EC9A0: Pre-sessional Advanced Mathematics Course

Constrained Optimisation: Inequality Constraints

Pablo F. Beker
Department of Economics
University of Warwick

Autumn 2016

Lecture Outline

(1) Constrained Optimisation with Inequality Constraints

- Introduction
- Counter-Example
- Kühn-Tucker Theorem
- Sufficient Conditions
- Example
- Quasi-Concave Problems

Introduction

- Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, $(a, b) \in \mathbb{R}^{2}$ and $a<b$.
- We would like to solve the problem:

$$
\begin{equation*}
\max f(x): x \geq a \text { and } x \leq b \tag{1}
\end{equation*}
$$

- If $x^{*} \in(a, b)$ solves $(1), x^{*}$ is a local maximizer of f and $f^{\prime}\left(x^{*}\right)=0$.
- If $x^{*}=b$ solves (1), $f^{\prime}\left(x^{*}\right) \geq 0$.
- If $x^{*}=a$ solves (1), $f^{\prime}\left(x^{*}\right) \leq 0$.
- Thus, if x^{*} solves the problem, there exist $\lambda_{a}^{*}, \lambda_{b}^{*} \in \mathbb{R}_{+}$such that:

$$
\begin{aligned}
f^{\prime}\left(x^{*}\right)-\lambda_{b}^{*}+\lambda_{a}^{*} & =0, \\
\lambda_{a}^{*}\left(x^{*}-a\right) & =0, \\
\lambda_{b}^{*}\left(b-x^{*}\right) & =0 .
\end{aligned}
$$

- It is customary to define a function $\mathcal{L}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by

$$
\mathcal{L}\left(x, \lambda_{a}, \lambda_{b}\right)=f(x)+\lambda_{b}(b-x)+\lambda_{a}(x-a),
$$

called the Lagrangean, and with which the FOC can be re-written as

$$
\frac{\partial \mathcal{L}}{\partial x}\left(x^{*}, \lambda_{a}^{*}, \lambda_{b}^{*}\right)=0 .
$$

Introduction

- We will show how this Lagrangean method works and explain when it fails.
- Suppose $D \subseteq \mathbb{R}^{K}, K$ finite, is open.
- $f: D \rightarrow \mathbb{R}$
- $g: D \rightarrow \mathbb{R}^{J}$ and $b \in \mathbb{R}^{J}$, with $J \leq K$.
- We would like to solve:

$$
\begin{equation*}
\max _{x \in D} f(x) \text { s.t. } g(x)-b \geq 0 \tag{2}
\end{equation*}
$$

- The "usual" method says that one should try to find $\left(x^{*}, \lambda^{*}\right) \in D \times \mathbb{R}_{+}^{J}$ such that $D_{x} \mathcal{L}\left(x^{*}, \lambda^{*}\right)=0, g\left(x^{*}\right)-b \geq 0$ and $\lambda^{*} \cdot\left(g\left(x^{*}\right)-b\right)=0$.
- It is as if there existed a theorem that states:

If $x^{*} \in D$ locally solves Problem (2), then there exists $\lambda^{*} \in \mathbb{R}_{+}^{J}$ such that $D_{x} \mathcal{L}\left(x^{*}, \lambda^{*}\right)=0, g\left(x^{*}\right)-b \geq 0$ and $\lambda^{*} \cdot\left(g\left(x^{*}\right)-b\right)=0$.

- Although this statement recognizes the local character and states only necessary conditions, it neglects the constraint qualification.

Counter-Example

- Consider the problem

$$
\begin{equation*}
\max _{(x, y) \in \mathbb{R}^{2}}-\left((x-3)^{2}+y^{2}\right): 0 \leq y \leq-(x-1)^{3} \tag{3}
\end{equation*}
$$

- The Lagrangean of this problem can be written as

$$
\mathcal{L}\left(x, y, \lambda_{1}, \lambda_{2}\right)=-(x-3)^{2}-y^{2}+\lambda_{1}\left(-(x-1)^{3}-y\right)+\lambda_{2} y .
$$

- Although $(1,0)$ solves (3), there is no $\left(\lambda_{1}, \lambda_{2}\right)$ s.t. $\left(1,0, \lambda_{1}, \lambda_{2}\right)$ solves:
(1) $-2\left(x^{*}-3\right)-3 \lambda_{1}^{*}\left(x^{*}-1\right)^{2}=0$
(2) $-2 y^{*}-\lambda_{1}^{*}+\lambda_{2}^{*}=0$;
(3) $\lambda_{1}^{*} \geq 0$ and $\lambda_{2}^{*} \geq 0$;
(9) $-\left(x^{*}-1\right)^{3}-y^{*} \geq 0$ and $y^{*} \geq 0$; and
(5) $\lambda_{1}^{*}\left(-\left(x^{*}-1\right)^{3}-y^{*}\right)=0$ and $\lambda_{2}^{*} y^{*}=0$.
- If the FOC were to hold even without the constraint qualification, the system of equations would have to have a solution.

Kühn-Tucker Theorem

Theorem (Kühn - Tucker)

Let $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow \mathbb{R}^{J}$ are both \mathbb{C}^{1}. Suppose that $x^{*} \in D$ is a local maximiser of f on the constraint set and $g_{i}\left(x^{*}\right)=b_{i}$ for $i=1, \ldots, I \leq J$. Suppose that $\operatorname{rank}\left(D \tilde{g}\left(x^{*}\right)\right)=I$ for $\tilde{g}: D \rightarrow \mathbb{R}^{\prime}$ defined by $\tilde{g}(x)=\left(g_{j}(x)\right)_{j=1}^{l}$.
Then, there exists $\lambda^{*} \in \mathbb{R}^{J}$ such that
(1) $\frac{\partial \mathcal{L}}{\partial x_{k}}\left(x^{*}, \lambda^{*}\right)=0$, for all $k=1, \ldots, K$,
(2) $\lambda_{j}^{*} \cdot\left(g_{j}\left(x^{*}\right)-b_{j}\right)=0$ for all $j=1, \ldots, J$,
(3) $\lambda_{j}^{*} \geq 0$ for all $j=1, \ldots, J$, and
(9) $g_{j}\left(x^{*}\right)-b_{j} \geq 0$ for all $j=1, \ldots, J$.

- With inequality constraints, the sign of λ does matter.
- It is crucial to notice that the process does not amount to maximizing \mathcal{L}.
- In general, \mathcal{L} does not have a maximum;
- One finds a saddle point of \mathcal{L}.

Sufficient Conditions

Theorem

Suppose $f: D \rightarrow \mathbb{R} \in$ and $g: D \rightarrow \mathbb{R}^{J}$ are both \mathbb{C}^{2}. Suppose there exists $\left(x^{*}, \lambda^{*}\right) \in \mathbb{R}^{K} \times \mathbb{R}^{J}$ such that:
(1) $\frac{\partial \mathcal{L}}{\partial x_{k}}\left(x^{*}, \lambda^{*}\right)=0$, for all $k=1, \ldots, K$,
(2) $\lambda_{j}^{*} \cdot\left(g_{j}\left(x^{*}\right)-b_{j}\right)=0$ for all $j=1, \ldots, J$,
(3) $\lambda_{j}^{*} \geq 0$ for all $j=1, \ldots, J$, and
(9) $g_{j}\left(x^{*}\right)-b_{j} \geq 0$ for all $j=1, \ldots, J$.
(5) $\Delta^{\top} D_{x, x}^{2} \mathcal{L}\left(x^{*}, \lambda^{*}\right) \Delta<0$ for all $\Delta \in\left\{\mathbb{R}^{J} \backslash\{0\}: \Delta \cdot D g\left(x^{*}\right)=0\right\}$.

Then x^{*} is a local maximiser in problem (2)

Example

- Suppose $f(x, y, z)=x y z$,

$$
g(x, y, z)=\left[\begin{array}{c}
-(x+y+z) \\
x \\
y \\
z
\end{array}\right], \quad b=\left[\begin{array}{r}
-1 \\
0 \\
0 \\
0
\end{array}\right]
$$

- Then,

$$
D g(x, y, z)=\left[\begin{array}{rrr}
-1 & -1 & -1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- A solution exists because the objective function is continuous and the constraint set is nonempty and compact.
- Since at most 3 constraints can be binding at the same time, the CQ holds.
- Let's form the Kühn -Tucker Lagrangean function:

$$
\mathcal{L}(x, y, z, \lambda)=x y z+\lambda(1-x-y-z)+\lambda_{x} x+\lambda_{y} y+\lambda_{z} z
$$

Example (cont.)

- The FONC are,
(1) $\frac{\partial \mathcal{L}(\cdot)}{\partial x}=y z-\lambda+\lambda_{x}=0$
(8) $\lambda \geq 0$
(15) $z \geq 0$
(2) $\frac{\partial \mathcal{L}(\cdot)}{\partial y}=x z-\lambda+\lambda_{y}=0$
(9) $\lambda_{x} \geq 0$
(3) $\frac{\partial \mathcal{L}(\cdot)}{\partial z}=x y-\lambda+\lambda_{z}=0$
(10) $\quad \lambda_{y} \geq 0$
(4) $\lambda(1-x-y-z)=0$
(11) $\lambda_{z} \geq 0$
(5) $\quad \lambda_{x} x=0$
(12) $1-(x+y+z) \geq 0$
(6)
(7)
$\lambda_{y} y=0$
(13) $x \geq 0$
$\lambda_{z} z=0$
(14) $y \geq 0$
- Since the global maximiser exists and the only points that solve the FONC are $(x, y, z)=(0,0,0)$ and $(x, y, z)=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$, it follows that the latter is the global maximiser.

Quasi-Concave Problems

Theorem

Let $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow \mathbb{R}^{J}$. Suppose f is \mathbb{C}^{1}. Assume there exists $\left(x^{*}, \lambda^{*}\right) \in \mathbb{R}^{K} \times \mathbb{R}^{J}$ such that:
(1) $\frac{\partial \mathcal{L}}{\partial x_{k}}\left(x^{*}, \lambda^{*}\right)=0$, for all $k=1, \ldots, K$,
(2) $\lambda_{j}^{*} \cdot\left(g_{j}\left(x^{*}\right)-b_{j}\right)=0$ for all $j=1, \ldots, J$,
(3) $\lambda_{j}^{*} \geq 0$ for all $j=1, \ldots, J$,
(9) $g_{j}\left(x^{*}\right)-b_{j} \geq 0$ for all $j=1, \ldots, J$,
(5) f is quasi-concave with $\nabla f\left(x^{*}\right) \neq 0$, and
(6) $\lambda_{j} g_{j}(x)$ is quasi-concave.
(1) x^{*} satisfies the constraint qualification.

Then x^{*} is a global maximiser in problem (2)

