EC9A0: Pre-sessional Advanced Mathematics Course Real Analysis

Pablo F. Beker Department of Economics University of Warwick

Autumn 2016

Slides Outline

- Preliminaries
 - Sets
 - The Euclidean Space
 - Correspondences and Functions
 - Fields
 - Vector Spaces
 - Distance Function
 - Metric Spaces
 - Norms
 - Normed Vector Spaces
- Sequences
 - Sequences in \mathbb{R}^K
 - Limits of Sequences
 - Limits of Functions in R
- \bigcirc Topology of \mathbb{R}^K
 - Open Sets
 - Closed Sets
 - Compact Sets
 - Continuity of Functions
 - Differentiability
 - Mean Value Theorem and Taylor's Theorem

Sets

- A set is a collection of (finitely or infinitely many) objects.
 - For any set A, we use the notation $x \in A$ to indicate that "x is an element of A" ("or belongs to A" or "is a member of A").
 - Two sets A and B are equal (A = B) if they have the same elements.
 - The empty set, Ø, is the only set with no elements at all.
 - $\bullet~\mathbb{N}:=\{1,2,\ldots\}$ denotes the (countably infinite) set of natural numbers
 - \mathbb{R} denotes the (uncountable) set of *real numbers*.
 - For any sets A and B, the cartesian product $A \times B$ is the set $\{(a_1, b_1), (a_2, b_2), ...\}$ where $a_i \in A$ and $b_i \in B$ for all i.
- For any $K \in \mathbb{N}$, the K-dimensional real (Euclidean) space is the K-fold Cartesian product of \mathbb{R} , denoted by \mathbb{R}^K .
 - $x \in \mathbb{R}^K \implies x = (x_1 \ x_2 \dots x_K).$

The Euclidean Space

- The *origin* of \mathbb{R}^K is the vector zero given by (0, 0, ..., 0).
- Given any pair $x, y \in \mathbb{R}^K$ where $\#K \ge 2$,

 - 2 x > y iff $x \neq y$ and $x_i \geq y_i$ for all $i \in K$;
 - $x \ge y$ iff $x_i \ge y_i$ for all $i \in K$.
- The non-negative orthant of \mathbb{R}^K is $\mathbb{R}_+^K := \{x \in \mathbb{R}^K \mid x \ge 0\}$;
- The positive orthant of \mathbb{R}^K is $\mathbb{R}_{++}^K := \{x \in \mathbb{R}^K \mid x \gg 0\}$;
- No special notation for the set $\mathbb{R}_+^K \setminus \{0\} = \{x \in \mathbb{R}^K \mid x > 0\};$
- Define vector addition by $x + y = (x_1 + y_1 x_2 + y_2 \dots x_K + y_K)$;
- Define scalar multiplication by $\alpha x = (\alpha x_1 \ \alpha x_2 \dots \alpha x_K)$.

Correspondences and Functions

Definition

A *correspondence* f from a set $X \neq \emptyset$ into a set $Y \neq \emptyset$, denoted $f: X \to Y$, is a rule that assigns to each $x \in X$ a set $f(x) \subset Y$

Definition

A *function* f from a set $X \neq \emptyset$ into a set $Y \neq \emptyset$, denoted $f: X \rightarrow Y$, is a rule that assigns to each $x \in X$ a unique $f(x) \in Y$

- X is said to be the domain of f. Y its target set or co-domain.
- If $f: X \to Y$ and $A \subseteq X$, the *image of A under f*, denoted by f[A], is the set

$$f[A] = \{ y \in Y | \exists x \in A : f(x) = y \}.$$

- The image f[X] of the whole domain is called the *range* of f.
- If $f: X \to Y$, and $B \subseteq Y$, the *inverse image of B under f*, denoted $f^{-1}[B]$, is the set

$$f^{-1}[B] = \{ x \in X | f(x) \in B \}.$$

Properties of Functions

Definition

Function $f: X \to Y$ is said to be:

- Onto, or surjective, if f[X] = Y;
- One-to-one, or injective, if $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$;
- Bijective, if it is both onto and one-to-one.

Examples

- $f: \mathbb{R}^2 \mapsto \mathbb{R}$ defined by $f(x_1, x_2) = x_1^2 + x_2^2$ is neither one-to-one nor onto.
- $f: \mathbb{R} \setminus \{0\} \mapsto \mathbb{R}$ defined by $f(x) = \frac{1}{x}$ is one-to-one but not onto.
- $f: \mathbb{R}^2 \mapsto \mathbb{R}$ defined by $f(x_1, x_2) = x_1 + x_2$ is onto but not one-to-one.
- $f: \mathbb{R} \mapsto \mathbb{R}$ defined by f(x) = x is one-to-one and onto.

Inverse Function

Definition

If $f: X \to Y$ is a one-to-one function, the *inverse function* $f^{-1}: f[Y] \to X$ is implicitly defined by $f^{-1}(y) = f^{-1}[\{y\}]$.

Theorem

The function $f: X \to Y$ is onto iff for all non-empty $B \subseteq Y$ one has $f^{-1}[B] \neq \emptyset$.

Fields

Definition

A set $\mathbb F$ is said to be a field if there are two binary operations $(x,y)\mapsto x\oplus y$ from $\mathbb F\times\mathbb F$ to $\mathbb F$ and $(x,y)\mapsto x\otimes y$ from $\mathbb F\times\mathbb F$ to $\mathbb F$ called addition and multiplication, respectively, such that for all $x,y,z\in\mathbb F$:

- ① $x \oplus y = y \oplus x$ (addition commutes);
- ② $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ (addition is associative);
- **3** There exists an element $0 \in \mathbb{F}$, such that $x \oplus 0 = x$ (additive identity);
- **③** For each $x \in \mathbb{F}$, there is a unique *inverse* element in \mathbb{F} , denoted -x such that $x \oplus (-x) = 0$;
- **5** $x \otimes y = y \otimes x$ (multiplication is commutative);
- $(x \otimes y) \otimes z = z \otimes (y \otimes z)$ (multiplication is associative);
- **1** There exists and element $1 \in \mathbb{F}$ such that $1 \neq 0$ and $1 \otimes x = x$;
- **3** If $x \in \mathbb{F}$ and $x \neq 0$, there is an element $\frac{1}{x} \in \mathbb{F}$ such that $x \otimes (\frac{1}{x}) = 1$

Vector Spaces

Definition

A set L is said to be a vector (or linear) space over the scalar field $\mathbb F$ if there are two binary operations $(x,y)\mapsto x\oplus y$ from $L\times L$ to L and $(\lambda,x)\mapsto \lambda\otimes x$ from $\mathbb F\times L$ to L called addition and scalar multiplication, respectively, and a unique null vector $\theta\in L$, such that for all $x,y,z\in L$ and $\lambda,\mu\in\mathbb F$:

- ② $(x \oplus y) \oplus z = x + (y \oplus z)$ (addition is associative);
- 3 $x \oplus \theta = x$ (additive identity);
- **1** for each $x \in L$, there is a unique *inverse* -x such that $x \oplus (-x) = \theta$;
- **5** $\lambda \otimes (\mu \otimes x) = (\lambda \cdot \mu) \otimes x$ (scalar multip. is associative);
- $0 \otimes x = \theta;$
- $0 1 \otimes x = x;$

Vector Spaces: Examples

Examples

- $\bullet \ \mathbb{R}^K$ is a vector space.
- The set \mathbb{R}^{∞} consisting of all infinite sequences $\{x_0, x_1, x_2...\}$ is a vector space.
- The unit circle in \mathbb{R}^2 is not a vector space.
- The set of all nonnegative functions on [a, b] is not a vector space.

Distance Function

Definition

Given any set X, the function $d: X \times X \to \mathbb{R}$ is a *metric or distance function* on X if the following properties hold:

- Positivity: $d(x, y) \ge 0$ for all $x, y \in X$, with d(x, y) = 0 iff x = y.
- Symmetry: d(x, y) = d(y, x).
- Triangle Inequality: $d(x, z) \le d(x, y) + d(y, z), \forall x, y, z \in X$.

Example

Euclidean distance:
$$d(x, y) = (\sum_{i \in K} (x_i - y_i)^2)^{1/2}$$
.

Example

Let $p \in \mathbb{R}_+$. Define $d_p : \mathbb{R}^K \times \mathbb{R}^K \to \mathbb{R}$ by $d_p(x, y) = \sum_{i \in K} |x_i - y_i|^p$.

• d_p is a distance iff p > 1.

Metric Spaces

Definition

A metric space is a pair (X, d) where X is a set and $d: X \times X \to \mathbb{R}$ is a metric.

Examples

- the set of integers with d(x, y) = |x y|.
- 2 the set of integers with

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y. \end{cases}$$

 $oldsymbol{\circ}$ the set of all continuous, strictly increasing functions on [a,b], with

$$d(x, y) = \max_{a \le t \le b} |x(t) - y(t)|.$$

3 \mathbb{R} with d(x,y) = f(|x-y|), where $f: \mathbb{R}_+ \to \mathbb{R}_+$ is strictly increasing, and strictly concave, with f(0) = 0.

Norms

Definition

Given any vector space X, a norm on X is a function $\|\cdot\|: X \mapsto \mathbb{R}$ such that for all $x, y \in X$ and $\alpha \in \mathbb{R}$:

- **1** $||x|| \ge 0$, with equality if and only if $x = \theta$;
- **2** $\|\alpha x\| = |\alpha| \|x\|$; and
- $||x + y|| \le ||x|| + ||y||$ (the triangle inequality)
- In order to measure how far from 0 an element x of \mathbb{R}^K is, we use the *Euclidean norm* which is defined as

$$||x|| = \left(\sum_{k=1}^K x_k^2\right)^{1/2}.$$

Normed Vector Spaces

Definition

A normed vector space is a pair $(X, \|\cdot\|)$ where X is a vector space and $\|\cdot\|:X\mapsto\mathbb{R}$ is a norm.

• It is standard to view any normed vector space $(X, \|\cdot\|)$ as a metric space where the metric d(x, y) = ||x - y|| for all $x, y \in X$.

Examples

•
$$X = \mathbb{R}^K$$
, with $||x|| = \left[\sum_{k=1}^K x_k^2\right]^{\frac{1}{2}}$ (Euclidean Space)

- $X = \mathbb{R}^K$, with $||x|| = \max_i |x_i|$.
- **3** $X = \mathbb{R}^K$, with $||x|| = \sum_{k=1}^K |x_k|$.
- **1** X is the set of all bounded infinite sequences $\{x_k\}_{k=1}^{\infty}$ with $||x|| = \sup_k |x_k|$. (This space is called I_{∞})

Sequences in \mathbb{R}^K

Definition

A sequence in \mathbb{R}^K is a function $f: \mathbb{N} \to \mathbb{R}^K$.

- (a_1, a_2, \ldots) or $(a_n)_{n=1}^{\infty}$, where $a_n = f(n)$, for $n \in \mathbb{N}$.
- $(a_n)_{n=1}^{\infty}$ is
 - nondecreasing (increasing) if $a_{n+1} \geq (>)a_n$ for all $n \in \mathbb{N}$;
 - nonincreasing (decreasing) if $a_{n+1} \leq (<)a_n$ for all $n \in \mathbb{N}$;
 - bounded above if there exists $\bar{a} \in \mathbb{R}^K$ such that $a_n < \bar{a}$ for all n;
 - bounded below if there exists $a \in \mathbb{R}^K$ such that $a_n > a$ for all n;
 - bounded if it is bounded both above and below.

Definition

Given a sequence $(a_n)_{n=1}^{\infty}$, a sequence $(b_m)_{m=1}^{\infty}$ is a subsequence of $(a_n)_{n=1}^{\infty}$ if there exists an increasing sequence $(n_m)_{m=1}^{\infty}$ such that $n_m \in \mathbb{N}$ and $b_m = a_{n_m}$ for all $m \in \mathbb{N}$.

Example

 $(1/\sqrt{2n+5})_{n=1}^{\infty}$ is a subsequence of $(1/\sqrt{n})_{n=1}^{\infty}$ for $(n_m)_{m=1}^{\infty} = (2m+5)_{m=1}^{\infty}$.

Limits of Sequences

Definition

A sequence $(a_n)_{n=1}^{\infty}$ converges to $a \in \mathbb{R}^K$ (written $a_n \to a$), if for each $\varepsilon > 0$ there exists some $N_{\varepsilon} \in \mathbb{N}$ such that

$$d(a_n, a) < \varepsilon$$
 for all $n \ge N_{\varepsilon}$.

Theorem

Let d be the Euclidean distance. Then, $(a_n)_{n=1}^{\infty}$ in \mathbb{R}^K converges to a if and only if $(a_{k,n})_{n=1}^{\infty}$ in \mathbb{R} converges to a_k for all $k=1,\ldots,K$.

Theorem

Sequence $(a_n)_{n=1}^{\infty}$ converges to $a \in \mathbb{R}^K$ if and only if every subsequence of $(a_n)_{n=1}^{\infty}$ converges to a.

Limits of Sequences

Definition

For a sequence $(a_n)_{n=1}^{\infty}$ in \mathbb{R} , we say that $\lim_{n\to\infty} a_n = \infty$ if for all $\Delta > 0$ there exists some $n^* \in \mathbb{N}$ such that $a_n > \Delta$ for all $n \geq n^*$. We say that $\lim_{n\to\infty} a_n = -\infty$ when $\lim_{n\to\infty} (-a_n) = \infty$. We say that a sequence $(a_n)_{n=1}^{\infty}$ in \mathbb{R} diverges to ∞ $(-\infty)$ if $\lim_{n\to\infty} a_n = \infty(-\infty)$.

Examples

- **1** Does $((-1)^n)_{n=1}^{\infty}$ converge? Does $(-1/n)_{n=1}^{\infty}$?
- ② Does the sequence $(\frac{3n}{\sqrt{n}})_{n=1}^{\infty}$ have a limit? Does it converge?

Limits of Sequences: Properties I

Theorem

If $a_n \to x$ and $a_n \to y$, then x = y.

Theorem

For sequences $(a_n)_{n=1}^{\infty}$ in $\mathbb R$ such that $a_n>0$ for all $n\in\mathbb N$,

$$\lim_{n\to\infty} a_n = \infty \Leftrightarrow \lim_{n\to\infty} \frac{1}{a_n} = 0.$$

Limits of Sequences: Properties II

Theorem (Arithmetic of Limits)

Let $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ be sequences in \mathbb{R} . Suppose that $a, b \in \mathbb{R}$, we have that $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$. Then,

- of if $b \neq 0$ and $b_n \neq 0$ for all $n \in \mathbb{N}$, then $\lim_{n \to \infty} (a_n/b_n) = a/b$.

Theorem (Weak Inequalities are Preserved under Sequential Limits)

If $a_n \leq \alpha$, for all $n \in \mathbb{N}$, and $\lim_{n \to \infty} a_n = a$, then $a \leq \alpha$.

• Can we strengthen the last Theorem to strict inequalities?

Limits of Sequences: Properties III

Theorem

Every sequence $(a_n)_{n=1}^{\infty}$ has a monotone subsequence.

Theorem

If sequence $(a_n)_{n=1}^{\infty}$ in \mathbb{R} is convergent, then it is bounded.

Theorem

If a sequence $(a_n)_{n=1}^{\infty}$ is monotone and bounded, then it is convergent.

Theorem (Bolzano-Weierstrass)

If sequence $(a_n)_{n=1}^{\infty}$ is bounded, then it has a convergent subsequence.

Cauchy Sequences

Definition

A sequence $\{a_n\}_{n=1}^{\infty}$ is a Cauchy sequence (or satisfies the Cauchy criterion) if for each $\varepsilon > 0$, there exists N_{ε} such that $d(a_n, a_m) < \varepsilon$, for all $n, m \ge N_{\varepsilon}$.

Example

Is the sequence $(1/\sqrt{n})_{n=1}^{\infty}$ Cauchy?

Theorem

- If a sequence is convergent, then it is a Cauchy sequence.
- 2) If a sequence is Cauchy, then it is bounded.

Complete Metric Space

Definition

A metric space (X, d) is complete if every Cauchy sequence in X converges to an element of X.

Fact: \mathbb{R} with d(x, y) = |x - y| is a complete metric space.

Exercise: Show that:

- **1** The set of integers with d(x, y) = |x y| is a complete metric space.
- 2 The set of continuous, strictly increasing functions on [a, b], with

$$d(x, y) = \max_{a \le t \le b} |x(t) - y(t)|.$$

is not a complete metric space.

The set of continuous functions on [0, 1] with

$$d(f,g) = \int_0^1 |f(x) - g(x)| dx$$

is not a complete metric space. What if $d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|$?

Limit Points

Definition

Let $x \in \mathbb{R}^K$ and $\delta > 0$. The open ball of radius δ around x, denoted $B_{\delta}(x)$, is the set

$$B_{\delta}(x) = \{ y \in \mathbb{R} : d(y, x) < \delta \}.$$

Definition

The punctured open ball of radius δ around x, denoted $B'_{\delta}(x)$, is the set $B'_{\delta}(x) = B_{\delta}(x) \setminus \{x\}$.

Definition

A point $\bar{x} \in \mathbb{R}^K$ is a limit point of $X \subseteq \mathbb{R}^K$ if for all $\varepsilon > 0$, $B'_{\varepsilon}(\bar{x}) \cap X \neq \emptyset$

Limits of Functions in \mathbb{R}

Definition

Consider $f: X \to \mathbb{R}$, where $X \subseteq \mathbb{R}^K$. Suppose that $\bar{x} \in \mathbb{R}^K$ is a limit point of X and that $\bar{y} \in \mathbb{R}$. We say that $\lim_{x \to \bar{x}} f(x) = \bar{y}$ when for all $\varepsilon > 0$ there exists $\delta > 0$ such that $d(f(x), \bar{y}) < \varepsilon$ for all $x \in B'_{\delta}(\bar{x}) \cap X$.

Definition

Consider $f: X \to \mathbb{R}$, where $X \subseteq \mathbb{R}^K$. Suppose that $\bar{x} \in \mathbb{R}^K$ is a limit point of X. We say that $\lim_{X \to \bar{x}} f(x) = \infty$ when for all $\Delta > 0$, there exists $\delta > 0$ such that $f(x) \ge \Delta$ for all $x \in B'_{\delta}(\bar{x}) \cap X$. We say that $\lim_{X \to \bar{x}} f(x) = -\infty$ when $\lim_{X \to \bar{x}} (-f)(x) = \infty$.

Limits of Functions: Examples

Example

Suppose that $X = \mathbb{R}$ and $f : X \to \mathbb{R}$ is defined by

$$f(x) = \begin{cases} 1/x, & \text{if } x \neq 0, \\ 0, & \text{otherwise.} \end{cases}$$

What is $\lim_{x\to 5} f(x)$? What is $\lim_{x\to 0} f(x)$?

Example

Let $X = \mathbb{R} \setminus \{0\}$ and $f: X \to \mathbb{R}$ is defined by

$$f(x) = \begin{cases} 1, & \text{if } x > 0, \\ -1, & \text{otherwise.} \end{cases}$$

In this case, we claim that $\lim_{x\to 0} f(x)$ does not exist.

Limits of Functions and Sequences

Theorem

Consider a function $f: X \to \mathbb{R}$, where $X \subseteq \mathbb{R}^K$. Suppose that $\bar{x} \in \mathbb{R}^K$ is a limit point of X and that $\bar{y} \in \mathbb{R}$. Then, $\lim_{x \to \bar{x}} f(x) = \bar{y}$ if and only if for every $(x_n)_{n=1}^{\infty} \in X \setminus \{\bar{x}\}$ that converges to \bar{x} , $\lim_{n\to\infty} f(x_n) = \bar{y}$.

Limits of Functions: Properties I

Define:

- $(f+g): X \to \mathbb{R}$ by (f+g)(x) = f(x) + g(x).
- $(\alpha f): X \times \mathbb{R} \to \mathbb{R}$ by $(\alpha f)(x) = \alpha f(x)$.
- $(f \cdot g) : X \to \mathbb{R}$ by $(f \cdot g)(x) = f(x)g(x)$
- $(\frac{f}{\sigma}): X_g^* \to \mathbb{R}$ by $(\frac{f}{\sigma})(x) = \frac{f(x)}{\sigma(x)}$, where $X_g^* = \{x \in X | g(x) \neq 0\}$.

Theorem

Let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$. Let \bar{x} be a limit point of X. Suppose that $\bar{y}_1, \bar{y}_2 \in \mathbb{R}$ and that $\lim_{x \to \bar{x}} f(x) = \bar{y}_1$ and $\lim_{x \to \bar{x}} g(x) = \bar{y}_2$.

- $\lim_{x \to \bar{y}} (f + g)(x) = \bar{y}_1 + \bar{y}_2$:
- 3 $\lim_{x \to \bar{x}} (f \cdot g)(x) = \bar{y}_1 \cdot \bar{y}_2$:
- **1** if $\bar{y}_2 \neq 0$, then $\lim_{x \to \bar{x}} (f/g)(x) = \bar{y}_1/\bar{y}_2$.

Limits of Functions: Properties II

Theorem

Consider $f: X \to \mathbb{R}$ and $\bar{y} \in \mathbb{R}$, and let $\bar{x} \in \mathbb{R}^K$ be a limit point of X. If $f(x) \le \gamma$ for all $x \in X$, and $\lim_{x \to \bar{x}} f(x) = \bar{y}$, then $\bar{y} \le \gamma$.

Corollary

Consider $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$, let $\bar{y}_1, \bar{y}_2 \in \mathbb{R}$, and let $\bar{x} \in \mathbb{R}^K$ be a limit point of X. If $f(x) \geq g(x)$, for all $x \in X$, $\lim_{x \to \bar{x}} f(x) = \bar{y}_1$ and $\lim_{x \to \bar{x}} g(x) = \bar{y}_2$, then $\bar{y}_1 \geq \bar{y}_2$.

Open Sets

Definition

Set X is *open* if for all $x \in X$, there is some $\varepsilon > 0$ for which $B_{\varepsilon}(x) \subseteq X$.

Theorem

The empty set, the open intervals in \mathbb{R} and \mathbb{R}^K are open.

Theorem

The union of any collection of open sets is an open set. The intersection of any finite collection of open sets is an open set.

Exercise

- Prove the following: "If $x \in int(X)$, then x is a limit point of X."
- ② Do we really need finiteness in the second part of the last Theorem? Consider $I_n = (-\frac{1}{n}, \frac{1}{n})$ for all $n \in \mathbb{N}$. Find the intersection of all those intervals, denoted $\bigcap_{n=1}^{\infty} I_n$. Is it an open set?

Closed Sets

Definition

Set $X \subset \mathbb{R}^K$ is *closed* if for every sequence $(x_n)_{n=1}^{\infty} \in X$ that converges to \bar{x} , then $\bar{x} \in X$.

Theorem

The empty set, the closed intervals in \mathbb{R} and \mathbb{R}^K are closed.

Theorem

A set X is closed if and only if X^c is open.

Theorem

The intersection of any collection of closed sets is closed. The union of any finite collection of closed sets is closed.

Compact Sets

Definition

A set $X \subseteq \mathbb{R}^K$ is said to be *bounded above* if there exists $\alpha \in \mathbb{R}^K$ such that $x \leq \alpha$ for all $x \in X$; it is said to be *bounded below* if for some $\beta \in \mathbb{R}^K$ one has that $x \geq \beta$ is true for all $x \in X$; and it is said to be *bounded* if it is bounded above and below.

Definition

A set $X \subseteq \mathbb{R}^K$ is said to be *compact* if it is closed and bounded.

Exercise

Prove the following statement: if $(x_n)_{n=1}^{\infty}$ is a sequence defined on a compact set X, then it has a subsequence that converges to a point in X.

Continuity of Functions

Definition

Function $f: X \to \mathbb{R}$ is continuous at $\bar{x} \in X$ if for every $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(x) - f(\bar{x})| < \varepsilon$ for all $x \in B_{\delta}(\bar{x}) \cap X$. It is *continuous* if it is continuous at all $\bar{x} \in X$.

Theorem

Suppose that $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ are continuous at $\bar{x} \in X$, and let $\alpha \in \mathbb{R}$. Then, the functions f+g, αf and $f \cdot g$ are continuous at \bar{x} . Moreover, if $g(\bar{x}) \neq 0$, then f is continuous at \bar{x} .

Properties of Continuous Functions

Theorem

The image of a compact set under a continuous function is compact.

Theorem

Function $f: \mathbb{R}^K \to \mathbb{R}$ is continuous if and only if for every open set $U \subseteq \mathbb{R}$ the set $f^{-1}[U]$ is open.

Theorem (The Intermediate Value Theorem in \mathbb{R})

If function $f:[a,b]\to\mathbb{R}$ is continuous, then for every number γ between f(a) and f(b) there exists an $x\in[a,b]$ for which $f(x)=\gamma$.

Left- and Right- Continuity

Definition

One says that $\lim_{x \searrow \bar{x}} f(x) = \ell$, if for every $\varepsilon > 0$ there is a number $\delta > 0$ such that $|f(x) - \ell| < \varepsilon$ whenever $x \in X \cap B_{\delta}(\bar{x})$ and $x > \bar{x}$. In such case, function f is said to converge to ℓ as x tends to \bar{x} from above. Similarly, $\lim_{x \nearrow \bar{x}} f(x) = \ell$, when for every $\varepsilon > 0$ there is $\delta > 0$ such that $|f(x) - \ell| < \varepsilon$ for all $x \in X \cap B_{\delta}(\bar{x})$ satisfying that $x < \bar{x}$. In this case, f is said to converge to ℓ as x tends to \bar{x} from below.

Definition

Function $f: X \to \mathbb{R}$ is *right-continuous* at $\bar{x} \in X$, where \bar{x} is a limit point of X, if $\lim_{x \searrow \bar{x}} f(x) = f(\bar{x})$. It is *right-continuous* if it is right-continuous at every $\bar{x} \in X$ that is a limit point of X. Similarly, $f: X \to \mathbb{R}$ is *left-continuous* at \bar{x} if $\lim_{x \nearrow \bar{x}} f(x) = f(\bar{x})$, and one says that f is *left-continuous* if it is left-continuous at all limit point $\bar{x} \in X$.

Differentiability

Definition

Let $f: \mathbb{R} \mapsto R$ be a function defined in a neighbourhood of x_0 . Then f is said to be differentiable at x_0 with derivative equal to the real number $f'(x_0)$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $|x - x_0| < \delta$ implies

$$\left|\frac{f(x)-f(x_0)}{x-x_0}-f'(x_0)\right|\leq \varepsilon$$

• Since $x - x_0 \neq 0$, multiply the inequality above by $|x - x_0|$ to obtain

$$|f(x) - f(x_0) - f'(x_0)(x - x_0)| \le \varepsilon |x - x_0|$$

to see that $|f(x)-f(x_0)-f'(x_0)(x-x_0)|$ goes to zero faster than $|x-x_0|$.

Mean Value Theorem and Taylor's Theorem

Theorem (Mean Value Theorem)

Let f be a continuous function on [a,b] that is differentiable in (a,b). Then there exists $x_0 \in (a,b)$ such that $f'(x_0) = \frac{f(b)-f(a)}{b-a}$.

Theorem (Taylor's Theorem)

Let f be \mathbb{C}^n in a neighborhood of x_0 , and let

$$T_n(x_0,x)=f(x_0)+f'(x_0)(x-x_0)+\frac{1}{2}f''(x_0)(x-x_0)^2+...+\frac{1}{n!}f^n(x_0)(x-x_0)^n.$$

Then for any
$$\varepsilon > 0$$
, there exists δ such that $|x - x_0| \le \delta$ implies $|f(x) - T_n(x_0, x)| < \varepsilon |x - x_0|^n$.

Theorem (Lagrange Remainder Theorem)

Suppose f is \mathbb{C}^{n+1} in a neighborhood of x_0 . Then for every x in the neighbourhood there exists x_1 between x_0 and x such that $1 = x_0 + 1$

$$f(x) = T_n(x_0, x) + \frac{1}{(n+1)!} f^{n+1}(x_1) (x - x_0)^{n+1}$$