EC9A0: Pre-sessional Advanced Mathematics Course Slides 1: Matrix Algebra

Peter J. Hammond \& Pablo F. Beker
Department of Economics
University of Warwick

Autumn 2013

Slides Outline

(1) Solving Equations

- Substitution
- Gaussian Elimination
(2) Matrices
- Matrices and Their Transposes
- Matrix Multiplication
- Special Kind of Matrices
- Linear versus Affine Functions
- Quadratic Forms
(3) Determinants
- Definition
- Rules for Determinants
- Inverse Matrix
- Cramer's Rule

System of Equations

- We are interested in solving system of equations like:

$$
\begin{array}{ccc}
a_{11} x_{1} & +a_{12} x_{2}+\ldots+a_{1 n} x_{n}= & b_{1} \\
a_{21} x_{1} & +a_{22} x_{2}+\ldots+a_{2 n} x_{n}= & b_{2} \\
\vdots & \vdots & \vdots \\
a_{m 1} x_{1} & +a_{m 2} x_{2}+\ldots+a_{m n} x_{n}= & b_{m}
\end{array}
$$

where each $a_{i j}$ is called the coefficient of the unknown x_{j} in the i-th equation.

Definition

A solution to the system of equations is an n-tuple of real numbers
$\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]$ which satisfies each of the equations.

- For a system like the one above, we are interested in:
(1) Does a solution exists?
(2) How many solutions are there?
- There are essentially three ways of solving such systems:

9. substitution

Substitution: Two Equations in Two Unknowns

- Consider the system of equations:

$$
\begin{aligned}
& x+y=10 \\
& x-y=6
\end{aligned}
$$

- Use the second equation to write y in terms of x,

$$
\begin{equation*}
y=x-6 \tag{1}
\end{equation*}
$$

- Substitute this expression for y into the 1st equation:

$$
x+(x-6)=10 \Longrightarrow x=8
$$

- Use (1) to obtain,

$$
y=2
$$

Gaussian Elimination: Two Equations in Two Unknowns

More generally, one can:
(1) add the first equation to the second, to eliminate y;
(2) obtain y from the first equation.

This leads to the following transformation

$$
\left.\begin{array}{l}
x+y=10 \\
x-y=6
\end{array}\right\} \Longrightarrow\left\{\begin{array} { r l }
{ x + y } & { = 1 0 } \\
{ 2 x } & { = 1 0 + 6 }
\end{array} \Longrightarrow \left\{\begin{array}{rl}
x+y & =10 \\
x & =\frac{1}{2} 10+\frac{1}{2} 6
\end{array}\right.\right.
$$

Obviously the solution is

$$
x=\frac{1}{2}(10+6)=8, y=10-\frac{1}{2}(10+6)=2
$$

Using Matrix Notation, I

Matrix notation allows the two equations

$$
\begin{aligned}
& 1 x+1 y=10 \\
& 1 x-1 y=6
\end{aligned}
$$

to be expressed as

$$
\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{x}{y}=\binom{10}{6}
$$

or as $\mathbf{A z}=\mathbf{b}$, where

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), \quad \mathbf{z}=\binom{x}{y}, \quad \text { and } \quad \mathbf{b}=\binom{10}{6} .
$$

(1) \mathbf{A} is the coefficient matrix;
(2) \mathbf{z} is the vector of unknowns;
(3) \mathbf{b} is the vector of right-hand sides.

Using Matrix Notation, II

$$
\left.\begin{array}{rl}
\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{x}{y} & =\binom{10}{6} \\
\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
y
\end{array}\right) & =\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)\binom{10}{6} \\
\left(\begin{array}{cc}
1 & 1 \\
0 & -2
\end{array}\right)\binom{x}{y} & =\binom{10}{-4} \\
\widehat{\Downarrow} \\
\left(\begin{array}{cc}
1 & 0 \\
0 & -\frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
0 & -2
\end{array}\right)\binom{x}{y} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -\frac{1}{2}
\end{array}\right)\binom{10}{-4} \\
\left(\begin{array}{ll}
1 & 1 \\
0
\end{array}\right)\left(\begin{array}{l}
\| \\
0 \\
y
\end{array}\right) & =\left(\begin{array}{c}
10 \\
2
\end{array}\right. \\
2
\end{array}\right)
$$

Using Matrix Notation, III

Also, the solution $x=\frac{1}{2}(10+6), y=\frac{1}{2}(10-6)$
can be expressed as

$$
\begin{aligned}
& x=\frac{1}{2} 10+\frac{1}{2} 6 \\
& y=\frac{1}{2} 10-\frac{1}{2} 6
\end{aligned}
$$

or as

$$
\mathbf{z}=\binom{x}{y}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right)\binom{10}{6}=\mathbf{C b}, \quad \text { where } \quad \mathbf{C}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right) .
$$

Gaussian Elimination: Two General Equations

Consider the general system

$$
\begin{aligned}
& a x+b y=u=1 u+0 v \\
& c x+d y=v=0 u+1 v
\end{aligned}
$$

of two equations in two unknowns, filled in with 1 s and 0 s .
In matrix form, these equations can be written as

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{u}{v} .
$$

In case $a \neq 0$, we can eliminate x from the second equation by adding $-c / a$ times the first row to the second.

After defining the scalar $D:=a[d+(-c / a) b]=a d-b c$,

$$
\left(\begin{array}{cc}
a & b \\
0 & D / a
\end{array}\right)\binom{x}{y}=\left(\begin{array}{cc}
1 & 0 \\
-c / a & 1
\end{array}\right)\binom{u}{v}
$$

Gaussian Elimination: Two General Equations-Subcase 1A

In Subcase 1A when $D:=a d-b c \neq 0$, multiply the second row by a to obtain

$$
\left(\begin{array}{ll}
a & b \\
0 & D
\end{array}\right)\binom{x}{y}=\left(\begin{array}{cc}
1 & 0 \\
-c & a
\end{array}\right)\binom{u}{v}
$$

Adding $-b / D$ times the second row to the first yields

$$
\left(\begin{array}{ll}
a & 0 \\
0 & D
\end{array}\right)\binom{x}{y}=\left(\begin{array}{cc}
1+(b c / D) & -a b / D \\
-c & 1
\end{array}\right)\binom{u}{v}
$$

Recognizing that $1+(b c / D)=(D+b c) / D=a d / D$, then dividing the two rows/equations by a and D respectively, we obtain

$$
\binom{x}{y}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}=\frac{1}{D}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)\binom{u}{v}
$$

which implies the unique solution

$$
x=(1 / D)(d u-b v) \quad \text { and } \quad y=(1 / D)(a v-c u)
$$

Gaussian Elimination: Two General Equations-Subcase 1B

In Subcase 1B when $D:=a d-b c=0$, the multiplier $-a b / D$ is undefined and the system

$$
\left(\begin{array}{cc}
a & b \\
0 & D / a
\end{array}\right)\binom{x}{y}=\left(\begin{array}{cc}
1 & 0 \\
-c / a & 1
\end{array}\right)\binom{u}{v}
$$

collapses to

$$
\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right)\binom{x}{y}=\binom{u}{v-c / a} .
$$

This leaves us with two "subsubcases":
if $c \neq a v$, then the left-hand side of the second equation is 0 , but the right-hand side is non-zero, so there is no solution;
if $c=a v$, then the second equation reduces to $0=0$, and there is a continuum of solutions satisfying the one remaining equation $a x+b y=u$, or $x=(u-b y) / a$ where y is any real number.

Gaussian Elimination: Two General Equations-Case 2

In the final case when $a=0$, simply interchanging the two equations

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{u}{v} .
$$

gives

$$
\left(\begin{array}{ll}
c & d \\
0 & b
\end{array}\right)\binom{x}{y}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{v}{u} .
$$

Provided that $b \neq 0$, one has $y=u / b$ and, assuming that $c \neq 0$, also $x=(v-d y) / c=(b v-d u) / b c$.

On the other hand, if $b=0$,
we are back with two possibilities like those of Subcase 1B.

The Transpose of a Matrix

The transpose of the $m \times n$ matrix $\mathbf{A}=\left(a_{i j}\right)_{m \times n}$ is the $n \times m$ matrix

$$
\mathbf{A}^{\top}=\left(a_{i j}^{\top}\right)_{n \times m}=\left(a_{j i}\right)_{n \times m}=\left(\begin{array}{cccc}
a_{11} & a_{21} & \ldots & a_{m 1} \\
a_{12} & a_{22} & \ldots & a_{m 2} \\
\vdots & \vdots & & \vdots \\
a_{1 n} & a_{2 n} & \ldots & a_{m n}
\end{array}\right)
$$

which results from transforming each column m-vector $\mathbf{a}_{j}=\left(a_{i j}\right)_{i=1}^{m}$ $(j=1,2, \ldots, n)$ of \mathbf{A} into the corresponding row m-vector $\mathbf{a}_{j}^{\top}=\left(a_{j i}^{\top}\right)_{i=1}^{m}$ of \mathbf{A}^{\top}.

Equivalently, for each $i=1,2, \ldots, m$, the i th row n-vector $\mathbf{a}_{i}^{\top}=\left(a_{i j}\right)_{j=1}^{n}$ of \mathbf{A} is transformed into the i th column n-vector $\mathbf{a}_{i}=\left(a_{j i}\right)_{j=1}^{n}$ of \mathbf{A}^{\top}. Either way, one has $a_{i j}^{\top}=a_{j i}$ for all relevant pairs i, j.

Matrix Multiplication I

A scalar, usually denoted by a Greek letter, is a real number $\alpha \in \mathbb{R}$. The product of any $m \times n$ matrix $\mathbf{A}=\left(a_{i j}\right)^{m \times n}$ and any scalar $\alpha \in \mathbb{R}$ is the new $m \times n$ matrix denoted by $\alpha \mathbf{A}=\left(\alpha a_{i j}\right)^{m \times n}$, each of whose elements $\alpha a_{i j}$ results from multiplying the corresponding element $a_{i j}$ of \mathbf{A} by α.

Matrix Multiplication II

The matrix product of two matrices \mathbf{A} and \mathbf{B} is defined (whenever possible) as the matrix $\mathbf{C}=\mathbf{A B}=\left(c_{i j}\right)_{m \times n}$ whose element $c_{i j}$ in row i and column j is the inner product $c_{i j}=\mathbf{a}_{i}^{\top} \mathbf{b}_{j}$ of:

- the i th row vector \mathbf{a}_{i}^{\top} of the first matrix \mathbf{A};
- the j th column vector \mathbf{b}_{j} of the second matrix \mathbf{B}.

Note that the resulting matrix product \mathbf{C} must have:

- as many rows as the first matrix \mathbf{A};
- as many columns as the second matrix \mathbf{B}.

Laws of Matrix Multiplication

The following laws of matrix multiplication hold whenever the matrices are compatible for multiplication.
associative: $\mathbf{A}(\mathbf{B C})=(\mathbf{A B}) \mathbf{C}$;
distributive: $\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}$ and $(\mathbf{A}+\mathbf{B}) \mathbf{C}=\mathbf{A C}+\mathbf{B C}$; transpose: $(\mathbf{A B})^{\top}=\mathbf{B}^{\top} \mathbf{A}^{\top}$.
shifting scalars: $\alpha(\mathbf{A B})=(\alpha \mathbf{A}) \mathbf{B}=\mathbf{A}(\alpha \mathbf{B})$ for all $\alpha \in \mathbb{R}$.

Exercise

Let \mathbf{X} be any $m \times n$ matrix, and \mathbf{z} any column n-vector.
(1) Show that the matrix product $\mathbf{z}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{z}$ is well-defined, and that its value is a scalar.

Matrix Multiplication Does Not Commute

The two matrices \mathbf{A} and \mathbf{B} commute just in case $\mathbf{A B}=\mathbf{B A}$.
Note that typical pairs of matrices DO NOT commute, meaning that $\mathbf{A B} \neq \mathbf{B A}-$ i.e., the order of multiplication matters.

Indeed, suppose that \mathbf{A} is $\ell \times m$ and \mathbf{B} is $m \times n$, as is needed for $\mathbf{A B}$ to be defined.

Then the reverse product BA is undefined except in the special case when $n=\ell$.

Hence, for both $\mathbf{A B}$ and $\mathbf{B A}$ to be defined, where \mathbf{B} is $m \times n$, the matrix
\mathbf{A} must be $n \times m$.
But then $\mathbf{A B}$ is $n \times n$, whereas $\mathbf{B A}$ is $m \times m$.
Evidently $\mathbf{A B} \neq \mathbf{B A}$ unless $m=n$.
Thus all four matrices $\mathbf{A}, \mathbf{B}, \mathbf{A B}$ and $\mathbf{B A}$ are $m \times m=n \times n$.
We must be in the special case when all four are square matrices of the same dimension.
University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course Peter J. Hammond \& Pablo F. Beker 17 of 55

Matrix Multiplication Does Not Commute, II

Even if both \mathbf{A} and \mathbf{B} are $n \times n$ matrices, implying that both $\mathbf{A B}$ and $\mathbf{B A}$ are also $n \times n$, one can still have $\mathbf{A B} \neq \mathbf{B A}$.

Here is a 2×2 example:
Example

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \neq\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

More Warnings Regarding Matrix Multiplication

Exercise
Let $\mathbf{A}, \mathbf{B}, \mathbf{C}$ denote three matrices. Give examples showing that
(1) The matrix $\mathbf{A B}$ might be defined, even if $\mathbf{B} A$ is not.
(2) One can have $\mathbf{A B}=\mathbf{0}$ even though $\mathbf{A} \neq \mathbf{0}$ and $\mathbf{B} \neq \mathbf{0}$.
(3) If $\mathbf{A B}=\mathbf{A C}$ and $\mathbf{A} \neq \mathbf{0}$, it does not follow that $\mathbf{B}=\mathbf{C}$.

Square Matrices

A square matrix has an equal number of rows and columns, this number being called its dimension.

The (principal) diagonal of a square matrix $\mathbf{A}=\left(a_{i j}\right)_{n \times n}$ of dimension n is the list $\left(a_{i i}\right)_{i=1}^{n}=\left(a_{11}, a_{22}, \ldots, a_{n n}\right)$ of its diagonal elements $a_{i i}$.

The other elements $a_{i j}$ with $i \neq j$ are the off-diagonal elements.
A square matrix is often expressed in the form

$$
\mathbf{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)
$$

with some extra dots along the diagonal.

Symmetric Matrices

A square matrix \mathbf{A} is symmetric if it is equal to its transpose - i.e., if $\mathbf{A}^{\top}=\mathbf{A}$.

Example

The product of two symmetric matrices need not be symmetric.

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad \text { but } \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Two Exercises with Symmetric Matrices

Exercise
Let \mathbf{x} be a column n-vector.
(1) Find the dimensions of $\mathbf{x}^{\top} \mathbf{x}$ and of $\mathbf{x x}^{\top}$.
(2) Show that one is a non-negative number which is positive unless $\mathbf{x}=\mathbf{0}$, and that the other is a symmetric matrix.

Exercise

Let \mathbf{A} be an $m \times n$-matrix.
(1) Find the dimensions of $\mathbf{A}^{\top} \mathbf{A}$ and of $\mathbf{A} \mathbf{A}^{\top}$.
(2) Show that both $\mathbf{A}^{\top} \mathbf{A}$ and of $\mathbf{A A}^{\top}$ are symmetric matrices.
(3) What is a necessary condition for $\mathbf{A}^{\top} \mathbf{A}=\mathbf{A} \mathbf{A}^{\top}$?
(1) What is a sufficient condition for $\mathbf{A}^{\top} \mathbf{A}=\mathbf{A A}^{\top}$?

Diagonal Matrices

A square matrix $\mathbf{A}=\left(a_{i j}\right)^{n \times n}$ is diagonal just in case all of its off diagonal elements $a_{i j}$ with $i \neq j$ are 0 .

A diagonal matrix of dimension n can be written in the form

$$
\mathbf{D}=\left(\begin{array}{ccccc}
d_{1} & 0 & 0 & \ldots & 0 \\
0 & d_{2} & 0 & \ldots & 0 \\
0 & 0 & d_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & d_{n}
\end{array}\right)=\boldsymbol{\operatorname { d i a g }}\left(d_{1}, d_{2}, d_{3}, \ldots, d_{n}\right)=\boldsymbol{\operatorname { d i a g }} \mathbf{d}
$$

where the n-vector $\mathbf{d}=\left(d_{1}, d_{2}, d_{3}, \ldots, d_{n}\right)=\left(d_{i}\right)_{i=1}^{n}$ consists of the diagonal elements of \mathbf{D}.

Obviously, any diagonal matrix is symmetric.

Multiplying by Diagonal Matrices

Example

Let \mathbf{D} be a diagonal matrix of dimension n.
Suppose that \mathbf{A} and \mathbf{B} are $m \times n$ and $n \times m$ matrices, respectively.
Then $\mathbf{E}:=\mathbf{A D}$ and $\mathbf{F}:=\mathbf{D B}$ are well defined $m \times n$ and $n \times m$ matrices, respectively.

By the law of matrix multiplication, their elements are

$$
e_{i j}=\sum_{k=1}^{n} a_{i k} d_{k j}=a_{i j} d_{j j} \text { and } f_{i j}=\sum_{k=1}^{n} d_{i k} b_{k j}=d_{i i} b_{i j}
$$

Thus, the j th column \mathbf{e}_{j} of $\mathbf{A D}$ is the product $d_{j j} \mathbf{a}_{j}$ of the j th element of \mathbf{D} and the j th column \mathbf{a}_{j} of \mathbf{A}.

Similarly, the i th row \mathbf{f}_{i}^{\top} of $\mathbf{D B}$ is the product $d_{i j} \mathbf{b}_{i}^{\top}$ of the i th element of \mathbf{D} and the i th row \mathbf{b}_{i}^{\top} of \mathbf{B}.

The Identity Matrix: Definition

The identity matrix of dimension n is the diagonal matrix

$$
\mathbf{I}_{n}=\operatorname{diag}(1,1, \ldots, 1)
$$

whose n diagonal elements are all equal to 1 .
Equivalently, it is the $n \times n$-matrix $\mathbf{A}=\left(a_{i j}\right)^{n \times n}$ whose elements are all given by $a_{i j}=\delta_{i j}$ for the Kronecker delta function $(i, j) \mapsto \delta_{i j}$ defined on $\{1,2, \ldots, n\}^{2}$.

Exercise
Given any $m \times n$ matrix \mathbf{A}, verify that $\mathbf{I}_{m} \mathbf{A}=\mathbf{A} \mathbf{I}_{n}=\mathbf{A}$.

Matrices Representing Elementary Row Operations

$$
\mathbf{E}_{i}(\alpha)=\left(\begin{array}{cccccc}
1 & 0 & \ldots & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & & \vdots & \vdots \\
0 & 0 & \ldots & \alpha & \ldots & \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & \ldots & 1
\end{array}\right), \mathbf{E}_{i j}(\alpha)=\left(\begin{array}{cccccc}
1 & 0 & \ldots & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & & \vdots & \vdots \\
0 & \alpha & \ldots & 1 & \ldots & \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & \ldots & 1
\end{array}\right)
$$

(1) $\mathbf{E}_{i j}$ is the matrix obtained by interchanging the i th and j th rows of the identity matrix.
(2) $\mathbf{E}_{i}(\alpha)$ is the matrix obtained by multiplying the ith row of the identity matrix by $\alpha \in \mathbb{R}$,
(3) $\mathbf{E}_{i j}(\alpha)$ is the matrix obtained by adding $\alpha \in \mathbb{R}$ times row i to row j in the identity matrix.
Theorem
Let E be an elementary $n \times n$ matrix obtained by performing a particular row operation on the $n \times n$ identity. For any $n \times m$ matrix $A, E A$ is the matrix obtained by performing the same row operation on A.

Orthogonal Matrices

An n-dimensional square matrix \mathbf{Q} is said to be orthogonal just in case its columns form an orthonormal set - i.e., they must be pairwise orthogonal unit vectors.

Theorem
A square matrix \mathbf{Q} is orthogonal if and only if it satisfies $\mathbf{Q} \mathbf{Q}^{\top}=\mathbf{I}$.
Proof.
The elements of the matrix product $\mathbf{Q} \mathbf{Q}^{\top}$ satisfy

$$
\left(\mathbf{Q} \mathbf{Q}^{\top}\right)_{i j}=\sum_{k=1}^{n} q_{i k} q_{j k}=\mathbf{q}_{i} \cdot \mathbf{q}_{j}
$$

where $\mathbf{q}_{i}\left(\right.$ resp. $\left.\mathbf{q}_{j}\right)$ denotes the i th (resp. j th) column vector of \mathbf{Q}.
But the columns of \mathbf{Q} are orthonormal iff $\mathbf{q}_{i} \cdot \mathbf{q}_{j}=\delta_{i j}$ for all $i, j=1,2, \ldots, n$, and so iff $\mathbf{Q Q}^{\top}=\mathbf{I}$.

Triangular Matrices: Definition

Definition

A square matrix is upper (resp. lower) triangular if all its non-zero off diagonal elements are above and to the right (resp. below and to the left) of the diagonal - i.e., in the upper (resp. lower) triangle bounded by the principal diagonal.

The elements of an upper (resp. lower) triangular matrix satisfy

$$
(\mathbf{U})_{i j}=0 \text { whenever } i>j, \text { and }(\mathbf{L})_{i j}=0 \text { whenever } i<j
$$

Triangular Matrices: Exercises

Exercise

Prove that the transpose:
(1) \mathbf{U}^{\top} of any upper triangular matrix \mathbf{U} is lower triangular;
(2) \mathbf{L}^{\top} of any lower triangular matrix \mathbf{U} is upper triangular.

Exercise

Consider the matrix $\mathbf{E}_{i j}(\alpha)$ that represents the elementary row operation of adding a multiple of α times row j to row i. Under what conditions is $\mathbf{E}_{i j}(\alpha)$
(i) upper triangular?
(ii) lower triangular?

Upper Triangular Matrices: Multiplication

Theorem

The product $\mathbf{W}=\mathbf{U V}$ of any two upper triangular matrices \mathbf{U}, \mathbf{V} is upper triangular, with diagonal elements $w_{i i}=u_{i i} v_{i i}(i=1, \ldots, n)$ equal to the product of the corresponding diagonal elements of \mathbf{U}, \mathbf{V}.

Proof.

Given any two upper triangular $n \times n$ matrices \mathbf{U} and \mathbf{V}, the elements $\left(w_{i j}\right)^{n \times n}$ of their product $\mathbf{W}=\mathbf{U V}$ satisfy

$$
w_{i j}= \begin{cases}\sum_{k=i}^{j} u_{i k} v_{k j} & \text { if } i \leq j \\ 0 & \text { if } i>j\end{cases}
$$

because $u_{i k} v_{k j}=0$ unless both $i \leq k$ and $k \leq j$.
So $\mathbf{W}=\mathbf{U V}$ is upper triangular.
Finally, putting $j=i$ implies that $w_{i i}=u_{i i} v_{i i}$ for $i=1, \ldots, n$.
University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course Peter J. Hammond \& Pablo F. Beker 30 of 55

Lower Triangular Matrices: Multiplication

Theorem
The product of any two lower triangular matrices is lower triangular.

Proof.
Given any two lower triangular matrices \mathbf{L}, \mathbf{M}, taking transposes shows that $(\mathbf{L M})^{\top}=\mathbf{M}^{\top} \mathbf{L}^{\top}=\mathbf{U}$, where the product \mathbf{U} is upper triangular, as the product of upper triangular matrices. Hence $\mathbf{L M}=\mathbf{U}^{\top}$ is lower triangular, as the transpose of an upper triangular matrix.

Row Echelon Matrices: Definition

Definition

For each $i \in\{1, \ldots, m\}$, the leading non-zero element in any non-zero row i of the $m \times n$ matrix \mathbf{A} is $a_{i, j_{i}}$, where $j_{i}:=\arg \min \left\{j \in\{1, \ldots, n\} \mid a_{i, j} \neq 0\right\}$.

The $m \times n$ matrix $\mathbf{R}=\left(a_{i j}\right)^{m \times n}$ is in row echelon form if;
(1) each zero row comes after each row that is not zero;
(2) if the leading non-zero element in each row $i \in\{1, \ldots, p\}$, where p is the number of non-zero rows, is denoted by $a_{i, j_{i}}$, then $1 \leq j_{1}<j_{2}<\ldots j_{p}$.

Reduced Row Echelon Matrices

A matrix is in reduced row echelon form (also called row canonical form) if it satisfies the additional condition:

- Every leading non-zero coefficient $a_{i, j_{i}}$ is 1 and it is the only nonzero entry in column j_{i}.
Here is an example:

$$
\left(\begin{array}{ccccc}
1 & 0 & \frac{1}{2} & 0 & b_{1} \\
0 & 1 & -\frac{1}{3} & 0 & b_{2} \\
0 & 0 & 0 & 1 & b_{3}
\end{array}\right)
$$

Theorem
For any $k \times n$ matrix A there exists elementary matrices $E_{1}, E_{2}, \ldots, E_{m}$ such that the matrix product $E_{m} E_{m-1} \ldots E_{1} A=U$ where U is in (reduced) row echelon form.

Partitioned Matrices: Definition

A partitioned matrix is a rectangular array of different matrices.
Example
Consider the $(m+\ell) \times(n+k)$ matrix

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

where the four submatrices $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ are of dimension $m \times n, m \times k, \ell \times n$ and $\ell \times k$ respectively.

For any scalar $\alpha \in \mathbb{R}$, the scalar multiple of a partitioned matrix is

$$
\alpha\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right)=\left(\begin{array}{ll}
\alpha \mathbf{A} & \alpha \mathbf{B} \\
\alpha \mathbf{C} & \alpha \mathbf{D}
\end{array}\right)
$$

Partitioned Matrices: Addition

Suppose the two partitioned matrices

$$
\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right) \text { and }\left(\begin{array}{ll}
\mathbf{E} & \mathbf{F} \\
\mathbf{G} & \mathbf{H}
\end{array}\right)
$$

have the property that the following four pairs of corresponding matrices have equal dimensions: (i) \mathbf{A} and \mathbf{E}; (ii) \mathbf{B} and \mathbf{F}; (iii) \mathbf{C} and \mathbf{G}; (iv) \mathbf{D} and \mathbf{H}.

Then the sum of the two matrices is

$$
\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right)+\left(\begin{array}{ll}
\mathbf{E} & \mathbf{F} \\
\mathbf{G} & \mathbf{H}
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{A}+\mathbf{E} & \mathbf{B}+\mathbf{F} \\
\mathbf{C}+\mathbf{G} & \mathbf{D}+\mathbf{H}
\end{array}\right)
$$

Partitioned Matrices: Multiplication

Provided that the two partitioned matrices

$$
\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right) \text { and }\left(\begin{array}{ll}
\mathbf{E} & \mathbf{F} \\
\mathbf{G} & \mathbf{H}
\end{array}\right)
$$

along with their sub-matrices are all compatible for multiplication, the product is defined as

$$
\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right)\left(\begin{array}{ll}
\mathbf{E} & \mathbf{F} \\
\mathbf{G} & \mathbf{H}
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{A E}+\mathbf{B G} & \mathbf{A F}+\mathbf{B H} \\
\mathbf{C E}+\mathbf{D G} & \mathbf{C F}+\mathbf{D H}
\end{array}\right)
$$

This adheres to the usual rule for multiplying rows by columns.

Partitioned Matrices: Transposes

The rule for transposing a partitioned matrix is

$$
\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right)^{\top}=\left(\begin{array}{ll}
\mathbf{A}^{\top} & \mathbf{C}^{\top} \\
\mathbf{B}^{\top} & \mathbf{D}^{\top}
\end{array}\right)
$$

So the original matrix is symmetric iff $\mathbf{A}=\mathbf{A}^{\top}, \mathbf{D}=\mathbf{D}^{\top}, \mathbf{B}=\mathbf{C}^{\top}$, and $\mathbf{C}=\mathbf{B}^{\top}$.

It is diagonal iff \mathbf{A}, \mathbf{D} are both diagonal, while $\mathbf{B}=\mathbf{0}$ and $\mathbf{C}=\mathbf{0}$.
The identity matrix is diagonal with $\mathbf{A}=\mathbf{I}, \mathbf{D}=\mathbf{I}$, possibly identity matrices of different dimensions.

Linear Functions: Definition

Definition

A linear combination of vectors is the weighted sum $\sum_{h=1}^{k} \lambda_{h} \mathbf{x}^{h}$, where $\mathbf{x}^{h} \in V$ and $\lambda_{h} \in \mathbb{F}$ for $h=1,2, \ldots, k$.

Definition
A function $V: \mathbf{u} \mapsto f(\mathbf{u}) \in \mathbb{F}$ is linear provided that

$$
f(\lambda \mathbf{u}+\mu \mathbf{v})=\lambda f(\mathbf{u})+\mu f(\mathbf{v})
$$

whenever $\mathbf{u}, \mathbf{v} \in V$ and $\lambda, \mu \in V$.

Key Properties of Linear Functions

Exercise

By induction on k, show that if the function $f: V \rightarrow \mathbb{F}$ is linear, then

$$
f\left(\sum_{h=1}^{k} \lambda_{h} \mathbf{x}^{h}\right)=\sum_{h=1}^{k} \lambda_{h} f\left(\mathbf{x}^{h}\right)
$$

for all linear combinations $\sum_{h=1}^{k} \lambda_{h} \mathbf{x}^{h}$ in V

- i.e., f preserves linear combinations.

Exercise

In case $V=\mathbb{R}^{n}$ and $\mathbb{F}=\mathbb{R}$, show that any linear function is homogeneous of degree 1 , meaning that $f(\lambda \mathbf{v})=\lambda f(\mathbf{v})$ for all $\lambda>0$ and all $\mathbf{v} \in \mathbb{R}^{n}$.

Affine Functions

Definition

A function $g: V \rightarrow \mathbb{F}$ is said to be affine if there is a scalar additive constant $\alpha \in \mathbb{F}$ and a linear function $f: V \rightarrow \mathbb{F}$ such that $g(\mathbf{v}) \equiv \alpha+f(\mathbf{v})$.

Quadratic Forms

Definition
A quadratic form on \mathbb{R}^{K} is a real-valued function of the form

$$
Q\left(x_{1}, \ldots, x_{n}\right) \equiv \sum_{i \leq j} a_{i j} x_{i} x_{j}=x^{T} A x
$$

Example
$Q\left(x_{1}, x_{2}\right)=a_{11} x_{1}^{2}+a_{12} x_{1} x_{2}+a_{22} x_{2}^{2}$ can be written as

$$
\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{cc}
a_{11} & \frac{1}{2} a_{12} \\
\frac{1}{2} a_{21} & a_{22}
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

Negative and Semi-Negative Definite Matrices

Definition

Let A be an $n \times n$ symmetric matrix, then A is:
(1) Positive definite if $x^{T} A x>0$ for all $x \neq 0$ in \mathbb{R}^{K},
(2) positive semidefinite if $x^{T} A x \geq 0$ for all $x \neq 0$ in \mathbb{R}^{K},
(3) negative definite if $x^{T} A x<0$ for all $x \neq 0$ in \mathbb{R}^{K},
(9) negative semidefinite if $x^{\top} A x \leq 0$ for all $x \neq 0$ in \mathbb{R}^{K},
(3) indefinite if $x^{T} A x>0$ for some $x \in \mathbb{R}^{K}$ and $x^{T} A x<0$ for some other $x \in \mathbb{R}^{K}$.

Determinants of Order 2: Definition

Consider again the pair of linear equations

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{12} x_{2}=b_{2}
\end{aligned}
$$

with its associated coefficient matrix

$$
\mathbf{A}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

Let us define $D:=a_{11} a_{22}-a_{21} a_{12}$.
Provided that $D \neq 0$, there is a unique solution given by

$$
x_{1}=\frac{1}{D}\left(b_{1} a_{22}-b_{2} a_{12}\right), \quad x_{2}=\frac{1}{D}\left(b_{2} a_{11}-b_{1} a_{21}\right)
$$

The number D is called the determinant of the matrix \mathbf{A}, and denoted by either $\operatorname{det}(\mathbf{A})$ or more concisely, $|\mathbf{A}|$.

Determinants of Order 2: Simple Rule

Thus, for any 2×2 matrix \mathbf{A}, its determinant D is

$$
|\mathbf{A}|=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{21} a_{12}
$$

For this special case of order 2 determinants, a simple rule is:
(1) multiply the diagonal elements together;
(2) multiply the off-diagonal elements together;
(3) subtract the product of the off-diagonal elements from the product of the diagonal elements.

Note that

$$
|\mathbf{A}|=a_{11} a_{22}\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|+a_{21} a_{12}\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right|
$$

Cramer's Rule in the 2×2 Case

Using determinant notation, the solution to the equations

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{12} x_{2}=b_{2}
\end{aligned}
$$

can be written in the alternative form

$$
x_{1}=\frac{1}{D}\left|\begin{array}{ll}
b_{1} & a_{12} \\
b_{2} & a_{22}
\end{array}\right|, \quad x_{2}=\frac{1}{D}\left|\begin{array}{ll}
a_{11} & b_{1} \\
a_{21} & b_{2}
\end{array}\right|
$$

This accords with Cramer's rule for the solution to $\mathbf{A x}=\mathbf{b}$, which is the vector $\mathbf{x}=\left(x_{i}\right)_{i=1}^{n}$ each of whose components x_{i} is the fraction with:
(1) denominator equal to the determinant D of the coefficient matrix \mathbf{A} (provided, of course, that $D \neq 0$);
(2) numerator equal to the determinant of the matrix $\left(\mathbf{A}_{-i}, \mathbf{b}\right)$ formed from \mathbf{A} by replacing its ith column with the \mathbf{b} vector of right-hand side elements.

Determinants of Order 3: Definition

Determinants of order 3 can be calculated from those of order 2 according to the formula

$$
\begin{aligned}
|\mathbf{A}| & =a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
& =\sum_{j=1}^{3}(-1)^{1+j} a_{1 j}\left|\mathbf{A}_{1 j}\right|
\end{aligned}
$$

where, for $j=1,2,3$, the 2×2 matrix $\mathbf{A}_{1 j}$ is the sub-matrix obtained by removing both row 1 and column j from \mathbf{A}. The scalar $C_{i j}=(-1)^{i+j}\left|A_{i j}\right|$ is called the (i, j) th-cofactor of \mathbf{A}.

The result is the following sum

$$
\begin{aligned}
|\mathbf{A}|=a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}+ & a_{12} a_{23} a_{31} \\
& -a_{12} a_{21} a_{33}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}
\end{aligned}
$$

of $3!=6$ terms, each the product of 3 elements chosen so that each row and each column is represented just once.

Determinants of Order 3: Cofactor Expansion

The determinant expansion

$$
\begin{aligned}
|\mathbf{A}|=a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}+ & a_{12} a_{23} a_{31} \\
& -a_{12} a_{21} a_{33}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}
\end{aligned}
$$

is very symmetric, suggesting (correctly) that the cofactor expansion along the first row $\left(a_{11}, a_{12}, a_{13}\right)$

$$
|\mathbf{A}|=\sum_{j=1}^{3}(-1)^{1+j} a_{1 j}\left|\mathbf{A}_{1 j}\right|
$$

gives the same answer as the two cofactor expansions

$$
|\mathbf{A}|=\sum_{j=1}^{3}(-1)^{r+j} a_{r j}\left|\mathbf{A}_{r j}\right|=\sum_{i=1}^{3}(-1)^{i+s} a_{i s}\left|\mathbf{A}_{i s}\right|
$$

along, respectively:

- the r th row $\left(a_{r 1}, a_{r 2}, a_{r 3}\right)$
- the s th column $\left(a_{1 s}, a_{2 s}, a_{3 s}\right)$

Eight Basic Rules (Rules A-H of EMEA, Section 16.4)

Let $|\mathbf{A}|$ denote the determinant of any $n \times n$ matrix \mathbf{A}.
(1) $|\mathbf{A}|=0$ if all the elements in a row (or column) of \mathbf{A} are 0 .
(2) $\left|\mathbf{A}^{\top}\right|=|\mathbf{A}|$, where \mathbf{A}^{\top} is the transpose of \mathbf{A}.
(3) If all the elements in a single row (or column) of \mathbf{A} are multiplied by a scalar α, so is its determinant.
(9) If two rows (or two columns) of \mathbf{A} are interchanged, the determinant changes sign, but not its absolute value.
(3) If two of the rows (or columns) of \mathbf{A} are proportional, then $|\mathbf{A}|=0$.
(0) The value of the determinant of \mathbf{A} is unchanged if any multiple of one row (or one column) is added to a different row (or column) of \mathbf{A}.
(7) The determinant of the product $|\mathbf{A B}|$ of two $n \times n$ matrices equals the product $|\mathbf{A}| \cdot|\mathbf{B}|$ of their determinants.
(8) If α is any scalar, then $|\alpha \mathbf{A}|=\alpha^{n}|\mathbf{A}|$.

The Adjugate Matrix

Definition

The adjugate (or "(classical) adjoint") $\mathbf{a d j} \mathbf{A}$ of an order n square matrix \mathbf{A} has elements given by $(\operatorname{adj} \mathbf{A})_{i j}=\mathbf{C}_{j i}$.

It is therefore the transpose of the cofactor matrix \mathbf{C} whose elements are the respective cofactors of \mathbf{A}.

See Example 9.3 in page 195 of Simon and Blume for a detailed example.

Definition of Inverse Matrix

Definition

The $n \times n$ matrix \mathbf{X} is the inverse of the invertible $n \times n$ matrix \mathbf{A} provided that $\mathbf{A X}=\mathbf{X A}=\mathbf{I}_{n}$.
In this case we write $\mathbf{X}=\mathbf{A}^{-1}$, so \mathbf{A}^{-1} denotes the (unique) inverse.

Big question: does the inverse exist? is it unique?

Existence Conditions

Theorem

An $n \times n$ matrix \mathbf{A} has an inverse if and only if $|\mathbf{A}| \neq 0$, which holds if and only if at least one of the equations $\mathbf{A X}=\mathbf{I}_{n}$ and $\mathbf{X A}=\mathbf{I}_{n}$ has a solution.

Proof.

Provided $|\mathbf{A}| \neq 0$, the identity $(\operatorname{adj} \mathbf{A}) \mathbf{A}=\mathbf{A}(\operatorname{adj} \mathbf{A})=|\mathbf{A}| \mathbf{I}_{n}$ shows that the matrix $\mathbf{X}:=(1 /|\mathbf{A}|) \operatorname{adj} \mathbf{A}$ is well defined and satisfies $\mathbf{X A}=\mathbf{A X}=\mathbf{I}_{n}$, so \mathbf{X} is the inverse \mathbf{A}^{-1}.

Conversely, if either $\mathbf{X A}=\mathbf{I}_{n}$ or $\mathbf{A X}=\mathbf{I}_{n}$ has a solution, then the product rule for determinants implies
that $1=\left|\mathbf{I}_{n}\right|=|\mathbf{A X}|=|\mathbf{X A}|=|\mathbf{A}||\mathbf{X}|$, and so $|\mathbf{A}| \neq 0$. The rest follows from the paragraph above.

Singularity

So \mathbf{A}^{-1} exists if and only if $|\mathbf{A}| \neq 0$.
Definition
(1) In case $|\mathbf{A}|=0$, the matrix \mathbf{A} is said to be singular;
(2) In case $|\mathbf{A}| \neq 0$, the matrix \mathbf{A} is said to be non-singular or invertible.

Example and Application to Simultaneous Equations

Exercise
Verify that

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \Longrightarrow \mathbf{A}^{-1}=\mathbf{C}:=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right)
$$

by using direct multiplication to show that $\mathbf{A C}=\mathbf{C A}=\mathbf{I}_{2}$.

Example

Suppose that a system of n simultaneous equations in n unknowns is expressed in matrix notation as $\mathbf{A x}=\mathbf{b}$.

Of course, \mathbf{A} must be an $n \times n$ matrix.
Suppose \mathbf{A} has an inverse \mathbf{A}^{-1}.
Premultiplying both sides of the equation $\mathbf{A x}=\mathbf{b}$ by this inverse gives $\mathbf{A}^{-1} \mathbf{A} \mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$, which simplifies to $\mathbf{I} \mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$.

Hence the unique solution of the equation is $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$.
University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course Peter J. Hammond \& Pablo F. Beker 53 of 55

Cramer's Rule: Statement

Notation

Given any $m \times n$ matrix \mathbf{A}, let $\left[\mathbf{A}_{-j}, \mathbf{b}\right]$ denote the new $m \times n$ matrix in which column j has been replaced by the column vector \mathbf{b}.

Evidently $\left[\mathbf{A}_{-j}, \mathbf{a}_{j}\right]=\mathbf{A}$.
Theorem
Provided that the $n \times n$ matrix \mathbf{A} is invertible, the simultaneous equation system $\mathbf{A x}=\mathbf{b}$ has a unique solution $\mathbf{x}=\mathbf{A}^{-\mathbf{1}} \mathbf{b}$ whose ith component is given by the ratio $x_{i}=\left|\left[\mathbf{A}_{-i}, \mathbf{b}\right]\right| /|\mathbf{A}|$.

This result is known as Cramer's rule.

Rule for Inverting Products

Theorem

Suppose that \mathbf{A} and \mathbf{B} are two invertible $n \times n$ matrices.
Then the inverse of the matrix product $\mathbf{A B}$ exists, and is the reverse product $\mathbf{B}^{-1} \mathbf{A}^{-1}$ of the inverses.

Proof.

Using the associative law for matrix multiplication repeatedly gives:

$$
\left(\mathbf{B}^{-1} \mathbf{A}^{-1}\right)(\mathbf{A B})=\mathbf{B}^{-1}\left(\mathbf{A}^{-1} \mathbf{A}\right) \mathbf{B}=\mathbf{B}^{-1}(\mathbf{I}) \mathbf{B}=\mathbf{B}^{-1}(\mathbf{I B})=\mathbf{B}^{-1} \mathbf{B}=\mathbf{I}
$$

and

$$
(\mathbf{A B})\left(\mathbf{B}^{-1} \mathbf{A}^{-1}\right)=\mathbf{A}\left(\mathbf{B} \mathbf{B}^{-1}\right) \mathbf{A}^{-1}=\mathbf{A}(\mathbf{I}) \mathbf{A}^{-1}=(\mathbf{A} \mathbf{I}) \mathbf{A}^{-1}=\mathbf{A} \mathbf{A}^{-1}=\mathbf{I} .
$$

These equations confirm that $\mathbf{X}:=\mathbf{B}^{-1} \mathbf{A}^{-1}$ is the unique matrix satisfying the double equality $(\mathbf{A B}) \mathbf{X}=\mathbf{X}(\mathbf{A B})=\mathbf{I}$.

