
EC9A0: Pre-sessional Advanced Mathematics Course
Slides 1: Matrix Algebra

Peter J. Hammond & Pablo F. Beker
Department of Economics

University of Warwick

Autumn 2013

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course Peter J. Hammond & Pablo F. Beker 1 of 55



Slides Outline

1 Solving Equations
Substitution
Gaussian Elimination

2 Matrices
Matrices and Their Transposes
Matrix Multiplication
Special Kind of Matrices
Linear versus Affine Functions
Quadratic Forms

3 Determinants
Definition
Rules for Determinants
Inverse Matrix
Cramer’s Rule

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course Peter J. Hammond & Pablo F. Beker 2 of 55



Solving Equations

System of Equations

We are interested in solving system of equations like:

a11x1 +a12x2 + ...+ a1nxn = b1

a21x1 +a22x2 + ...+ a2nxn = b2
...

...
...

am1x1 +am2x2 + ...+ amnxn = bm

where each aij is called the coefficient of the unknown xj in the i-th
equation.

Definition

A solution to the system of equations is an n−tuple of real numbers
[x1 x2 ... xn] which satisfies each of the equations.

For a system like the one above, we are interested in:
1 Does a solution exists?
2 How many solutions are there?

There are essentially three ways of solving such systems:
1 substitution
2 elimination of variables (Gaussian Elimination)
3 matrix methods (LU decomposition)
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Solving Equations Substitution

Substitution: Two Equations in Two Unknowns

Consider the system of equations:

x + y = 10

x − y = 6

Use the second equation to write y in terms of x ,

y = x − 6. (1)

Substitute this expression for y into the 1st equation:

x + (x − 6) = 10 =⇒ x = 8

Use (1) to obtain,
y = 2
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Solving Equations Substitution

Gaussian Elimination: Two Equations in Two Unknowns

More generally, one can:

1 add the first equation to the second, to eliminate y ;

2 obtain y from the first equation.

This leads to the following transformation

x + y = 10

x − y = 6

}
=⇒

{
x + y = 10

2x = 10 + 6
=⇒

 x + y = 10

x =
1

2
10 +

1

2
6

Obviously the solution is

x = 1
2 (10 + 6) = 8, y = 10− 1

2 (10 + 6) = 2
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Solving Equations Gaussian Elimination

Using Matrix Notation, I

Matrix notation allows the two equations

1x + 1y = 10

1x − 1y = 6

to be expressed as (
1 1
1 −1

)(
x
y

)
=

(
10
6

)
or as Az = b, where

A =

(
1 1
1 −1

)
, z =

(
x
y

)
, and b =

(
10
6

)
.

1 A is the coefficient matrix;

2 z is the vector of unknowns;

3 b is the vector of right-hand sides.
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Solving Equations Gaussian Elimination

Using Matrix Notation, II

(
1 1
1 −1

)(
x
y

)
=

(
10
6

)
m(

1 0
−1 1

)(
1 1
1 −1

)(
x
y

)
=

(
1 0
−1 1

)(
10
6

)
m(

1 1
0 −2

)(
x
y

)
=

(
10
−4

)
m(

1 0
0 −1

2

)(
1 1
0 −2

)(
x
y

)
=

(
1 0
0 −1

2

)(
10
−4

)
m(

1 1
0 1

)(
x
y

)
=

(
10
2

)
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Solving Equations Gaussian Elimination

Using Matrix Notation, III

Also, the solution x = 1
2 (10 + 6), y = 1

2 (10− 6)
can be expressed as

x = 1
2 10 + 1

2 6

y = 1
2 10− 1

2 6

or as

z =

(
x
y

)
=

(
1
2

1
2

1
2 −1

2

)(
10
6

)
= Cb, where C =

(
1
2

1
2

1
2 −1

2

)
.
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Solving Equations Gaussian Elimination

Gaussian Elimination: Two General Equations

Consider the general system

ax + by = u = 1u + 0v
cx + dy = v = 0u + 1v

of two equations in two unknowns, filled in with 1s and 0s.

In matrix form, these equations can be written as(
a b
c d

)(
x
y

)
=

(
1 0
0 1

)(
u
v

)
.

In case a 6= 0, we can eliminate x from the second equation
by adding −c/a times the first row to the second.

After defining the scalar D := a[d + (−c/a)b] = ad − bc,(
a b
0 D/a

)(
x
y

)
=

(
1 0
−c/a 1

)(
u
v

)
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Solving Equations Gaussian Elimination

Gaussian Elimination: Two General Equations-Subcase 1A

In Subcase 1A when D := ad − bc 6= 0,
multiply the second row by a to obtain(

a b
0 D

)(
x
y

)
=

(
1 0
−c a

)(
u
v

)
Adding −b/D times the second row to the first yields(

a 0
0 D

)(
x
y

)
=

(
1 + (bc/D) −ab/D
−c 1

)(
u
v

)
Recognizing that 1 + (bc/D) = (D + bc)/D = ad/D,
then dividing the two rows/equations by a and D respectively,
we obtain (

x
y

)
=

(
1 0
0 1

)(
x
y

)
=

1

D

(
d −b
−c a

)(
u
v

)
which implies the unique solution

x = (1/D)(du − bv) and y = (1/D)(av − cu)
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Solving Equations Gaussian Elimination

Gaussian Elimination: Two General Equations-Subcase 1B

In Subcase 1B when D := ad − bc = 0,
the multiplier −ab/D is undefined and the system(

a b
0 D/a

)(
x
y

)
=

(
1 0
−c/a 1

)(
u
v

)
collapses to (

a b
0 0

)(
x
y

)
=

(
u

v − c/a

)
.

This leaves us with two “subsubcases”:

if c 6= av , then the left-hand side of the second equation is 0,
but the right-hand side is non-zero,
so there is no solution;

if c = av , then the second equation reduces to 0 = 0,
and there is a continuum of solutions
satisfying the one remaining equation ax + by = u,
or x = (u − by)/a where y is any real number.
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Solving Equations Gaussian Elimination

Gaussian Elimination: Two General Equations-Case 2

In the final case when a = 0, simply interchanging the two equations(
a b
c d

)(
x
y

)
=

(
1 0
0 1

)(
u
v

)
.

gives (
c d
0 b

)(
x
y

)
=

(
1 0
0 1

)(
v
u

)
.

Provided that b 6= 0, one has y = u/b and,
assuming that c 6= 0, also x = (v − dy)/c = (bv − du)/bc.

On the other hand, if b = 0,
we are back with two possibilities like those of Subcase 1B.
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Matrices Matrices and Their Transposes

The Transpose of a Matrix

The transpose of the m × n matrix A = (aij)m×n
is the n ×m matrix

A> = (a>ij )n×m = (aji )n×m =


a11 a21 . . . am1

a12 a22 . . . am2
...

...
...

a1n a2n . . . amn


which results from transforming each column m-vector aj = (aij)

m
i=1

(j = 1, 2, . . . , n) of A into the corresponding row m-vector a>j = (a>ji )mi=1

of A>.

Equivalently, for each i = 1, 2, . . . ,m, the ith row n-vector a>i = (aij)
n
j=1

of A is transformed into the ith column n-vector ai = (aji )
n
j=1 of A>.

Either way, one has a>ij = aji for all relevant pairs i , j .
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Matrices Matrix Multiplication

Matrix Multiplication I

A scalar, usually denoted by a Greek letter, is a real number α ∈ R.

The product of any m× n matrix A = (aij)
m×n and any scalar α ∈ R is the

new m × n matrix denoted by αA = (αaij)
m×n, each of whose elements

αaij results from multiplying the corresponding element aij of A by α.
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Matrices Matrix Multiplication

Matrix Multiplication II

The matrix product of two matrices A and B is defined (whenever
possible) as the matrix C = AB = (cij)m×n whose element cij in row i and
column j is the inner product cij = a>i bj of:

the ith row vector a>i of the first matrix A;

the jth column vector bj of the second matrix B.

Note that the resulting matrix product C must have:

as many rows as the first matrix A;

as many columns as the second matrix B.
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Matrices Matrix Multiplication

Laws of Matrix Multiplication

The following laws of matrix multiplication hold whenever the matrices are
compatible for multiplication.

associative: A(BC) = (AB)C;

distributive: A(B + C) = AB + AC and (A + B)C = AC + BC;

transpose: (AB)> = B>A>.

shifting scalars: α(AB) = (αA)B = A(αB) for all α ∈ R.

Exercise

Let X be any m × n matrix, and z any column n-vector.

1 Show that the matrix product z>X>Xz is well-defined, and that its
value is a scalar.
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Matrices Matrix Multiplication

Matrix Multiplication Does Not Commute

The two matrices A and B commute just in case AB = BA.

Note that typical pairs of matrices DO NOT commute, meaning that
AB 6= BA — i.e., the order of multiplication matters.

Indeed, suppose that A is `×m and B is m× n, as is needed for AB to be
defined.

Then the reverse product BA is undefined except in the special case when
n = `.

Hence, for both AB and BA to be defined, where B is m × n, the matrix
A must be n ×m.

But then AB is n × n, whereas BA is m ×m.

Evidently AB 6= BA unless m = n.

Thus all four matrices A, B, AB and BA are m ×m = n × n.

We must be in the special case when all four are square matrices of the
same dimension.
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Matrices Matrix Multiplication

Matrix Multiplication Does Not Commute, II

Even if both A and B are n × n matrices,
implying that both AB and BA are also n × n,
one can still have AB 6= BA.

Here is a 2× 2 example:

Example

(
0 1
1 0

)(
0 0
0 1

)
=

(
0 1
0 0

)
6=
(

0 0
1 0

)
=

(
0 0
0 1

)(
0 1
1 0

)
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Matrices Matrix Multiplication

More Warnings Regarding Matrix Multiplication

Exercise

Let A,B,C denote three matrices. Give examples showing that

1 The matrix AB might be defined, even if BA is not.

2 One can have AB = 0 even though A 6= 0 and B 6= 0.

3 If AB = AC and A 6= 0, it does not follow that B = C.
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Matrices Special Kind of Matrices

Square Matrices

A square matrix has an equal number of rows and columns, this number
being called its dimension.

The (principal) diagonal of a square matrix A = (aij)n×n of dimension n is
the list (aii )

n
i=1 = (a11, a22, . . . , ann) of its diagonal elements aii .

The other elements aij with i 6= j are the off-diagonal elements.

A square matrix is often expressed in the form

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


with some extra dots along the diagonal.
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Matrices Special Kind of Matrices

Symmetric Matrices

A square matrix A is symmetric if it is equal to its transpose — i.e., if
A> = A.

Example

The product of two symmetric matrices need not be symmetric.(
0 1
1 0

)(
0 0
0 1

)
=

(
0 1
0 0

)
but

(
0 0
0 1

)(
0 1
1 0

)
=

(
0 0
1 0

)
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Matrices Special Kind of Matrices

Two Exercises with Symmetric Matrices

Exercise

Let x be a column n-vector.

1 Find the dimensions of x>x and of xx>.

2 Show that one is a non-negative number which is positive unless
x = 0, and that the other is a symmetric matrix.

Exercise

Let A be an m × n-matrix.

1 Find the dimensions of A>A and of AA>.

2 Show that both A>A and of AA> are symmetric matrices.

3 What is a necessary condition for A>A = AA>?

4 What is a sufficient condition for A>A = AA>?
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Matrices Special Kind of Matrices

Diagonal Matrices

A square matrix A = (aij)
n×n is diagonal just in case

all of its off diagonal elements aij with i 6= j are 0.

A diagonal matrix of dimension n can be written in the form

D =


d1 0 0 . . . 0
0 d2 0 . . . 0
0 0 d3 . . . 0
...

...
...

. . .
...

0 0 0 . . . dn

 = diag(d1, d2, d3, . . . , dn) = diag d

where the n-vector d = (d1, d2, d3, . . . , dn) = (di )
n
i=1

consists of the diagonal elements of D.

Obviously, any diagonal matrix is symmetric.
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Matrices Special Kind of Matrices

Multiplying by Diagonal Matrices

Example

Let D be a diagonal matrix of dimension n.

Suppose that A and B are m × n and n ×m matrices, respectively.

Then E := AD and F := DB are well defined m × n and n ×m matrices,
respectively.

By the law of matrix multiplication, their elements are

eij =
∑n

k=1
aikdkj = aijdjj and fij =

∑n

k=1
dikbkj = diibij

Thus, the jth column ej of AD is the product djjaj of the jth element of
D and the jth column aj of A.

Similarly, the ith row f>i of DB is the product diib
>
i

of the ith element of D and the ith row b>i of B.
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Matrices Special Kind of Matrices

The Identity Matrix: Definition

The identity matrix of dimension n is the diagonal matrix

In = diag(1, 1, . . . , 1)

whose n diagonal elements are all equal to 1.

Equivalently, it is the n × n-matrix A = (aij)
n×n whose elements are all

given by aij = δij for the Kronecker delta function (i , j) 7→ δij defined on
{1, 2, . . . , n}2.

Exercise

Given any m × n matrix A, verify that ImA = AIn = A.
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Matrices Special Kind of Matrices

Matrices Representing Elementary Row Operations

Ei (α) =



1 0 . . . 0 . . . 0
0 1 . . . 0 . . . 0
...

...
. . .

...
...

0 0 . . . α . . .
...

...
...

...
. . .

...
0 0 . . . 0 . . . 1


,Eij(α) =



1 0 . . . 0 . . . 0
0 1 . . . 0 . . . 0
...

...
. . .

...
...

0 α . . . 1 . . .
...

...
...

...
. . .

...
0 0 . . . 0 . . . 1


1 Eij is the matrix obtained by interchanging the ith and jth rows of

the identity matrix.
2 Ei (α) is the matrix obtained by multiplying the ith row of the identity

matrix by α ∈ R,
3 Eij(α) is the matrix obtained by adding α ∈ R times row i to row j in

the identity matrix.
Theorem
Let E be an elementary n × n matrix obtained by performing a particular row
operation on the n × n identity. For any n ×m matrix A, EA is the matrix
obtained by performing the same row operation on A.
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Matrices Special Kind of Matrices

Orthogonal Matrices

An n-dimensional square matrix Q is said to be orthogonal just in case its
columns form an orthonormal set — i.e., they must be pairwise orthogonal
unit vectors.

Theorem

A square matrix Q is orthogonal if and only if it satisfies QQ> = I.

Proof.

The elements of the matrix product QQ> satisfy

(QQ>)ij =
n∑

k=1

qikqjk = qi · qj

where qi (resp. qj) denotes the ith (resp. jth) column vector of Q.

But the columns of Q are orthonormal iff qi · qj = δij for all
i , j = 1, 2, . . . , n, and so iff QQ> = I.
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Matrices Special Kind of Matrices

Triangular Matrices: Definition

Definition

A square matrix is upper (resp. lower) triangular if all its non-zero off
diagonal elements are above and to the right (resp. below and to the left)
of the diagonal — i.e., in the upper (resp. lower) triangle bounded by the
principal diagonal.

The elements of an upper (resp. lower) triangular matrix satisfy

(U)ij = 0 whenever i > j , and (L)ij = 0 whenever i < j
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Matrices Special Kind of Matrices

Triangular Matrices: Exercises

Exercise

Prove that the transpose:

1 U> of any upper triangular matrix U is lower triangular;

2 L> of any lower triangular matrix U is upper triangular.

Exercise

Consider the matrix Eij(α) that represents the elementary row operation of
adding a multiple of α times row j to row i . Under what conditions is
Eij(α)
(i) upper triangular?
(ii) lower triangular?

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course Peter J. Hammond & Pablo F. Beker 29 of 55



Matrices Special Kind of Matrices

Upper Triangular Matrices: Multiplication

Theorem

The product W = UV of any two upper triangular matrices U,V is upper
triangular, with diagonal elements wii = uiivii (i = 1, . . . , n) equal to the
product of the corresponding diagonal elements of U,V.

Proof.

Given any two upper triangular n × n matrices U and V, the elements
(wij)

n×n of their product W = UV satisfy

wij =

{∑j
k=i uikvkj if i ≤ j

0 if i > j

because uikvkj = 0 unless both i ≤ k and k ≤ j .

So W = UV is upper triangular.

Finally, putting j = i implies that wii = uiivii for i = 1, . . . , n.
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Matrices Special Kind of Matrices

Lower Triangular Matrices: Multiplication

Theorem

The product of any two lower triangular matrices is lower triangular.

Proof.

Given any two lower triangular matrices L,M, taking transposes shows
that (LM)> = M>L> = U, where the product U is upper triangular, as
the product of upper triangular matrices. Hence LM = U> is lower
triangular, as the transpose of an upper triangular matrix.
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Matrices Special Kind of Matrices

Row Echelon Matrices: Definition

Definition

For each i ∈ {1, . . . ,m}, the leading non-zero element in any non-zero row
i of the m × n matrix A is ai ,ji , where
ji := arg min{j ∈ {1, . . . , n} | ai ,j 6= 0}.

The m × n matrix R = (aij)
m×n is in row echelon form if;

1 each zero row comes after each row that is not zero;

2 if the leading non-zero element in each row i ∈ {1, . . . , p}, where p is
the number of non-zero rows, is denoted by ai ,ji , then
1 ≤ j1 < j2 < . . . jp.
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Matrices Special Kind of Matrices

Reduced Row Echelon Matrices

A matrix is in reduced row echelon form (also called row canonical form) if
it satisfies the additional condition:

Every leading non-zero coefficient ai ,ji is 1 and it is the only nonzero
entry in column ji .

Here is an example: 1 0 1
2 0 b1

0 1 −1
3 0 b2

0 0 0 1 b3


Theorem

For any k × n matrix A there exists elementary matrices E1,E2, ...,Em

such that the matrix product Em Em−1...E1 A = U where U is in
(reduced) row echelon form.
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Matrices Special Kind of Matrices

Partitioned Matrices: Definition

A partitioned matrix is a rectangular array of different matrices.

Example

Consider the (m + `)× (n + k) matrix(
A B
C D

)
where the four submatrices A,B,C,D
are of dimension m × n, m × k, `× n and `× k respectively.

For any scalar α ∈ R,
the scalar multiple of a partitioned matrix is

α

(
A B
C D

)
=

(
αA αB
αC αD

)
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Matrices Special Kind of Matrices

Partitioned Matrices: Addition

Suppose the two partitioned matrices(
A B
C D

)
and

(
E F
G H

)
have the property that the following four pairs of corresponding matrices
have equal dimensions: (i) A and E; (ii) B and F; (iii) C and G; (iv) D
and H.

Then the sum of the two matrices is(
A B
C D

)
+

(
E F
G H

)
=

(
A + E B + F
C + G D + H

)
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Matrices Special Kind of Matrices

Partitioned Matrices: Multiplication

Provided that the two partitioned matrices(
A B
C D

)
and

(
E F
G H

)
along with their sub-matrices are all compatible for multiplication,
the product is defined as(

A B
C D

)(
E F
G H

)
=

(
AE + BG AF + BH
CE + DG CF + DH

)
This adheres to the usual rule for multiplying rows by columns.
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Matrices Special Kind of Matrices

Partitioned Matrices: Transposes

The rule for transposing a partitioned matrix is(
A B
C D

)>
=

(
A> C>

B> D>

)
So the original matrix is symmetric iff A = A>, D = D>, B = C>, and
C = B>.

It is diagonal iff A,D are both diagonal, while B = 0 and C = 0.

The identity matrix is diagonal with A = I, D = I, possibly identity
matrices of different dimensions.
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Matrices Linear versus Affine Functions

Linear Functions: Definition

Definition

A linear combination of vectors is the weighted sum
∑k

h=1 λhx
h,

where xh ∈ V and λh ∈ F for h = 1, 2, . . . , k .

Definition

A function V : u 7→ f (u) ∈ F is linear provided that

f (λu + µv) = λf (u) + µf (v)

whenever u, v ∈ V and λ, µ ∈ V .
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Matrices Linear versus Affine Functions

Key Properties of Linear Functions

Exercise

By induction on k , show that if the function f : V → F is linear, then

f

(∑k

h=1
λhx

h

)
=
∑k

h=1
λhf (xh)

for all linear combinations
∑k

h=1 λhx
h in V

— i.e., f preserves linear combinations.

Exercise

In case V = Rn and F = R, show that any linear function is homogeneous
of degree 1, meaning that f (λv) = λf (v) for all λ > 0 and all v ∈ Rn.
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Matrices Linear versus Affine Functions

Affine Functions

Definition

A function g : V → F is said to be affine if there is a scalar additive
constant α ∈ F and a linear function f : V → F such that
g(v) ≡ α + f (v).
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Matrices Quadratic Forms

Quadratic Forms

Definition

A quadratic form on RK is a real-valued function of the form

Q(x1, ..., xn) ≡
∑
i≤j

aijxixj = xTA x

Example

Q(x1, x2) = a11x
2
1 + a12x1x2 + a22x

2
2 can be written as

(
x1 x2

)( a11
1
2a12

1
2a21 a22

)(
x1

x2

)
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Matrices Quadratic Forms

Negative and Semi-Negative Definite Matrices

Definition

Let A be an n × n symmetric matrix, then A is:

1 Positive definite if xTAx > 0 for all x 6= 0 in RK ,

2 positive semidefinite if xTAx ≥ 0 for all x 6= 0 in RK ,

3 negative definite if xTAx < 0 for all x 6= 0 in RK ,

4 negative semidefinite if xTAx ≤ 0 for all x 6= 0 in RK ,

5 indefinite if xTAx > 0 for some x ∈ RK and xTAx < 0 for some
other x ∈ RK .
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Determinants Definition

Determinants of Order 2: Definition

Consider again the pair of linear equations

a11x1 + a12x2 = b1

a21x1 + a12x2 = b2

with its associated coefficient matrix

A =

(
a11 a12

a21 a22

)
Let us define D := a11a22 − a21a12.

Provided that D 6= 0, there is a unique solution given by

x1 =
1

D
(b1a22 − b2a12), x2 =

1

D
(b2a11 − b1a21)

The number D is called the determinant of the matrix A,
and denoted by either det(A) or more concisely, |A|.
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Determinants Definition

Determinants of Order 2: Simple Rule

Thus, for any 2× 2 matrix A, its determinant D is

|A| =

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a21a12

For this special case of order 2 determinants, a simple rule is:

1 multiply the diagonal elements together;

2 multiply the off-diagonal elements together;

3 subtract the product of the off-diagonal elements
from the product of the diagonal elements.

Note that

|A| = a11a22

∣∣∣∣1 0
0 1

∣∣∣∣+ a21a12

∣∣∣∣0 1
1 0

∣∣∣∣
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Determinants Definition

Cramer’s Rule in the 2× 2 Case

Using determinant notation, the solution to the equations

a11x1 + a12x2 = b1

a21x1 + a12x2 = b2

can be written in the alternative form

x1 =
1

D

∣∣∣∣b1 a12

b2 a22

∣∣∣∣ , x2 =
1

D

∣∣∣∣a11 b1

a21 b2

∣∣∣∣
This accords with Cramer’s rule for the solution to Ax = b,
which is the vector x = (xi )

n
i=1 each of whose components xi

is the fraction with:

1 denominator equal to the determinant D of the coefficient matrix A
(provided, of course, that D 6= 0);

2 numerator equal to the determinant of the matrix (A−i ,b) formed
from A by replacing its ith column with the b vector of right-hand
side elements.
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Determinants Definition

Determinants of Order 3: Definition

Determinants of order 3 can be calculated
from those of order 2 according to the formula

|A| = a11

∣∣∣∣a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣
=
∑3

j=1
(−1)1+ja1j |A1j |

where, for j = 1, 2, 3, the 2× 2 matrix A1j is the sub-matrix obtained by
removing both row 1 and column j from A. The scalar Cij = (−1)i+j |Aij |
is called the(i , j)th-cofactor of A.

The result is the following sum

|A| = a11a22a33 − a11a23a32 + a12a23a31

− a12a21a33 + a13a21a32 − a13a22a31

of 3! = 6 terms, each the product of 3 elements chosen
so that each row and each column is represented just once.
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Determinants Definition

Determinants of Order 3: Cofactor Expansion

The determinant expansion

|A| = a11a22a33 − a11a23a32 + a12a23a31

− a12a21a33 + a13a21a32 − a13a22a31

is very symmetric, suggesting (correctly) that the cofactor expansion along
the first row (a11, a12, a13)

|A| =
∑3

j=1
(−1)1+ja1j |A1j |

gives the same answer as the two cofactor expansions

|A| =
∑3

j=1
(−1)r+jarj |Arj | =

∑3

i=1
(−1)i+sais |Ais |

along, respectively:

the rth row (ar1, ar2, ar3)

the sth column (a1s , a2s , a3s)
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Determinants Rules for Determinants

Eight Basic Rules (Rules A–H of EMEA, Section 16.4)

Let |A| denote the determinant of any n × n matrix A.

1 |A| = 0 if all the elements in a row (or column) of A are 0.

2 |A>| = |A|, where A> is the transpose of A.

3 If all the elements in a single row (or column) of A
are multiplied by a scalar α, so is its determinant.

4 If two rows (or two columns) of A are interchanged,
the determinant changes sign, but not its absolute value.

5 If two of the rows (or columns) of A are proportional,
then |A| = 0.

6 The value of the determinant of A is unchanged
if any multiple of one row (or one column)
is added to a different row (or column) of A.

7 The determinant of the product |AB| of two n × n matrices
equals the product |A| · |B| of their determinants.

8 If α is any scalar, then |αA| = αn|A|.
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Determinants Rules for Determinants

The Adjugate Matrix

Definition

The adjugate (or “(classical) adjoint”) adjA of an order n square matrix
A has elements given by (adjA)ij = Cji .

It is therefore the transpose of the cofactor matrix C whose elements are
the respective cofactors of A.

See Example 9.3 in page 195 of Simon and Blume for a detailed example.
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Determinants Inverse Matrix

Definition of Inverse Matrix

Definition

The n× n matrix X is the inverse of the invertible n× n matrix A provided
that AX = XA = In.

In this case we write X = A−1, so A−1 denotes the (unique) inverse.

Big question: does the inverse exist? is it unique?
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Determinants Inverse Matrix

Existence Conditions

Theorem

An n× n matrix A has an inverse if and only if |A| 6= 0, which holds if and
only if at least one of the equations AX = In and XA = In has a solution.

Proof.

Provided |A| 6= 0, the identity (adjA)A = A(adjA) = |A|In shows that
the matrix X := (1/|A|) adjA is well defined and satisfies XA = AX = In,
so X is the inverse A−1.

Conversely, if either XA = In or AX = In has a solution, then the product
rule for determinants implies
that 1 = |In| = |AX| = |XA| = |A||X|, and so |A| 6= 0. The rest follows
from the paragraph above.
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Determinants Inverse Matrix

Singularity

So A−1 exists if and only if |A| 6= 0.

Definition

1 In case |A| = 0, the matrix A is said to be singular;

2 In case |A| 6= 0, the matrix A is said to be non-singular or invertible.
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Determinants Inverse Matrix

Example and Application to Simultaneous Equations

Exercise

Verify that

A =

(
1 1
1 −1

)
=⇒ A−1 = C :=

(
1
2

1
2

1
2 −1

2

)
by using direct multiplication to show that AC = CA = I2.

Example

Suppose that a system of n simultaneous equations in n unknowns
is expressed in matrix notation as Ax = b.

Of course, A must be an n × n matrix.

Suppose A has an inverse A−1.

Premultiplying both sides of the equation Ax = b by this inverse
gives A−1Ax = A−1b, which simplifies to Ix = A−1b.

Hence the unique solution of the equation is x = A−1b.
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Determinants Cramer’s Rule

Cramer’s Rule: Statement

Notation

Given any m × n matrix A, let [A−j ,b] denote the new m × n matrix in
which column j has been replaced by the column vector b.

Evidently [A−j , aj ] = A.

Theorem

Provided that the n × n matrix A is invertible, the simultaneous equation
system Ax = b has a unique solution x = A−1b whose ith component is
given by the ratio xi = |[A−i ,b]|/|A|.

This result is known as Cramer’s rule.
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Determinants Cramer’s Rule

Rule for Inverting Products

Theorem

Suppose that A and B are two invertible n × n matrices.

Then the inverse of the matrix product AB exists,
and is the reverse product B−1A−1 of the inverses.

Proof.

Using the associative law for matrix multiplication repeatedly gives:

(B−1A−1)(AB) = B−1(A−1A)B = B−1(I)B = B−1(IB) = B−1B = I

and

(AB)(B−1A−1) = A(BB−1)A−1 = A(I)A−1 = (AI)A−1 = AA−1 = I.

These equations confirm that X := B−1A−1 is the unique matrix
satisfying the double equality (AB)X = X(AB) = I.
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