EC9A0: Pre-sessional Advanced Mathematics Course

Unconstrained Optimisation

Pablo F. Beker
Department of Economics
University of Warwick

Autumn 2015

Lecture Outline

(1) Infimum and Supremum

- Definitions
- Properties
(2) Maximisers
- Definitions
- Existence
(3) Local Maxima
- Necessary Conditions in \mathbb{R}
- Sufficient Conditions in \mathbb{R}
- Necessary Conditions in \mathbb{R}^{K}
- Sufficient Conditions in \mathbb{R}^{K}
(4) When is a Local max also a Global Max?
- Functions in \mathbb{R} with only one critical point
- Concavity and Quasi-Concavity
(5) Uniqueness

Infimum and Supremum: Definitions

Definition

Fix a set $Y \subseteq \mathbb{R}$. A number $\alpha \in \mathbb{R}$ is an upper bound of Y if $y \leq \alpha$ for all $y \in Y$, and is a lower bound of Y if the opposite inequality holds.

Definition

$\alpha \in \mathbb{R}$ is the least upper bound of Y, denoted $\alpha=\sup Y$, if:
(1) α is an upper bound of Y; and
(2) $\gamma \geq \alpha$ for any other upper bound γ of Y.

Definition
$\beta \in \mathbb{R}$ is the greatest lower bound of Y, denoted $\beta=\inf Y$, if:
(1) β is a lower bound of Y; and
(2) if γ is a lower bound of Y, then $\gamma \leq \beta$.

Properties of Infimum and Supremum

Theorem 1

$\alpha=\sup Y$ if and only if for every $\varepsilon>0$,
(a) $y<\alpha+\varepsilon$ for all $y \in Y$; and
(b) there is some $y \in Y$ such that $\alpha-\varepsilon<y$.

Corollary 1
Let $Y \subseteq \mathbb{R}$ and let $\alpha \equiv \sup Y$. Then there exists a sequence $\left\{y_{n}\right\}_{n=1}^{\infty}$ in Y that converges to α.

We need a stronger concept of extremum, in particular one that implies that the extremum lies within the set.

Maximisers

Definition

A point $x \in \mathbb{R}$ is the maximum of set $Y \subseteq \mathbb{R}$, denoted $x=\max A$, if $x \in Y$ and $y \leq x$ for all $y \in Y$.

- Typically, it is of more interest in economics to find extrema of functions, rather than extrema of sets

Definition

$\bar{x} \in D$ is a global maximizer of $f: D \rightarrow \mathbb{R}$ if $f(x) \leq f(\bar{x})$ for all $x \in D$.
Definition
$\bar{x} \in D$ is a local maximizer of $f: D \rightarrow \mathbb{R}$ if there exists some $\varepsilon>0$ such that $f(x) \leq f(\bar{x})$ for all $x \in B_{\varepsilon}(\bar{x}) \cap D$.

- When $\bar{x} \in D$ is a local (global) maximizer of $f: D \rightarrow \mathbb{R}$, the number $f(\bar{x})$ is said to be a local (the global) maximum of f.

Existence

Theorem (Weierstrass)
Let $C \subseteq D$ be nonempty and compact. If $f: D \rightarrow \mathbb{R}$ is continuous, then there are $\bar{x}, \underline{x} \in C$ such that $f(\underline{x}) \leq f(x) \leq f(\bar{x})$ for all $x \in C$.

Proof: It follows from 5 steps:
(1) Since C is compact and f is continuous, then $f[C]$ is compact.
(2) By Corollary 1 , there is $\left\{y_{n}\right\}_{n=1}^{\infty}$ in $f[C]$ s.t. $y_{n} \rightarrow \sup f[C]$.
(3) Since $f[C]$ is compact, then it is closed. Therefore, sup $f[C] \in f[C]$.
(9) Thus, there is $\bar{x} \in C$ such that $f(\bar{x})=\sup f[C]$.
(3) By def. of sup, $f(\bar{x}) \geq f(x)$ for all $x \in C$.
Q.E.D.

Characterising Maximisers in \mathbb{R}

Lemma 1

Suppose $D \subset \mathbb{R}$ is open and $f: D \rightarrow \mathbb{R}$ is differentiable. Let $\bar{x} \in \operatorname{int}(D)$. If $f^{\prime}(\bar{x})>0$, then there is some $\delta>0$ such that for each $x \in B_{\delta}(\bar{x}) \cap D$:
(1) $f(x)>f(\bar{x})$ if $x>\bar{x}$.
(2) $f(x)<f(\bar{x})$ if $x<\bar{x}$.

Proof: $\varepsilon \equiv \frac{f^{\prime}(\bar{x})}{2}>0$. Then, $f^{\prime}(\bar{x})-\varepsilon>0$. By def. of $f^{\prime}, \exists \delta>0$ s.t.,

$$
\left|\frac{f(x)-f(\bar{x})}{x-\bar{x}}-f^{\prime}(\bar{x})\right|<\varepsilon, \forall x \in B_{\delta}^{\prime}(\bar{x}) \cap D .
$$

Hence, $\frac{f(x)-f(\bar{x})}{x-\bar{x}}>f^{\prime}(\bar{x})-\varepsilon>0$.
Corollary 2
Suppose $D \subset \mathbb{R}$ is open and $f: D \rightarrow \mathbb{R}$ is differentiable. Let $\bar{x} \in D$. If $f^{\prime}(\bar{x})<0$, then there is $\delta>0$ such that for every $x \in B_{\delta}(\bar{x}) \cap D$:
(1) $f(x)<f(\bar{x})$ if $x>\bar{x}$.
(2) $f(x)>f(\bar{x})$ if $x<\bar{x}$.

Characterising Maximisers in \mathbb{R} : FO Necessary Conditions

Theorem (FONC)
Suppose that $f: D \rightarrow \mathbb{R}$ is differentiable. If $\bar{x} \in \operatorname{int}(D)$ is a local maximiser of f then $f^{\prime}(\bar{x})=0$.

Proof: Suppose $f^{\prime}(\bar{x}) \neq 0$. WLOG, suppose $f^{\prime}(\bar{x})>0$.
(1) By Lemma $1, \exists \delta>0$ such that $f(x)>f(\bar{x})$ for all $x \in B_{\delta}(\bar{x}) \cap D$ satisfying $x>\bar{x}$.
(2) Since \bar{x} is a local maximizer of $f, \exists \varepsilon>0$ such that $f(x) \leq f(\bar{x})$ for all $x \in B_{\varepsilon}(\bar{x}) \cap D$.
(3) Since $\bar{x} \in \operatorname{int}(D), \exists \gamma>0$ such that $B_{\gamma}(\bar{x}) \subseteq D$.
(9) Let $\beta=\min \{\varepsilon, \delta, \gamma\}>0$.
(6) Clearly, $(\bar{x}, \bar{x}+\beta) \subset B_{\beta}^{\prime}(\bar{x}) \subseteq D$. Moreover, $B_{\beta}^{\prime}(\bar{x}) \subseteq B_{\delta}(\bar{x}) \cap D$ and $B_{\beta}^{\prime}(\bar{x}) \subseteq B_{\varepsilon}(\bar{x}) \cap D$.
(0) $\exists x$ such that $f(x)>f(\bar{x})$ and $f(x) \leq f(\bar{x})$, a contradiction.

Characterising Maximisers in \mathbb{R} : SO Necessary Conditions

Theorem (SONC)
Let $f: D \rightarrow \mathbb{R}$ be \mathbb{C}^{2}. If $\bar{x} \in \operatorname{int}(D)$ is a local max of f, then $f^{\prime \prime}(\bar{x}) \leq 0$.
Proof: Since $\bar{x} \in \operatorname{int}(D)$, there is a $\varepsilon>0$ such that $B_{\varepsilon}(\bar{x}) \subseteq D$.
(1) Let $h \in B_{\varepsilon}(0)$. Since f is \mathbb{C}^{2}, Taylor's Theorem implies $\exists x_{h}^{*} \in[\bar{x}$, $\bar{x}+h]$ such that

$$
f(\bar{x}+h)=f(\bar{x})+f^{\prime}(\bar{x}) h+\frac{1}{2} f^{\prime \prime}\left(x_{h}^{*}\right) h^{2}
$$

(2) $\exists \delta>0$ such that $f(x) \leq f(\bar{x})$ for all $x \in B_{\delta}(\bar{x}) \cap D$.
(3) Let $\beta=\min \{\varepsilon, \delta\}>0$. By construction, for any $h \in B_{\beta}^{\prime}(0)$

$$
f^{\prime}(\bar{x}) h+\frac{1}{2} f^{\prime \prime}\left(x_{h}^{*}\right) h^{2}=f(\bar{x}+h)-f(\bar{x}) \leq 0 .
$$

(4) By Theorem FONC, $f^{\prime}(\bar{x})=0$ and so $f^{\prime}(\bar{x}) h=0$.
(9) Hence, $f^{\prime \prime}\left(x_{h}^{*}\right) h^{2} \leq 0 \Longrightarrow f^{\prime \prime}\left(x_{h}^{*}\right) \leq 0$.
(0) $\lim _{h \rightarrow 0} f^{\prime \prime}\left(x_{h}^{*}\right) \leq 0$, and hence that $f^{\prime \prime}(\bar{x}) \leq 0$, since $f^{\prime \prime}$ is continuous and each x_{h} lies in the interval joining \bar{x} and $\bar{x}+h$.

Characterising Maximisers in \mathbb{R} : Sufficient Conditions

Theorem (FOSC \& SOSC)
Suppose that $f: D \rightarrow \mathbb{R}$ is \mathbb{C}^{2}. Let $\bar{x} \in \operatorname{int}(D)$. If $f^{\prime}(\bar{x})=0$ and $f^{\prime \prime}(\bar{x})<0$, then \bar{x} is a local maximizer.

Proof: Since $f: D \rightarrow \mathbb{R}$ is $\mathbb{C}^{2} \& f^{\prime \prime}(\bar{x})<0$, by Corollary $2 \exists \delta>0$ s.t. (a) $f^{\prime}(x)<f^{\prime}(\bar{x})=0$, for all $x \in B_{\delta}(\bar{x}) \cap D$ for which $x>\bar{x}$; and (b) $f^{\prime}(x)>f^{\prime}(\bar{x})=0$, for all $x \in B_{\delta}(\bar{x}) \cap D$ for which $x<\bar{x}$.
(1) Since $x \in \operatorname{int}(D)$, there is $\varepsilon>0$ such that $B_{\varepsilon}(\bar{x}) \subseteq D$.
(2) Let $\beta=\min \{\delta, \varepsilon\}>0$. By the MV Theorem, $\exists x^{*} \in[\bar{x}, x]$ s.t.

$$
f(x)=f(\bar{x})+f^{\prime}\left(x^{*}\right)(x-\bar{x}) \text { for all } x \in B_{\beta}(\bar{x})
$$

(3) $x>\bar{x} \Rightarrow x^{*} \geq \bar{x}$. Hence, (a) $\Rightarrow f^{\prime}\left(x^{*}\right)(x-\bar{x}) \leq 0 \Rightarrow f(x) \leq f(\bar{x})$.
(9) $x<\bar{x} \Rightarrow x^{*} \leq \bar{x}$. Hence, (b) $\Rightarrow f^{\prime}\left(x^{*}\right)(x-\bar{x}) \geq 0 \Rightarrow f(x) \leq f(\bar{x})$.
Q.E.D.

- We use $f^{\prime \prime}(\bar{x})<0$ to show $f^{\prime}\left(x^{*}\right)(x-\bar{x}) \leq 0$. Why $f^{\prime \prime}(\bar{x}) \leq 0$ is not enough?

Example in \mathbb{R}

- Consider $f(x)=x^{4}-4 x^{3}+4 x^{2}+4$.
- Note that

$$
f^{\prime}(x)=4 x^{3}-12 x^{2}+8 x=4 x(x-1)(x-2)
$$

- Hence, $f^{\prime}(x)=0 \Longleftrightarrow x \in\{0,1,2\}$.
- Since $f^{\prime \prime}(x)=12 x^{2}-24 x+8$,

$$
f^{\prime \prime}(0)=8>0, f^{\prime \prime}(1)=-4<0, \text { and } f^{\prime \prime}(2)=8>0
$$

- $x=0$ and $x=2$ are local min of f and $x=1$ is a local max.
- $x=0$ and $x=2$ are global min but $x=1$ is not a global max.

Characterising Maximisers in \mathbb{R}^{K} : Necessary Conditions

Suppose $D \subset \mathbb{R}^{K}$
Theorem
If $f: D \rightarrow \mathbb{R}$ is differentiable and $x^{*} \in \operatorname{int}(D)$ is a local maximizer of f, then $\operatorname{Df}\left(x^{*}\right)=0$.

Theorem
If $f: D \rightarrow \mathbb{R}$ is \mathbb{C}^{2} and $x^{*} \in \operatorname{int}(D)$ is a local maximizer of f, then $D^{2} f\left(x^{*}\right)$ is negative semidefinite.

Characterising Maximisers in \mathbb{R}^{K} : Sufficient Conditions

Suppose $D \subset \mathbb{R}^{K}$
Theorem
Suppose that $f: D \rightarrow \mathbb{R}$ is \mathbb{C}^{2} and let $\bar{x} \in \operatorname{int}(D)$. If $\operatorname{Df}(\bar{x})=0$ and $D^{2} f(\bar{x})$ is negative definite, then \bar{x} is a local maximizer.

Example in \mathbb{R}^{2}

- Consider $f(x, y)=x^{3}-y^{3}+9 x y$.
- Note that

$$
\begin{aligned}
f_{x}^{\prime}(x, y) & =3 x^{2}+9 y \\
f_{y}^{\prime}(x, y) & =-3 y^{2}+9 x
\end{aligned}
$$

- Hence,

$$
\begin{gathered}
f_{x}^{\prime}(x, y)=0 \text { and } f_{y}^{\prime}(x, y)=0 \Longleftrightarrow(x, y) \in\{(0,0),(3,-3)\} . \\
D^{2} f(x)=\left(\begin{array}{cc}
f_{x x}^{\prime \prime} & f_{y x}^{\prime \prime} \\
f_{x y}^{\prime \prime} & f_{y y}^{\prime \prime}
\end{array}\right)=\left(\begin{array}{cc}
6 x & 9 \\
9 & -6 y
\end{array}\right) .
\end{gathered}
$$

- $f_{x x}^{\prime \prime}=6 x$ and $\left|D^{2} f(x, y)\right|=-36 x y-81$.
- At $(0,0)$ the two minors are 0 and -81 . Hence, $D^{2} f(0,0)$ is indef.
- At $(3,-3)$ the two minors are 18 and 243 . Hence, $D^{2} f(3,-3)$ is positive definite and $(3,-3)$ is a local min.
- $(3,-3)$ is not a global min since $f(0, n)=-n^{3} \rightarrow-\infty$ as $n \rightarrow \infty$.

Functions in \mathbb{R} with only one critical point

Suppose $D \subset \mathbb{R}$

Theorem

Suppose that $f: D \rightarrow \mathbb{R}$ is \mathbb{C}^{1} in the interior of D and:
(1) the domain of f is an interval in \mathbb{R}.
(2) x is a local maximum of f, and
(3) x is the only solution to $f^{\prime}(x)=0$ on D.

Then, x is the global maximum of f.

Concavity and Quasi-Concavity: Definitions

Definition

Let D be a convex subset of \mathbb{R}^{K}. Then, $f: D \rightarrow \mathbb{R}$ is

- concave if for all $x, y \in D$, and for all $\theta \in[0,1]$,

$$
f(\theta x+(1-\theta) y) \geq \theta f(x)+(1-\theta) f(y)
$$

- strictly concave if for all $x, y \in D, x \neq y$, and for all $\theta \in(0,1)$,

$$
f(\theta x+(1-\theta) y)>\theta f(x)+(1-\theta) f(y)
$$

- quasi-concave if for all $x, y \in D$, and for all $\theta \in[0,1]$,

$$
f(x) \geq f(y) \Longrightarrow f(\theta x+(1-\theta) y) \geq f(y)
$$

- strictly quasi-concave if for all $x, y \in D, x \neq y$, and for all $\theta \in(0,1)$,

$$
f(x) \geq f(y) \Longrightarrow f(\theta x+(1-\theta) y)>f(y)
$$

Ordinal Properties

Theorem

Suppose $f: D \rightarrow \mathbb{R}$ is quasi-concave and $g: f(D) \rightarrow \mathbb{R}$ is nondecreasing. Then $g \circ f: D \rightarrow \mathbb{R}$ is quasi-concave. If f is strictly quasi-concave and g is strictly increasing, then $g \circ f$ is strictly quasi-concave.

Proof: Since f is quasi-concave, $f(\theta x+(1-\theta) y) \geq \min \{f(x), f(y)\}$. Since g is nondecreasing,

$$
g(f(\theta x+(1-\theta) y)) \geq g(\min \{f(x), f(y)\})=\min \{g(f(x)), g(f(y))\}
$$

If f is strictly quasi-concave, $x \neq y, f(\theta x+(1-\theta) y)>\min \{f(x), f(y)\}$. Since g is strictly increasing,

$$
g(f(\theta x+(1-\theta) y))>g(\min \{f(x), f(y)\})=\min \{g(f(x)), g(f(y))\}
$$

Q.E.D.

When is a Local Max also a Global Max? - Concavity

Theorem

Suppose that $D \subset \mathbb{R}^{K}$ is convex and $f: D \rightarrow \mathbb{R}$ is a concave function. If $\bar{x} \in D$ is a local maximizer of f, then it is also a global maximizer.

Proof: Suppose that $\bar{x} \in D$ is a local but not a global maximizer of f.

- $\exists \varepsilon>0$ such that $f(x) \leq f(\bar{x})$ for all $x \in B_{\varepsilon}(\bar{x}) \cap D$ and
- $\exists x^{*} \in D$ such that $f\left(x^{*}\right)>f(\bar{x})$.
(1) $x^{*} \notin B_{\varepsilon}(\bar{x})$, which implies that $\left\|x^{*}-\bar{x}\right\| \geq \varepsilon$.
(2) Since D is convex and f is concave, we have that for $\theta \in[0,1]$,

$$
f\left(\theta x^{*}+(1-\theta) \bar{x}\right) \geq \theta f\left(x^{*}\right)+(1-\theta) f(\bar{x})
$$

(3) Since $f\left(x^{*}\right)>f(\bar{x}), \theta f\left(x^{*}\right)+(1-\theta) f(\bar{x})>f(\bar{x})$ for all $\theta \in(0,1]$.
(9) Hence, $f\left(\theta x^{*}+(1-\theta) \bar{x}\right)>f(\bar{x})$.
(6) Let $\theta^{*} \in\left(0, \varepsilon /\left\|x^{*}-\bar{x}\right\|\right)$. $\theta^{*} \in(0,1) \& f\left(\theta^{*} x^{*}+\left(1-\theta^{*}\right) \bar{x}\right)>f(\bar{x})$.
($\left\|\left(\theta^{*} x^{*}+\left(1-\theta^{*}\right) \bar{x}\right)-\bar{x}\right\|=\theta^{*}\left\|x^{*}-\bar{x}\right\|<\left(\frac{\varepsilon}{\left\|x^{*}-\bar{x}\right\|}\right)\left\|x^{*}-\bar{x}\right\|=\varepsilon$,
(1) By convexity of $D,\left(\theta^{*} x^{*}+\left(1-\theta^{*}\right) \bar{x}\right) \in B_{\varepsilon}(\bar{x}) \cap D$. This contradicts the fact that $f(x) \leq f(\bar{x})$ for all $x \in B_{\varepsilon}(\bar{x}) \cap D$.
Q.E.D.

When is a Local Max also a Global Max?-Quasi-Concavity

Theorem

Suppose that $D \subset \mathbb{R}^{K}$ is convex and $f: D \rightarrow \mathbb{R}$ is strictly quasi-concave. If $\bar{x} \in D$ is a local maximizer of f, then it is also a global maximizer.

- Can we prove the last theorem assuming only quasi-concavity?

Uniqueness

Suppose $D \subset \mathbb{R}^{K}$.
Theorem
Suppose $f: D \rightarrow \mathbb{R}$ attains a maximum.
(a) If f is quasi-concave, then the set of maximisers is convex.
(b) If f is strictly quasi-concave, then the maximiser of f is unique.

