass Theorem.

The unique maximiser is (x∗1 , x∗2 ) = ( 1
2 , 1

2 ).

According to the “theorem” there is λ∗ such that (x∗1 , x∗2 , λ∗) solves:

(a)
∂L
∂x1

= 0 ⇔ x2 − 3λ(1− x1 − x2)
2 = 0

(b)
∂L
∂x2

= 0 ⇔ x2 − 3λ(1− x1 − x2)
2 = 0

(c)
∂L
∂λ

= 0 ⇔ (1− x1 − x2)
3 = 0

A solution to this system of equations does not exist.

Equation (c) implies that at any solution it must be the case that x∗1 + x∗2 = 1.

(a) and (b) imply that both x∗1 and x∗2 are zero, a contradiction.
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Lagrange Theorem Intuitive Argument

Intuitive Argument

Suppose D = R2 and J = 1, Given f : R2 → R and g : R2 → R.

We want to solve

max
(x ,y )∈R2

f (x , y) s.t. g(x , y) = 0. (P)

Suppose:

A1 There is h : R→ R such that g(x , y) = 0 if and only if y = h(x).
A2 The function h is differentiable.

A ”crude” method would be to study the unconstrained problem

max
x∈R

F (x), (P∗)

where F : R→ R is defined by F (x) = f (x , h(x)).
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Lagrange Theorem Intuitive Argument

Intuitive argument

g(x , h(x)) = 0⇒ g ′x (x , h(x)) + g ′y (x , h(x))h′(x) = 0,

h′(x) = − g ′x (x ,h(x))
g ′y (x ,h(x))

.

Apply FONC to (P*): x∗ solves maxx∈R F (x) only if F ′(x∗) = 0.

f ′x (x
∗, h(x∗)) + f ′y (x

∗, h(x∗))h′(x∗) = 0,

m
f ′x (x

∗, h(x∗))− f ′y (x
∗, h(x∗)) g

′
x (x
∗,h(x∗))

g ′y (x
∗,h(x∗)) = 0.

Define y ∗ = h(x∗) and λ∗ = − ∂y f (x∗,y ∗)
∂yg (x∗,y ∗)

∈ R,

Then, we get that (x∗, y ∗, λ∗) solves

f ′x (x
∗, y ∗) + λ∗g ′x (x

∗, y ∗) = 0,

f ′y (x
∗, y ∗) + λ∗g ′y (x

∗, y ∗) = 0.
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Lagrange Theorem Intuitive Argument

Intuitive argument

The “crude” method has shown that:

Let f : D → R and g : D → RJ be differentiable and (A1)-(A2) hold. If x∗ ∈ D
is a local maximiser in (1), there exists λ∗ ∈ RJ such that (x∗, λ∗) solves:

∂f (x∗)

∂xi
+

J

∑
j=1

λ∗j
∂g(x∗)

∂xi
= 0, for all i = 1, ...,K .

Under what conditions (A1) and (A2) hold?

Under what conditions h exists and is differentiable?
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Lagrange Theorem Implicit Function Theorem

Implicit Function Theorem

We assumed h exists and

We assumed g ′y (x
∗, y ∗) 6= 0. Of course, gx (x∗, y ∗) 6= 0 would be enough.

What we actually require is Dg(x∗, y ∗) has rank 1, its maximum possible.

Is this a general result, or does it only work in our simplified case?

Theorem The Implicit Function Theorem

Let D ⊆ RK and let g : D → RJ ∈ C1, with J ≤ K . If y ∗ ∈ RJ and
(x∗, y ∗) ∈ D is such that rank(Dyg(x∗, y ∗)) = J, then there exist ε, δ > 0 and
h : Bε(x∗)→ Bδ(y

∗) ∈ C1 such that:

1 for every x ∈ Bε(x∗), (x , h(x)) ∈ D;

2 for every x ∈ Bε(x∗), g(x , y) = g(x∗, y∗) for y ∈ Bδ(y
∗) iff y = h(x);

3 for every x ∈ Bε(x∗), Dh(x) = −Dyg(x , h(x))−1Dxg(x , h(x)).
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Lagrange Theorem First Order Necessary Conditions

First Order Necessary Conditions

Theorem

Let f : D → R and g : D → RJ be C1 and rank(Dyg(x∗, y ∗)) = J. If x∗ ∈ D
is a local maximiser in (1), there exists λ∗ ∈ RJ such that (x∗, λ∗) solves:

∂f (x∗)

∂xi
+

J

∑
j=1

λ∗j
∂g(x∗)

∂xi
= 0, for all i = 1, ...,K .
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Lagrange Theorem Second Order Necessary Conditions

Second Order Necessary Conditions

The SONC for problem (P∗) is that F ′′(x∗) ≤ 0. Note that:

F ′′(x) = f ′xx (x , h(x)) + [f ′xy (x , h(x)) + f ′yx (x , h(x))]h′(x) + f ′yy (x , h(x))h′(x)2

+f ′y (x , h(x))h′′(x)),

h′′(x) = − ∂
∂x

(
gx (x ,h(x))
gy (x ,h(x))

)
= − 1

gy (x ,h(x))
[ 1 h′(x) ] D2g(x , h(x))

[
1

h′(x)

]
Substituting h′′ and writing in matrix form, F ′′ ≤ 0 becomes

[1 h′(x)]D2f (x , h(x))

[
1

h′(x)

]
− f ′y (x ,h(x))

g ′y (x ,h(x))
[1 h′(x)]D2g(x , h(x))

[
1

h′(x)

]
≤ 0

⇔ ( 1 h′(x∗) )D2
(x ,y )L(x

∗, y ∗, λ∗)

(
1

h′(x∗)

)
≤ 0.
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Lagrange Theorem Second Order Necessary Conditions

Second Order Necessary Conditions

This condition is satisfied if D2
(x ,y )L(x

∗, y ∗, λ∗) is negative semi-definite.

Notice that
( 1 h′(x∗) ) ·Dg(x∗, y ∗) = 0,

so it suffices that we guarantee that for every ∆ ∈ R2 \ {0} such that
∆ ·Dg(x∗, y ∗) = 0 we have that ∆>D2

(x ,y )L(x
∗, y ∗, λ∗)∆ ≤ 0.

So, in summary, we have argued that:

Let f : D → R and g : D → RJ be C1 and rank(Dyg(x∗, y ∗)) = J. If
x∗ ∈ D is a local maximiser in (1), then ∆>D2

(x ,y )L(x
∗, y ∗, λ∗)∆ ≤ 0 for

all ∆ ∈ R2 \ {0} such that ∆ ·Dg(x∗, y ∗) = 0.
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Lagrange Theorem First and Second Order Necessary Conditions

First and Second Order Necessary Conditions

Theorem Lagrange - FONC and SONC

Let f : D → R and g : D → RJ be C1 with J ≤ K . Let x∗ be such that

rank(Dyg(x
∗, y ∗)) = J.

If x∗ ∈ D is a local maximiser in (1), then there exists λ∗ ∈ RJ such that

1 DL(x∗, λ∗) = 0.

2 ∆>D2L(x∗, λ∗)∆ ≤ 0 for all ∆ ∈ RJ \ {0} satisfying ∆ ·Dg(x∗) = 0;
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Lagrange Theorem Necessary Conditions are not Sufficient

Necessary Conditions are not Sufficient

The existence of (x∗, λ∗) ∈ RK ×RJ such that

∂f (x∗)

∂xi
+

J

∑
j=1

λ∗j
∂g(x∗)

∂xi
= 0, for all i = 1, ...,K .

might not be sufficient for x∗ to be a local maximiser of Problem 1.
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Lagrange Theorem Necessary Conditions are not Sufficient

Counterxample

f (x1, x2) = −( 1
2 − x1)

3 and g(x1, x2) = 1− x1 − x2.

(x∗1 , x∗2 , λ∗) = ( 1
2 , 1

2 , 0) satisfies the constraint qualification, it solves

(a) ∂L
∂x1

= 0 ⇐⇒ 3

(
1

2
− x1

)2

− λ = 0

(b) ∂L
∂x2

= 0 ⇐⇒ −λ = 0

(c) ∂L
∂λ = 0 ⇐⇒ 1− x1 − x2 = 0

and satisfies the (necessary) second order condition since

∂L
∂xi ,xi

(x∗1 , x∗2 , λ∗) = 0, for i = 1, 2

∂L
∂xi ,xj

(x∗1 , x∗2 , λ∗) = 0, for i 6= j .

However, (x∗1 , x∗2 ) = ( 1
2 , 1

2 ) is not a local maximiser since f ( 1
2 , 1

2 ) = 0 but

( 1
2 + ε, 1

2 − ε) is also in the constrained set and f ( 1
2 + ε, 1

2 − ε) > 0 for any
ε > 0.
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Lagrange Theorem First and Second Order Sufficient Conditions

First and Second Order Sufficient Conditions

Theorem Lagrange - FOSC and SOSC

Let f : D → R and g : D → RJ be C2, with J ≤ K . If (x∗, λ∗) ∈ RK ×RJ satisfy:

1 DL(x∗, λ∗) = 0 and

2 ∆>D2
x,xL(x∗, λ∗)∆ < 0 for all ∆ ∈

{
RJ \ {0} : ∆ ·Dg(x∗) = 0

}
.

Then, x∗ is a local maximiser in Problem (1).
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