EC9A0: Pre-sessional Advanced Mathematics Course Unconstrained Optimisation

Pablo F. Beker Department of Economics University of Warwick

Autumn 2015

Lecture Outline

- Infimum and Supremum
 - Definitions
 - Properties
- Maximisers
 - Definitions
 - Existence
- Local Maxima
 - ullet Necessary Conditions in ${\mathbb R}$
 - Sufficient Conditions in IR
 - Necessary Conditions in \mathbb{R}^K
 - Sufficient Conditions in \mathbb{R}^K
- When is a Local max also a Global Max?
 - ullet Functions in ${\mathbb R}$ with only one critical point
 - Concavity and Quasi-Concavity
- Uniqueness

Infimum and Supremum: Definitions

Definition

Fix a set $Y \subseteq \mathbb{R}$. A number $\alpha \in \mathbb{R}$ is an upper bound of Y if $y \leq \alpha$ for all $y \in Y$, and is a lower bound of Y if the opposite inequality holds.

Definition

 $\alpha \in \mathbb{R}$ is the least upper bound of Y, denoted $\alpha = \sup Y$, if:

- \bullet α is an upper bound of Y; and

Definition

 $\beta \in \mathbb{R}$ is the greatest lower bound of Y, denoted $\beta = \inf Y$, if:

- $oldsymbol{0}$ eta is a lower bound of Y; and
- ② if γ is a lower bound of Y, then $\gamma \leq \beta$.

Properties of Infimum and Supremum

Theorem 1

```
\alpha = \sup Y if and only if for every \varepsilon > 0,
(a) y < \alpha + \varepsilon for all y \in Y; and
(b) there is some y \in Y such that \alpha - \varepsilon < y.
```

Corollary 1

Let $Y \subseteq \mathbb{R}$ and let $\alpha \equiv \sup Y$. Then there exists a sequence $\{y_n\}_{n=1}^{\infty}$ in Y that converges to α .

We need a stronger concept of extremum, in particular one that implies that the extremum lies within the set.

Maximisers

Definition

A point $x \in \mathbb{R}$ is the maximum of set $Y \subseteq \mathbb{R}$, denoted $x = \max A$, if $x \in Y$ and $y \le x$ for all $y \in Y$.

 Typically, it is of more interest in economics to find extrema of functions, rather than extrema of sets

Definition

$$\bar{x} \in D$$
 is a global maximizer of $f: D \to \mathbb{R}$ if $f(x) \le f(\bar{x})$ for all $x \in D$.

Definition

 $\bar{x} \in D$ is a local maximizer of $f: D \to \mathbb{R}$ if there exists some $\varepsilon > 0$ such that $f(x) \le f(\bar{x})$ for all $x \in B_{\varepsilon}(\bar{x}) \cap D$.

• When $\bar{x} \in D$ is a local (global) maximizer of $f: D \to \mathbb{R}$, the number $f(\bar{x})$ is said to be a local (the global) maximum of f.

Existence

Theorem (Weierstrass)

Let $C \subseteq D$ be nonempty and compact. If $f: D \to \mathbb{R}$ is continuous, then there are $\bar{x}, \underline{x} \in C$ such that $f(\underline{x}) \leq f(x) \leq f(\bar{x})$ for all $x \in C$.

Proof: It follows from 5 steps:

- **①** Since C is compact and f is continuous, then f[C] is compact.
- ② By Corollary 1, there is $\{y_n\}_{n=1}^{\infty}$ in f[C] s.t. $y_n \to \sup f[C]$.
- **3** Since f[C] is compact, then it is closed. Therefore, $\sup f[C] \in f[C]$.
- Thus, there is $\overline{x} \in C$ such that $f(\overline{x}) = \sup f[C]$.
- **5** By def. of sup, $f(\overline{x}) \ge f(x)$ for all $x \in C$.

Q.E.D.

Characterising Maximisers in $\mathbb R$

Lemma 1

Suppose $D \subset \mathbb{R}$ is open and $f: D \to \mathbb{R}$ is differentiable. Let $\bar{x} \in int(D)$. If $f'(\bar{x}) > 0$, then there is some $\delta > 0$ such that for each $x \in B_{\delta}(\bar{x}) \cap D$:

- **2** $f(x) < f(\bar{x})$ if $x < \bar{x}$.

Proof:
$$\varepsilon \equiv \frac{f'(\bar{x})}{2} > 0$$
. Then, $f'(\bar{x}) - \varepsilon > 0$. By def. of f' , $\exists \delta > 0$ s.t.,

$$\left|\frac{f(x)-f(\bar{x})}{x-\bar{x}}-f'(\bar{x})\right|<\varepsilon,\ \forall x\in B'_{\delta}(\bar{x})\cap D.$$

Hence,
$$\frac{f(x)-f(\bar{x})}{x-\bar{x}} > f'(\bar{x}) - \varepsilon > 0$$
.

Q.E.D.

Corollary 2

Suppose $D \subset \mathbb{R}$ is open and $f: D \to \mathbb{R}$ is differentiable. Let $\bar{x} \in D$. If $f'(\bar{x}) < 0$, then there is $\delta > 0$ such that for every $x \in B_{\delta}(\bar{x}) \cap D$:

- $f(x) > f(\bar{x}) \text{ if } x < \bar{x}.$

Characterising Maximisers in IR: FO Necessary Conditions

Theorem (FONC)

Suppose that $f: D \to \mathbb{R}$ is differentiable. If $\bar{x} \in \text{int}(D)$ is a local maximiser of f then $f'(\bar{x}) = 0$.

Proof: Suppose $f'(\bar{x}) \neq 0$. WLOG, suppose $f'(\bar{x}) > 0$.

- By Lemma 1, $\exists \delta > 0$ such that $f(x) > f(\bar{x})$ for all $x \in B_{\delta}(\bar{x}) \cap D$ satisfying $x > \bar{x}$.
- ② Since \bar{x} is a local maximizer of f, $\exists \varepsilon > 0$ such that $f(x) \leq f(\bar{x})$ for all $x \in B_{\varepsilon}(\bar{x}) \cap D$.
- **3** Since $\bar{x} \in \text{int}(D)$, $\exists \gamma > 0$ such that $B_{\gamma}(\bar{x}) \subseteq D$.
- Let $\beta = \min\{\varepsilon, \delta, \gamma\} > 0$.
- Clearly, $(\bar{x}, \bar{x} + \beta) \subset B'_{\beta}(\bar{x}) \subseteq D$. Moreover, $B'_{\beta}(\bar{x}) \subseteq B_{\delta}(\bar{x}) \cap D$ and $B'_{\beta}(\bar{x}) \subseteq B_{\varepsilon}(\bar{x}) \cap D$.
- **⑤** $\exists x$ such that $f(x) > f(\bar{x})$ and $f(x) \leq f(\bar{x})$, a contradiction.

Q.E.D.

Characterising Maximisers in \mathbb{R} : SO Necessary Conditions

Theorem (SONC)

Let $f:D\to\mathbb{R}$ be \mathbb{C}^2 . If $\bar x\in \mathrm{int}(D)$ is a local max of f, then $f''(\bar x)\le 0$.

Proof: Since $\bar{x} \in \text{int}(D)$, there is a $\varepsilon > 0$ such that $B_{\varepsilon}(\bar{x}) \subseteq D$.

• Let $h \in B_{\varepsilon}(0)$. Since f is \mathbb{C}^2 , Taylor's Theorem implies $\exists x_h^* \in [\bar{x}, \bar{x} + h]$ such that

$$f(\bar{x} + h) = f(\bar{x}) + f'(\bar{x})h + \frac{1}{2}f''(x_h^*)h^2$$

- ② $\exists \delta > 0$ such that $f(x) \leq f(\bar{x})$ for all $x \in B_{\delta}(\bar{x}) \cap D$.
- **3** Let $\beta = \min\{\varepsilon, \delta\} > 0$. By construction, for any $h \in \mathcal{B}_{\beta}'(0)$

$$f'(\bar{x})h + \frac{1}{2}f''(x_h^*)h^2 = f(\bar{x} + h) - f(\bar{x}) \le 0.$$

- **9** By Theorem FONC, $f'(\bar{x}) = 0$ and so $f'(\bar{x})h = 0$.
- **5** Hence, $f''(x_h^*)h^2 \le 0 \implies f''(x_h^*) \le 0$.
- **1** lim_{h→0} $f''(x_h^*) \le 0$, and hence that $f''(\bar{x}) \le 0$, since f'' is continuous and each x_h lies in the interval joining \bar{x} and $\bar{x} + h$. Q.E.D.

9 of 20

Characterising Maximisers in IR: Sufficient Conditions

Theorem (FOSC & SOSC)

Suppose that $f: D \to \mathbb{R}$ is \mathbb{C}^2 . Let $\bar{x} \in \text{int}(D)$. If $f'(\bar{x}) = 0$ and $f''(\bar{x}) < 0$, then \bar{x} is a local maximizer.

Proof: Since $f: D \to \mathbb{R}$ is $\mathbb{C}^2 \& f''(\bar{x}) < 0$, by Corollary $2 \exists \delta > 0$ s.t.

(a)
$$f'(x) < f'(\bar{x}) = 0$$
, for all $x \in B_{\delta}(\bar{x}) \cap D$ for which $x > \bar{x}$; and (b) $f'(x) > f'(\bar{x}) = 0$, for all $x \in B_{\delta}(\bar{x}) \cap D$ for which $x < \bar{x}$.

- (b) f(x) > f(x) = 0, for all $x \in D_0(x) \cap D$ for which $x \in D_0(x)$
 - Since $x \in \text{int}(D)$, there is $\varepsilon > 0$ such that $B_{\varepsilon}(\bar{x}) \subseteq D$.

② Let
$$\beta = \min\{\delta, \epsilon\} > 0$$
. By the MV Theorem, $\exists x^* \in [\bar{x}, x]$ s.t.

$$f(x) = f(\bar{x}) + f'(x^*)(x - \bar{x})$$
 for all $x \in B_{\beta}(\bar{x})$

Q.E.D.

• We use $f''(\overline{x}) < 0$ to show $f'(x^*)(x - \overline{x}) \le 0$. Why $f''(\overline{x}) \le 0$ is not enough?

Example in ${\mathbb R}$

- Consider $f(x) = x^4 4x^3 + 4x^2 + 4$.
- Note that

$$f'(x) = 4x^3 - 12x^2 + 8x = 4x(x-1)(x-2).$$

- Hence, $f'(x) = 0 \iff x \in \{0, 1, 2\}.$
- Since $f''(x) = 12x^2 24x + 8$,

$$f''(0) = 8 > 0$$
, $f''(1) = -4 < 0$, and $f''(2) = 8 > 0$

- x = 0 and x = 2 are local min of f and x = 1 is a local max.
- x = 0 and x = 2 are global min but x = 1 is not a global max.

Characterising Maximisers in \mathbb{R}^K : Necessary Conditions

Suppose $D \subset \mathbb{R}^K$

Theorem

If $f: D \to \mathbb{R}$ is differentiable and $x^* \in int(D)$ is a local maximizer of f, then $Df(x^*) = 0$.

Theorem

If $f: D \to \mathbb{R}$ is \mathbb{C}^2 and $x^* \in int(D)$ is a local maximizer of f, then $D^2f(x^*)$ is negative semidefinite.

Characterising Maximisers in \mathbb{R}^K : Sufficient Conditions

Suppose $D \subset \mathbb{R}^K$

Theorem

Suppose that $f: D \to \mathbb{R}$ is \mathbb{C}^2 and let $\bar{x} \in int(D)$. If $Df(\bar{x}) = 0$ and $D^2f(\bar{x})$ is negative definite, then \bar{x} is a local maximizer.

Example in \mathbb{R}^2

- Consider $f(x, y) = x^3 y^3 + 9xy$.
- Note that

$$f'_x(x, y) = 3x^2 + 9y$$

 $f'_y(x, y) = -3y^2 + 9x$

Hence. $f'_{x}(x,y) = 0$ and $f'_{y}(x,y) = 0 \iff (x,y) \in \{(0,0), (3,-3)\}.$

$$D^{2}f(x) = \begin{pmatrix} f''_{xx} & f''_{yx} \\ f''_{yy} & f''_{yy} \end{pmatrix} = \begin{pmatrix} 6x & 9 \\ 9 & -6y \end{pmatrix}.$$

- $f''_{yy} = 6x$ and $|D^2f(x,y)| = -36xy 81$.
- At (0,0) the two minors are 0 and -81. Hence, $D^2f(0,0)$ is indef.
- At (3, -3) the two minors are 18 and 243. Hence, $D^2f(3, -3)$ is positive definite and (3, -3) is a local min.
- (3, -3) is not a global min since $f(0, n) = -n^3 \to -\infty$ as $n \to \infty$.

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course

Functions in $\mathbb R$ with only one critical point

Suppose $D \subset \mathbb{R}$

Theorem

Suppose that $f: D \to \mathbb{R}$ is \mathbb{C}^1 in the interior of D and:

- \bullet the domain of f is an interval in \mathbb{R} .
- 2 x is a local maximum of f, and
- **3** x is the only solution to f'(x) = 0 on D.

Then, x is the global maximum of f.

Concavity and Quasi-Concavity: Definitions

Definition

Let D be a convex subset of \mathbb{R}^K . Then, $f:D\to\mathbb{R}$ is

• *concave* if for all $x, y \in D$, and for all $\theta \in [0, 1]$,

$$f(\theta x + (1 - \theta)y) \ge \theta f(x) + (1 - \theta)f(y)$$

• strictly concave if for all $x, y \in D$, $x \neq y$, and for all $\theta \in (0, 1)$,

$$f(\theta x + (1 - \theta)y) > \theta f(x) + (1 - \theta)f(y)$$

• quasi-concave if for all $x, y \in D$, and for all $\theta \in [0, 1]$,

$$f(x) \ge f(y) \implies f(\theta x + (1 - \theta)y) \ge f(y)$$

• *strictly quasi-concave* if for all $x, y \in D$, $x \neq y$, and for all $\theta \in (0, 1)$,

$$f(x) \ge f(y) \implies f(\theta x + (1 - \theta)y) > f(y)$$

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course

Pablo F. Beker

Ordinal Properties

Theorem

Suppose $f: D \to \mathbb{R}$ is quasi-concave and $g: f(D) \to \mathbb{R}$ is nondecreasing. Then $g \circ f: D \to \mathbb{R}$ is quasi-concave. If f is strictly quasi-concave and g is strictly increasing, then $g \circ f$ is strictly quasi-concave.

Proof: Since f is quasi-concave, $f(\theta x + (1 - \theta)y) \ge \min\{f(x), f(y)\}$. Since g is nondecreasing,

$$g(f(\theta x+(1-\theta)y))\geq g(\min\{f(x),f(y)\})=\min\{g(f(x)),g(f(y))\}.$$

If f is strictly quasi-concave, $x \neq y$, $f(\theta x + (1 - \theta)y) > \min\{f(x), f(y)\}$. Since g is strictly increasing,

$$g(f(\theta x + (1 - \theta)y)) > g(\min\{f(x), f(y)\}) = \min\{g(f(x)), g(f(y))\}.$$

Q.E.D.

When is a Local Max also a Global Max? - Concavity

Theorem

Suppose that $D \subset \mathbb{R}^K$ is convex and $f: D \to \mathbb{R}$ is a concave function. If $\bar{x} \in D$ is a local maximizer of f, then it is also a global maximizer.

Proof: Suppose that $\bar{x} \in D$ is a local but not a global maximizer of f.

- $\exists \varepsilon > 0$ such that $f(x) \leq f(\bar{x})$ for all $x \in B_{\varepsilon}(\bar{x}) \cap D$ and
- $\exists x^* \in D$ such that $f(x^*) > f(\bar{x})$.
- **1** $x^* \notin B_{\varepsilon}(\bar{x})$, which implies that $||x^* \bar{x}|| > \varepsilon$.
- ② Since *D* is convex and *f* is concave, we have that for $\theta \in [0,1]$,

$$f(\theta x^* + (1-\theta)\bar{x}) \ge \theta f(x^*) + (1-\theta)f(\bar{x}).$$

- Since $f(x^*) > f(\bar{x})$, $\theta f(x^*) + (1-\theta)f(\bar{x}) > f(\bar{x})$ for all $\theta \in (0,1]$.
- **4** Hence, $f(\theta x^* + (1 \theta)\bar{x}) > f(\bar{x})$.
- **5** Let $\theta^* \in (0, \varepsilon/\|x^* \bar{x}\|)$. $\theta^* \in (0, 1)$ & $f(\theta^*x^* + (1 \theta^*)\bar{x}) > f(\bar{x})$.
- By convexity of D, $(\theta^*x^* + (1-\theta^*)\bar{x}) \in B_{\varepsilon}(\bar{x}) \cap D$. This contradicts the fact that $f(x) \leq f(\bar{x})$ for all $x \in B_{\varepsilon}(\bar{x}) \cap D$. University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course

When is a Local Max also a Global Max?-Quasi-Concavity

Theorem

Suppose that $D \subset \mathbb{R}^K$ is convex and $f: D \to \mathbb{R}$ is strictly quasi-concave. If $\bar{x} \in D$ is a local maximizer of f, then it is also a global maximizer.

• Can we prove the last theorem assuming only quasi-concavity?

Uniqueness

Suppose $D \subset \mathbb{R}^K$.

Theorem

Suppose $f: D \to \mathbb{R}$ attains a maximum.

- (a) If f is quasi-concave, then the set of maximisers is convex.
- (b) If f is strictly quasi-concave, then the maximiser of f is unique.