EC9A0: Pre-sessional Advanced Mathematics Course Constrained Optimisation: Equality Constraints

Pablo F. Beker
Department of Economics
University of Warwick

Autumn 2015

Lecture Outline

(1) Constrained Optimisation

- Introduction
- Pseudo-Theorem
- Counterexample
(2) Lagrange Theorem
- Intuitive Argument
- Implicit Function Theorem
- First Order Necessary Conditions
- Second Order Necessary Conditions
- First and Second Order Necessary Conditions
- Necessary Conditions are not Sufficient
- First and Second Order Sufficient Conditions

Introduction

- Suppose $D \subseteq \mathbb{R}^{K}, K$ finite, is open.
- $f: D \rightarrow \mathbb{R}$
- $g: D \rightarrow \mathbb{R}^{J}$, with $J \leq K$.
- We would like to solve:

$$
\begin{equation*}
\max _{x \in D} f(x) \text { s.t. } g(x)=0 \tag{1}
\end{equation*}
$$

- In the previous notation, one wants to find

$$
\max _{x \in D^{\prime}} f(x)
$$

where $D^{\prime}=\{x \in D \mid g(x)=0\}$.

- We will analyse when the Lagrangean method can be used.
- We will derive necessary and sufficient conditions for a constrained global maximum.

Pseudo-Theorem

- The method that is usually applied consists of the following steps:
(1) Defining the Lagrangean function $\mathcal{L}: D \times \mathbb{R}^{J} \rightarrow \mathbb{R}$, by

$$
\mathcal{L}(x, \lambda)=f(x)+\sum_{j=1}^{J} \lambda_{j} g_{j}(x) ;
$$

(2) Finding $\left(x^{*}, \lambda^{*}\right) \in D \times \mathbb{R}^{J}$ such that $D \mathcal{L}\left(x^{*}, \lambda^{*}\right)=0$.

- That is, a recipe is applied as though there is a "Theorem" that states:

Let $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow \mathbb{R}^{J}$ be differentiable. Then $x^{*} \in D$ solves Problem (1) if and only if there exists $\lambda^{*} \in \mathbb{R}^{J}$ such that $\left(x^{*}, \lambda^{*}\right)$ solves:

$$
\frac{\partial f\left(x^{*}\right)}{\partial x_{i}}+\sum_{j=1}^{J} \lambda_{j}^{*} \frac{\partial g\left(x^{*}\right)}{\partial x_{i}}=0, \text { for all } i=1, \ldots, K
$$

Countexample

- $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ and $g\left(x_{1}, x_{2}\right)=\left(1-x_{1}-x_{2}\right)^{3}$.

$$
x^{*} \text { solves } \max _{x \in \mathbb{R}^{2}} f(x) \text { s.t. } g(x)=0 \Leftrightarrow x^{*} \text { solves } \max _{x \in \mathbb{R}_{+}^{2}} f(x) \text { s.t. } g(x)=0 \text {. }
$$

- The second problem has a solution by Weierstrass Theorem.
- The unique maximiser is $\left(x_{1}^{*}, x_{2}^{*}\right)=\left(\frac{1}{2}, \frac{1}{2}\right)$.
- According to the "theorem" there is λ^{*} such that $\left(x_{1}^{*}, x_{2}^{*}, \lambda^{*}\right)$ solves:

$$
\begin{align*}
& \text { (a) } \frac{\partial \mathcal{L}}{\partial x_{1}}=0 \Leftrightarrow x_{2}-3 \lambda\left(1-x_{1}-x_{2}\right)^{2}=0 \tag{a}\\
& \text { (b) } \frac{\partial \mathcal{L}}{\partial x_{2}}=0 \Leftrightarrow x_{2}-3 \lambda\left(1-x_{1}-x_{2}\right)^{2}=0 \\
& \text { (c) } \frac{\partial \mathcal{L}}{\partial \lambda}=0 \Leftrightarrow\left(1-x_{1}-x_{2}\right)^{3}=0
\end{align*}
$$

- A solution to this system of equations does not exist.
- Equation (c) implies that at any solution it must be the case that $x_{1}^{*}+x_{2}^{*}=1$.
- (a) and (b) imply that both x_{1}^{*} and x_{2}^{*} are zero, a contradiction.

Intuitive Argument

- Suppose $D=\mathbb{R}^{2}$ and $J=1$, Given $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
- We want to solve

$$
\begin{equation*}
\max _{(x, y) \in \mathbb{R}^{2}} f(x, y) \quad \text { s.t. } g(x, y)=0 \tag{P}
\end{equation*}
$$

- Suppose:

A1 There is $h: \mathbb{R} \rightarrow \mathbb{R}$ such that $g(x, y)=0$ if and only if $y=h(x)$.
A2 The function h is differentiable.

- A "crude" method would be to study the unconstrained problem

$$
\begin{equation*}
\max _{x \in \mathbb{R}} F(x), \tag{*}
\end{equation*}
$$

where $F: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $F(x)=f(x, h(x))$.

Intuitive argument

- $g(x, h(x))=0 \Rightarrow g_{x}^{\prime}(x, h(x))+g_{y}^{\prime}(x, h(x)) h^{\prime}(x)=0$,
- $h^{\prime}(x)=-\frac{g_{x}^{\prime}(x, h(x))}{g_{y}^{\prime}(x, h(x))}$.
- Apply FONC to $\left(\mathrm{P}^{*}\right): x^{*}$ solves $\max _{x \in \mathbb{R}} F(x)$ only if $F^{\prime}\left(x^{*}\right)=0$.

$$
\begin{aligned}
& f_{x}^{\prime}\left(x^{*}, h\left(x^{*}\right)\right)+f_{y}^{\prime}\left(x^{*}, h\left(x^{*}\right)\right) h^{\prime}\left(x^{*}\right)=0, \\
& \mathbb{\imath} \\
& f_{x}^{\prime}\left(x^{*}, h\left(x^{*}\right)\right)-f_{y}^{\prime}\left(x^{*}, h\left(x^{*}\right)\right) \frac{g_{x}^{\prime}\left(x^{*}, h\left(x^{*}\right)\right)}{g_{y}^{\prime}\left(x^{*}, h\left(x^{*}\right)\right)}=0 .
\end{aligned}
$$

- Define $y^{*}=h\left(x^{*}\right)$ and $\lambda^{*}=-\frac{\partial_{y} f\left(x^{*}, y^{*}\right)}{\partial_{y} g\left(x^{*}, y^{*}\right)} \in \mathbb{R}$,
- Then, we get that $\left(x^{*}, y^{*}, \lambda^{*}\right)$ solves

$$
\begin{aligned}
& f_{x}^{\prime}\left(x^{*}, y^{*}\right)+\lambda^{*} g_{x}^{\prime}\left(x^{*}, y^{*}\right)=0 \\
& f_{y}^{\prime}\left(x^{*}, y^{*}\right)+\lambda^{*} g_{y}^{\prime}\left(x^{*}, y^{*}\right)=0
\end{aligned}
$$

Intuitive argument

- The "crude" method has shown that:

Let $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow \mathbb{R}^{J}$ be differentiable and (A1)-(A2) hold. If $x^{*} \in D$ is a local maximiser in (1), there exists $\lambda^{*} \in \mathbb{R}^{J}$ such that $\left(x^{*}, \lambda^{*}\right)$ solves:

$$
\frac{\partial f\left(x^{*}\right)}{\partial x_{i}}+\sum_{j=1}^{J} \lambda_{j}^{*} \frac{\partial g\left(x^{*}\right)}{\partial x_{i}}=0, \text { for all } i=1, \ldots, K .
$$

- Under what conditions (A1) and (A2) hold?
- Under what conditions h exists and is differentiable?

Implicit Function Theorem

- We assumed h exists and
- We assumed $g_{y}^{\prime}\left(x^{*}, y^{*}\right) \neq 0$. Of course, $g_{x}\left(x^{*}, y^{*}\right) \neq 0$ would be enough.
- What we actually require is $\operatorname{Dg}\left(x^{*}, y^{*}\right)$ has rank 1 , its maximum possible.
- Is this a general result, or does it only work in our simplified case?

Theorem The Implicit Function Theorem

Let $D \subseteq \mathbb{R}^{K}$ and let $g: D \rightarrow \mathbb{R}^{J} \in \mathbb{C}^{1}$, with $J \leq K$. If $y^{*} \in \mathbb{R}^{J}$ and $\left(x^{*}, y^{*}\right) \in D$ is such that $\operatorname{rank}\left(D_{y} g\left(x^{*}, y^{*}\right)\right)=J$, then there exist $\varepsilon, \delta>0$ and $h: B_{\varepsilon}\left(x^{*}\right) \rightarrow B_{\delta}\left(y^{*}\right) \in \mathbb{C}^{1}$ such that:
(1) for every $x \in B_{\varepsilon}\left(x^{*}\right),(x, h(x)) \in D$;
(2) for every $x \in B_{\varepsilon}\left(x^{*}\right), g(x, y)=g\left(x^{*}, y^{*}\right)$ for $y \in B_{\delta}\left(y^{*}\right)$ iff $y=h(x)$;
(3) for every $x \in B_{\varepsilon}\left(x^{*}\right), D h(x)=-D_{y} g(x, h(x))^{-1} D_{x} g(x, h(x))$.

First Order Necessary Conditions

Theorem

Let $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow \mathbb{R}^{J}$ be \mathbb{C}^{1} and $\operatorname{rank}\left(D_{y} g\left(x^{*}, y^{*}\right)\right)=J$. If $x^{*} \in D$ is a local maximiser in (1), there exists $\lambda^{*} \in \mathbb{R}^{J}$ such that $\left(x^{*}, \lambda^{*}\right)$ solves:

$$
\frac{\partial f\left(x^{*}\right)}{\partial x_{i}}+\sum_{j=1}^{J} \lambda_{j}^{*} \frac{\partial g\left(x^{*}\right)}{\partial x_{i}}=0, \text { for all } i=1, \ldots, K .
$$

Second Order Necessary Conditions

- The SONC for problem $\left(P^{*}\right)$ is that $F^{\prime \prime}\left(x^{*}\right) \leq 0$. Note that:

$$
\begin{array}{r}
F^{\prime \prime}(x)=f_{x x}^{\prime}(x, h(x))+\left[f_{x y}^{\prime}(x, h(x))+f_{y x}^{\prime}(x, h(x))\right] h^{\prime}(x)+f_{y y}^{\prime}(x, h(x)) h^{\prime}(x)^{2} \\
\left.+f_{y}^{\prime}(x, h(x)) h^{\prime \prime}(x)\right), \\
h^{\prime \prime}(x)=-\frac{\partial}{\partial x}\left(\frac{g_{x}(x, h(x))}{g_{y}(x, h(x))}\right)=-\frac{1}{g_{y}(x, h(x))}\left[\begin{array}{ll}
1 & \left.h^{\prime}(x)\right] D^{2} g(x, h(x))\left[\begin{array}{c}
1 \\
h^{\prime}(x)
\end{array}\right]
\end{array},\right.
\end{array}
$$

- Substituting $h^{\prime \prime}$ and writing in matrix form, $F^{\prime \prime} \leq 0$ becomes
$\left[1 h^{\prime}(x)\right] D^{2} f(x, h(x))\left[\begin{array}{c}1 \\ h^{\prime}(x)\end{array}\right]-\frac{f_{y}^{\prime}(x, h(x))}{g_{y}^{\prime}(x, h(x))}\left[1 h^{\prime}(x)\right] D^{2} g\left(x, h(x)\left[\begin{array}{c}1 \\ h^{\prime}(x)\end{array}\right] \leq 0\right.$

$$
\Leftrightarrow\left(\begin{array}{ll}
1 & h^{\prime}\left(x^{*}\right)
\end{array}\right) D_{(x, y)}^{2} \mathcal{L}\left(x^{*}, y^{*}, \lambda^{*}\right)\binom{1}{h^{\prime}\left(x^{*}\right)} \leq 0 .
$$

Second Order Necessary Conditions

- This condition is satisfied if $D_{(x, y)}^{2} \mathcal{L}\left(x^{*}, y^{*}, \lambda^{*}\right)$ is negative semi-definite.
- Notice that

$$
\left(1 \quad h^{\prime}\left(x^{*}\right)\right) \cdot D g\left(x^{*}, y^{*}\right)=0
$$

so it suffices that we guarantee that for every $\Delta \in \mathbb{R}^{2} \backslash\{0\}$ such that
$\Delta \cdot D g\left(x^{*}, y^{*}\right)=0$ we have that $\Delta^{\top} D_{(x, y)}^{2} \mathcal{L}\left(x^{*}, y^{*}, \lambda^{*}\right) \Delta \leq 0$.

- So, in summary, we have argued that:

Let $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow \mathbb{R}^{J}$ be \mathbb{C}^{1} and $\operatorname{rank}\left(D_{y} g\left(x^{*}, y^{*}\right)\right)=J$. If $x^{*} \in D$ is a local maximiser in (1), then $\Delta^{\top} D_{(x, y)}^{2} \mathcal{L}\left(x^{*}, y^{*}, \lambda^{*}\right) \Delta \leq 0$ for all $\Delta \in \mathbb{R}^{2} \backslash\{0\}$ such that $\Delta \cdot D g\left(x^{*}, y^{*}\right)=0$.

First and Second Order Necessary Conditions

Theorem Lagrange - FONC and SONC
Let $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow \mathbb{R}^{J}$ be \mathbb{C}^{1} with $J \leq K$. Let x^{*} be such that

$$
\operatorname{rank}\left(D_{y} g\left(x^{*}, y^{*}\right)\right)=J
$$

If $x^{*} \in D$ is a local maximiser in (1), then there exists $\lambda^{*} \in \mathbb{R}^{J}$ such that
(1) $D \mathcal{L}\left(x^{*}, \lambda^{*}\right)=0$.
(2) $\Delta^{\top} D^{2} \mathcal{L}\left(x^{*}, \lambda^{*}\right) \Delta \leq 0$ for all $\Delta \in \mathbb{R}^{J} \backslash\{0\}$ satisfying $\Delta \cdot D g\left(x^{*}\right)=0$;

Necessary Conditions are not Sufficient

- The existence of $\left(x^{*}, \lambda^{*}\right) \in \mathbb{R}^{K} \times \mathbb{R}^{J}$ such that

$$
\frac{\partial f\left(x^{*}\right)}{\partial x_{i}}+\sum_{j=1}^{J} \lambda_{j}^{*} \frac{\partial g\left(x^{*}\right)}{\partial x_{i}}=0, \text { for all } i=1, \ldots, K
$$

might not be sufficient for x^{*} to be a local maximiser of Problem 1.

Counterxample

- $f\left(x_{1}, x_{2}\right)=-\left(\frac{1}{2}-x_{1}\right)^{3}$ and $g\left(x_{1}, x_{2}\right)=1-x_{1}-x_{2}$.
- $\left(x_{1}^{*}, x_{2}^{*}, \lambda^{*}\right)=\left(\frac{1}{2}, \frac{1}{2}, 0\right)$ satisfies the constraint qualification, it solves
(a) $\quad \frac{\partial \mathcal{L}}{\partial x_{1}}=0 \Longleftrightarrow 3\left(\frac{1}{2}-x_{1}\right)^{2}-\lambda=0$
(b) $\quad \frac{\partial \mathcal{L}}{\partial x_{2}}=0 \quad \Longleftrightarrow \quad-\lambda=0$
(c) $\quad \frac{\partial \mathcal{L}}{\partial \lambda}=0 \quad \Longleftrightarrow 1-x_{1}-x_{2}=0$
and satisfies the (necessary) second order condition since

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial x_{i}, x_{i}}\left(x_{1}^{*}, x_{2}^{*}, \lambda^{*}\right)=0, \text { for } \mathrm{i}=1,2 \\
& \frac{\partial \mathcal{L}}{\partial x_{i}, x_{j}}\left(x_{1}^{*}, x_{2}^{*}, \lambda^{*}\right)=0, \text { for } \mathrm{i} \neq j .
\end{aligned}
$$

- However, $\left(x_{1}^{*}, x_{2}^{*}\right)=\left(\frac{1}{2}, \frac{1}{2}\right)$ is not a local maximiser since $f\left(\frac{1}{2}, \frac{1}{2}\right)=0$ but $\left(\frac{1}{2}+\varepsilon, \frac{1}{2}-\varepsilon\right)$ is also in the constrained set and $f\left(\frac{1}{2}+\varepsilon, \frac{1}{2}-\varepsilon\right)>0$ for any $\varepsilon>0$.

First and Second Order Sufficient Conditions

Theorem Lagrange - FOSC and SOSC
Let $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow \mathbb{R}^{J}$ be \mathbb{C}^{2}, with $J \leq K$. If $\left(x^{*}, \lambda^{*}\right) \in \mathbb{R}^{K} \times \mathbb{R}^{J}$ satisfy:
(1) $D \mathcal{L}\left(x^{*}, \lambda^{*}\right)=0$ and
(2) $\Delta^{\top} D_{x, x}^{2} \mathcal{L}\left(x^{*}, \lambda^{*}\right) \Delta<0$ for all $\Delta \in\left\{\mathbb{R}^{J} \backslash\{0\}: \Delta \cdot \operatorname{Dg}\left(x^{*}\right)=0\right\}$.

Then, x^{*} is a local maximiser in Problem (1).

