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Constrained Optimisation with Inequality Constraints Introduction

Introduction
Suppose f : R→ R is differentiable, (a, b) ∈ R2 and a < b.

We would like to solve the problem:

max f (x) : x ≥ a and x ≤ b. (1)

If x∗ ∈ (a, b) solves (1), x∗ is a local maximizer of f and f ′(x∗) = 0.

If x∗ = b solves (1), f ′(x∗) ≥ 0.

If x∗ = a solves (1), f ′(x∗) ≤ 0.

Thus, if x∗ solves the problem, there exist λ∗a, λ∗b ∈ R+ such that:

f ′(x∗)− λ∗b + λ∗a = 0,

λ∗a(x
∗ − a) = 0,

λ∗b(b− x∗) = 0.

It is customary to define a function L : R3 → R by

L(x , λa, λb) = f (x) + λb(b− x) + λa(x − a),

called the Lagrangean, and with which the FOC can be re-written as
∂L
∂x

(x∗, λ∗a, λ∗b) = 0.
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Introduction
We will show how this Lagrangean method works and explain when it fails.

Suppose D ⊆ RK , K finite, is open.

f : D → R

g : D → RJ and b ∈ RJ , with J ≤ K .

We would like to solve:

max
x∈D

f (x) s.t. g(x)− b ≥ 0. (2)

The “usual” method says that one should try to find (x∗, λ∗) ∈ D ×RJ
+

such that DxL(x∗, λ∗) = 0, g(x∗)− b ≥ 0 and λ∗ · (g(x∗)− b) = 0.

It is as if there existed a theorem that states:

If x∗ ∈ D locally solves Problem (2), then there exists λ∗ ∈ RJ
+ such that

DxL(x∗, λ∗) = 0, g(x∗)− b ≥ 0 and λ∗ · (g(x∗)− b) = 0.

Although this statement recognizes the local character and states only
necessary conditions, it neglects the constraint qualification.
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Counter-Example

Consider the problem

max
(x,y )∈R2

−((x − 3)2 + y2) : 0 ≤ y ≤ −(x − 1)3. (3)

The Lagrangean of this problem can be written as

L(x , y , λ1, λ2) = −(x − 3)2 − y2 + λ1(−(x − 1)3 − y) + λ2y .

Although (1, 0) solves (3), there is no (λ1, λ2) s.t. (1, 0, λ1, λ2) solves:

1 −2(x∗ − 3)− 3λ∗1(x
∗ − 1)2 = 0

2 −2y∗ − λ∗1 + λ∗2 = 0;

3 λ∗1 ≥ 0 and λ∗2 ≥ 0;

4 −(x∗ − 1)3 − y∗ ≥ 0 and y∗ ≥ 0; and

5 λ∗1(−(x∗ − 1)3 − y∗) = 0 and λ∗2y
∗ = 0.

If the FOC were to hold even without the constraint qualification, the
system of equations would have to have a solution.
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Kühn-Tucker Theorem

Theorem (Kühn - Tucker)

Let f : D → R and g : D → RJ are both C1. Suppose that x∗ ∈ D is a local
maximiser of f on the constraint set and gi (x

∗) = bi for i = 1, ..., I ≤ J.
Suppose that rank(Dg̃(x∗)) = I for g̃ : D → RI defined by g̃(x) = (gj (x))

I
j=1.

Then, there exists λ∗ ∈ RJ such that

1 ∂L
∂xk

(x∗, λ∗) = 0, for all k = 1, ...,K,

2 λ∗j · (gj (x∗)− bj ) = 0 for all j = 1, ..., J,

3 λ∗j ≥ 0 for all j = 1, ..., J, and

4 gj (x
∗)− bj ≥ 0 for all j = 1, ..., J.

With inequality constraints, the sign of λ does matter.

It is crucial to notice that the process does not amount to maximizing L.
In general, L does not have a maximum;
One finds a saddle point of L.
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Sufficient Conditions

Theorem

Suppose f : D → R ∈ and g : D → RJ are both C2. Suppose there exists
(x∗, λ∗) ∈ RK ×RJ such that:

1 ∂L
∂xk

(x∗, λ∗) = 0, for all k = 1, ...,K,

2 λ∗j · (gj (x∗)− bj ) = 0 for all j = 1, ..., J,

3 λ∗j ≥ 0 for all j = 1, ..., J, and

4 gj (x
∗)− bj ≥ 0 for all j = 1, ..., J.

5 ∆>D2
x,xL(x∗, λ∗)∆ < 0 for all ∆ ∈

{
RJ \ {0} : ∆ ·Dg(x∗) = 0

}
.

Then x∗ is a local maximiser in problem (2)
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Example

Suppose f (x , y , z) = xyz ,

g(x , y , z) =


−(x + y + z)

x
y
z

 , b =


−1

0
0
0


Then,

Dg(x , y , z) =


−1 −1 −1

1 0 0
0 1 0
0 0 1


A solution exists because the objective function is continuous and the
constraint set is nonempty and compact.

Since at most 3 constraints can be binding at the same time, the CQ holds.

Let’s form the Kühn -Tucker Lagrangean function:

L(x , y , z , λ) = xyz + λ(1− x − y − z) + λxx + λyy + λzz
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Example (cont.)

The FONC are,

(1) ∂L(·)
∂x = yz − λ + λx = 0 (8) λ ≥ 0 (15) z ≥ 0

(2) ∂L(·)
∂y = xz − λ + λy = 0 (9) λx ≥ 0

(3) ∂L(·)
∂z = xy − λ + λz = 0 (10) λy ≥ 0

(4) λ(1− x − y − z) = 0 (11) λz ≥ 0
(5) λxx = 0 (12) 1− (x + y + z) ≥ 0
(6) λyy = 0 (13) x ≥ 0
(7) λzz = 0 (14) y ≥ 0

Since the global maximiser exists and the only points that solve the FONC
are (x , y , z) = (0, 0, 0) and (x , y , z) = ( 1

3 , 1
3 , 1

3 ), it follows that the latter is
the global maximiser.
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Quasi-Concave Problems

Theorem

Let f : D → R and g : D → RJ . Suppose f is C1. Assume there exists
(x∗, λ∗) ∈ RK ×RJ such that:

1 ∂L
∂xk

(x∗, λ∗) = 0, for all k = 1, ...,K,

2 λ∗j · (gj (x∗)− bj ) = 0 for all j = 1, ..., J,

3 λ∗j ≥ 0 for all j = 1, ..., J,

4 gj (x
∗)− bj ≥ 0 for all j = 1, ..., J,

5 f is quasi-concave with ∇f (x∗) 6= 0, and

6 λjgj (x) is quasi-concave.

7 x∗ satisfies the constraint qualification.

Then x∗ is a global maximiser in problem (2)
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