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Abstract

This paper explores the effect of aggregate mortality risk on thepricing of annuities. It uses
a two-period model; in the second period people face a constant but intiially unknown risk of
death. Old people can either carry the aggregat emortlaity risk for themselves or buy annuities
which are sold by young people. A market-clearing price for such annuties is established. It is
found that old people would, given the choice, decide to carry a considerable part of aggregate
mortality risk for themselves.

∗This work has been supported by the ESRC under its World Economy and Finance Programme. Please treat
the results presented here as preliminary.
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1 Introduction

Many of the issues associated with annuity markets have been well-researched in recent years, as

reported in the comprehensive survey by Davidoff, Brown, and Diamond (2005). Much of this

research has focussed upon the merits of annuities, with the general finding that there is likely to

be a substantial role for annuitisation even in context of heterogeneous preferences for investment,

the time stream of consumption, and bequests. In contrast, very little work has been conducted

to understand the workings of annuities markets with regard to aggregate mortality risk. This is

surprising, given the role played by mortality risk in the a priori justification for annuities. Here,

we suggest an appropriate economic model for pricing annuities, and use the model to project

plausible values for the annuity risk premium attributable to uncertainty regarding individual and

cohort specific life expectancy.

To clarify terms, aggregate mortality risk refers to the uncertainty that is associated with the

average longevity of a birth cohort. Individual mortality risk, by contrast, is the uncertainty of the

precise time of death of an individual, relative to their respective birth cohort. Individuals from

a given birth cohort can protect themselves against individual mortality risk through the use of a

tontine, which pays an annual dividend that depends upon the realised mortality rate of the cohort.

Purchasers of such a tontine will, nevertheless remain exposed to income uncertainty to the extent

that cohort mortality is uncertain. This is as opposed to a standard life annuity, which pays a

guaranteed income to purchasers until death.1

The topic of aggregate mortality uncertainty was not discussed in the survey by Davidoff, Brown,

and Diamond (2005). While Bohn (2005) does air the question of uncertain longevity, he limits

himself to scenario analysis – the effect of a permanent increase in longevity during retirement – and

does not address the question of risk in its more conventional sense. The problem is that the true

mortality rate of any particular cohort is known only ex post. When an insurance company sells an

annuity it contracts to pay a regular income calculated on the basis of a forecast of the mortality

rate. Like any forecast, projections of mortality rates are subject to error, and any insurance

company selling annuities therefore carries mortality risk. Casual discussion in the United Kingdom

has suggested that this risk may be substantial. Banks and Blundell (2005) make the point that

“unanticipated increases in longevity put pressure on all forms of pension systems” although they

1We are not aware of any contemporary sellers of such tontines in the United Kingdom but it is possible that
there would be benefits to filling this gap in financial markets; certainly, if the premium associated with aggregate
mortality risk is large, then one might expect that annuitants would value the opportunity to carry at least some of
the aggregate mortality risk themselves. Tontines are available in the United States from the Colleges Retirement
Equity Fund. See www.tiaa-cref.org/prospectuses/cref prospectus/index.html#A024.
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do not offer any view on the scale of this pressure2. Hardy (2005) states that “Even actuaries

recognize that longer life is a good thing – but, to the extent that it is unanticipated, it is also an

enormous problem for the managers of annuity portfolios”, with the implication that an annuitant

should expect to pay a substantial risk premium on an annuity. On the other hand studies such

as Finkelstein and Poterba (2002) argue that, after allowing for adverse selection, annuity pricing

is close to actuarially fair before making any allowance for a risk premium. This last observation

implies that either the risk premium cannot be very large or that, once it is taken into account,

annuities are substantially mis-priced.

One clue to the pricing of mortality risk might be offered by financial markets. In November 2004

the European Investment Bank (EIB) issued a mortality bond following an earlier issue in December

2003 by the insurance company Swiss Re. A mortality bond is a loan stock whose payout depends

on the mortality rate of a specific cohort and in the case of the EIB issue, the mortality of the cohort

of men in the United Kingdom aged 65 in 2003. The pay-out received by purchasers of the stock

increases proportionately to the longevity of the defined cohort, thus providing a hedge against

aggregate mortality risk. Friedberg and Webb (2006) explore the pricing of the EIB mortality bond

in the context of the consumption capital asset pricing model (CCAPM). Despite their observation

that annuities expose insurance companies to “substantial risk”, they find on the basis of their

model that the cost of hedging aggregate mortality risk should be very low.

The CCAPM prices assets taking into account correlations between associated investment re-

turns and consumption needs. This is an appealing approach for pricing annuities as it reflects the

insurance motive. The CCAPM does not, however, provide an explanation of pricing in terms of

demand and supply. Furthermore, the assumption of an infinitely lived representative consumer

by the CCAPM sits uncomfortably alongside the uncertain mortality that influences demand for

annuities in practice.3

Annuities represent a transaction, where one group of consumers (the elderly) divest themselves

of their aggregate mortality risk by purchasing insurance from another group (the young). In this

paper we consequently explore the pricing of aggregate mortality risk in an overlapping-generations

model. In the model young people have no risk of death but, beyond a threshold age when they

become old, they face a constant risk of death. Old people buy annuities from young people (or

2In the United Kingdom there is a separate problem that mortality rates have been systematically over-predicted
by the Government Actuary. Here, however, we focus on shocks relative to unbaised forecasts.

3The model could be extended to address aggregate mortality risk using the approach suggested by Yaari (1965)
in which all consumers have the same mortality rate independent of their age and where, therefore, the notion of a
representative consumer can be retained, as Blanchard (1985) does in his analysis of fiscal policy with finite horizons.
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from insurance companies whose shares are owned by young people) at a price which balances

the willingness of the young to carry aggregate mortality risk with the desire of the old to divest

themselves of it. The old and the young have different attitudes to the mortality risk of the old

because they are of different ages; young people can adjust their consumption while still young in

response to the gains or losses that they experience from carrying the mortality risk of the old.

The fact that different generations are affected differently by shocks to the mortality rate of any

particular cohort makes transaction in mortality risk possible.

We begin by discussing the way in which life expectancy has changed in the last twenty-five

years or so. We follow this with estimates of the uncertainty surrounding the life expectancy of

a sixty-five year-old man. We proceed to set out a modelling framework to assess the impact of

aggregate mortality risk on the pricing of annuities and we use this to assess the risk margins which

we might expect to observe. Finally we draw conclusions.

2 Rising Life Expectancy

The nature of the problem faced by insurance companies selling annuities can be seen from the data

in figure 1. This shows official UK estimates of the cohort life expectancy for both men and women

aged sixty-five in each year from 1981 to 2004. That life expectancies for both sexes have risen

since 1981 is not surprise. The rise in male life expectancy came after a period of stasis lasting from

about 1950 to 1975 which Doll (1987) attributes to the timing of the cigarette epidemic and this

may help explain why the rise in male life expectancy has since been steeper than that of female

life expectancy.

Rising but predictable life expectancy would not be a problem for insurance companies selling

annuities. The difficulty arises because cohort life expectancy depends on future mortality rates and

thus cannot be predicted with certainty. Indeed all the data shown in figure 1 depend on an element

of prediction. Some of the people who reached age sixty-five in 1981 are still alive; the total expected

life of people born in 1916 is obviously not yet known with certainty. There is very obviously much

greater uncertainty about the expected remaining life of people born in 1939. Nevertheless these

official figures are not presented with any indication of the uncertainty surrounding them. The

problem faced when selling annuities is that such figures cannot be taken at their face value. The

expected life of someone currently age sixty-five depends on forecasts of mortality rates for the next

forty-five years or so and the terms on which annuities are traded might be expected to reflect the

accuracy of these forecasts.

Given the time lags involved in the calculation of cohort life expectancy at age sixty-five, it is
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Figure 1: Estimates of Cohort Life-Expectancy at Age Sixty-Five: 1981-2004

not really practical to base any notion of the reliability of forecasts (i.e. those estimates produced

before the cohort has died completely) on past experience of the magnitudes of forecast errors.

Equally, plausible models of disturbances to life expectancy are not analytically tractable. Thus

the uncertainty surrounding current estimates of life expectancy has to be established by means of

stochastic simulation. We do this using the Lee-Carter (Lee and Carter 1992) model4.

3 Stochastic Analysis of Life Expectancy

The Lee-Carter Model provides a simple framework for projecting future mortality rates. The basic

model underlying mortality is assumed to be

log m(x, t) = a(x) + b(x)k(t) + ε(x, t)

4See also Renshaw and Haberman (2003).
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where m(x, t) is the mortality rate for someone of age x in year t. a(x), b(x) and k(t) are model

parameters and ε(x, t) are error terms. The parameters are estimated to minimise
∑

x,t ε
2(x, t)

subject to the constraints that
∑

t k(t) = 0 and
∑

x b(x) = 1. Forecasts of mortality rates are

produced by forecasts of k outside the sample and Lee and Carter show that a stochastic analysis

can be carried out effectively by focussing on the uncertainty surrounding the projections of k; we

follow that approach here. Chart1
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Figure 2: The Level and Difference of the Mortality Index for Men aged Sixty-five and Over::
1981-2004

The index and its first difference are shown in figure 2 calculated from the publicly-available

mortality rates for men which go back to 1981. The series itself is strongly trended and even

its first difference does not appear stationary. The mean rate of change for 1982-1991 is -0.40

with the standard deviation of the mean 0.046. For 1995-2004 the mean is -0.76 with standard

deviation 0.056. Thus the rate of reduction of the mortality index was substantially greater in the

last ten years of the data than the first ten years and by any reasonable measure the difference is

statistically significant. An assumption that the first difference followed a stable process would be

6



Variable Order ADF
k 0 3.63
∆k 1 -1.34
∆2k 2 -4.35

Table 1: Unit Root Tests for the Mortality Index

likely to deliver poor forecasts. If we look at ADF tests with the lag length chosen by the AIC

criterion, we find the results shown in table 1. k needs to be double-differences in order to find a

stationary process.

Although in principle one could estimate a time-series model for k or ∆k and rely on the

estimation method to deliver the restrictions which would be equivalent to estimating a model

defined over ∆2k in practice the short sample makes this a highly risky procedure. It is much safer

to consider only models set out in terms of ∆2k. We explore autoregressive equations with up to

three lags and choose the equation with three lags on the basis of the AIC. This equation is shown

in table 2. The initial equation, although it passes a full range of specification tests, embodies an

unstable negative root; the sum of the three coefficients on the lagged terms is well below -1. We

therefore consider a restricted form, also shown in the table, in which the coefficients are restricted

to sum to -0.9. We also restrict the constant term to zero. These restrictions are accepted by an

F-test, F(2.14)=1.84.

Unrestricted Coeffs sum to -0.9
Coefficient Std.Error t-value Coefficient Std Error t-value

∆2k(−1) -0.77582 0.2331 -3.33 -0.5462 0.1706 -3.31
∆2k(−2) -0.46127 0.3127 -1.47 -0.0456 0.0874 -0.52
∆2k(−3) -0.54981 0.2492 -2.21 -0.2902 0.1706 -1.72
Constant -0.0808 0.04472 -1.81 0 0 **

σ 0.16985 0.1902
R2 0.659269

F(3,14) 9.029
log-likelihood 8.63204

Table 2: An Autoregression for ∆2k

This gives us one model from which to produce both forecasts of cohort life expectancy and,

using stochastic simulation, estimates of its dispersion. When we simulate stochastically the au-

toregressive model, there is a risk that some of the sets of stochastically chosen parameters for the

autoregression will result in models which are dynamically unstable. In 1000 simulations we find

that 142 result in unstable models and have to be discarded. From the remaining simulations we
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find a mean value for life expectancy of those currently aged sixty-five of 19.8 years with a standard

deviation of 0.73 years. This compares with an official estimate of 19.4 years and a high variant of

20.3 years.

However, at the same time we have to note that these results are, even though the simulations

take account of the uncertainty in the model parameters, conditional on the specification of the

model being correct. Clements and Hendry (1999, Chapter 5) suggest that an alternative robust

forecasting model is often provided by the assumption that ∆2k is a random variable with zero

expected value. The negative terms in the regression equation suggest that this alternative speci-

fication is likely to have greater uncertainty associated with it than does the model based on the

regression equation. This model gives, again from 1000 simulations, a male life expectancy at age

sixty-five of 20.0 years with a standard deviation of 1.67 years. With this background we now look

at a formal structure for modelling the supply and demand for annuities, so as to work out the

market-clearing annuity rate.

4 The Decision Framework

Our model structure focuses on two overlapping generations which we refer to as young and old.

Young people are begin their economic life at age 0 and all of them survive to age 1 when they

become old. One period can be thought of as representing forty years. All old people in each cohort

experience a cohort-specific mortality rate which is independent of age beyond the age of 1, but

which is not known with certainty until after they have to make financial decisions for the period

starting at age1. The mortality rate in beyond age 1 for cohort i is defined as ρi. The analysis of

annuities presented by Yaari (1965) applies to the old generation with the qualification that at the

age of 1 they can buy annuities before their mortality rate is known. Alternatively they can buy

tontines whose pay-out depends on their actual mortality rate once it is established. The interest

rate in the model is r and the rate of discount of future utility is also assumed to be r.

Cohort i faces three decision points in our model.

1. At age 0 young people in cohort, i, receive an endowment of £1. They can sell annuities to

old people from cohort i− 1 who have now reached the age of 1. However, they will choose to

do so only at a price which reflects the uncertainty surrounding the mortality of cohort i− 1;

the expected mortality rate of cohort i− 1 is ρe
i−1. We denote by πi−1 the ratio of the actual

annuity pay-out to that which would be made by a fair annuity without uncertainty. Thus an

annuity bought by an old person in cohort i−1 at age 1 pays a dividend of πi−1

(
r + ρe

i−1

)
. In
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the absence of uncertainty a fair annuity bought for £1 would yield a dividend of r+ρi−1. The

capital value once the uncertainty is revealed is consequently £
πi−1(r+ρe

i−1)
r+ρi

per £1 invested.

The expected capital gain is therefore5

£1 − πi−1(r + ρe
i−1)E

(
1

r + ρi−1

)
.

Given the pay-out ratio in the market and the uncertainty surrounding the mortality rate of

old people in cohort i− 1, young people in cohort i decide to sell annuities to a value of £φ′i.

2. At a time ε after this initial transaction, the actual mortality rate, ρi−1, of the old cohort

becomes known. Given the realisation of ρi−1 and thus the capital gains or losses that young

people from cohort i have made, they choose their consumption rate cy
i between the ages ε and

1. The assumption that the discount rate equals the interest rate means that this consumption

rate is constant throughout the interval [ε, 1].

3. At age 1 cohort i becomes old. It now holds wealth w1
i and has to decide what proportion of

this, φi it wishes to annuitise. It makes this decision in the light of the uncertainty surrounding

its own mortality rate, ρi, and in the face of the market pay-out ratio for annuities, πi. It buys

a tontine with its remaining wealth6 giving a yield based on the as yet unknown mortality

rate. This determines the income and consumption of the cohort when old, co
i .

We assume that ε is small so that we can ignore the consumption which takes place over the

interval [0, ε].

With an interest rate of r,

w1
i =

{
1 + φ′i

(
1 − πi−1

r + ρe
i−1

r + ρi−1

)}
er − cy

i

r
(er − 1) (1)

An old person with wealth w1
i at time 1 who invests a proportion φi in an annuity and the

remainder in a tontine receives a level income of yo
i = {(1 − φi)(r + ρi) + φiπi (r + ρe

i )}w1
i . Within

the confines of our model, the results of Yaari (1965) and Davidoff, Brown, and Diamond (2005)

imply that old people will invest all of their wealth in one or other of these products; they also

imply that, provided the interest rate equals the discount rate, which we assume, these investors

5As the arithmetic mean is greater than the harmonic mean for any sequence of positive variables, it follows that
for zero expected capital gain, πi−1 < 1. In other words, an annuity which is fair in the presence of uncertainty
would seem unfair if assessed without taking that uncertainty into account.

6With our assumptions buying a tontine at time 1 is equivalent to buying an annuity at time 1 + ε.

9



will choose consumption, co
i = yo

i . Putting these expressions together allows us to write the budget

constraint:

co
i = {(1 − φi) (r + ρi) + πiφi (r + ρe

i )}wo
i (2)

= {(1 − φi) (r + ρi) + πiφi (r + ρe
i )} (3){(

1 + φ′i

[
1 − πi−1

r + ρe
i−1

r + ρi−1

])
er − cy

i

r
(er − 1)

}

A situation in which tontines are not available is easily represented by setting7 φi = 1, with the

consequence that people choose first φ′i and then cy
i

Each consumer has an instantaneous utility function

u (cz
i ) = A +

(cz
i )

1−α

1 − α
; z = y or o

Here A is a variable which represents the joy of living and is large enough to ensure that u (cz
i )>0

for all plausible values of cz
i . This condition has to be met for consumers to regard long life as a

good thing rather than a burden but does not influence utility-maximising decisions..

5 Optimal Allocation

Looking at the four decision points we work backwards, in common with the backward recursion

used for solving dynamic programming problems. We define Vi,t as the expected utility of someone

in cohort i at time t on the assumption that they make optimal portfolio and consumption decisions.

We set out the analysis on the assumption that tontines are available.

1. After the true mortality rate for old people is revealed at time 1 + ε, there is no further

uncertainty and

Vi,1+ε =
u (co

i )

r + ρi

2. At time 1 the consumer has to choose how much wealth to annuitise in order to maximise

expected utility. It is assumed that old people cannot be sellers of either tontines or annuities;

7If the alternative to an annuity is cash with a yield of r, then there is the logical possibility that people would
wish to allocate their portfolios between annuities and cash. However, exploration of this possibility showed that,
for any plausible mortality rate, people would choose to borrow at the market interest rate in order to increase their
annuity holdings. Such an analysis assumes that estates are simply insolvent on death. In such circumstances lenders
would require borrowers to buy life insurance and the attractions of over-annuitisation would be lost.

10



0≤ φi ≤ 1.

Vi,1

(
πi, w

1
i , ρi−1

)
=

Max
0 < φi < 1

E (Vi,1+ε)

=
Max

0 < φi < 1

(w1
i )

1−α

1 − α∫ ∞

0

{(1 − φi) (r + ρi) + πiφi (r + ρe
i )}

1−α

r + ρi

f
(
ρi, ρi−1, ∆ρi−1

)
dρi

+
∫ ∞

0

A

r + ρi

f
(
ρi, ρi−1, , ∆ρi−1

)
dρi (4)

We represent the density function of ρi as depending on the values of ρi−1 and ∆ρi−1 to take

account of the persistence of mortality rates (See section 6). We stress that this is a function

of the annuity pay-out, πi

3. At time ε the rate of consumption when young must be chosen. However no new information

accrues in the interval [ε 1] and therefore

Vi,ε

(
πi, w

ε
i , ρi−1, ∆ρi−1

)
=

A (1 − e−r)

r
+

Max
cy
i

{
(1 − e−r)

r (1 − α)
(cy

i )
1−α + e−rVi,1

(
πi, w

1
i , ρi−1, ∆ρi−1

)}
(5)

4. At time 0 the consumer must decide how far it is prepared to sell annuities to the current

elderly. πi is unknown because it reflects the demand for annuities. The homotheticity of our

utility functions makes clear that this depends on the amount of wealth that consumers own

when they reach age 1, w1
i . This in turn depends on the profits that they make from selling

annuities when aged 0 and thus on the realisation of ρi−1. φ′i is found by solving

Vi,0 =
Max
φ′i

E{Vi,ε

(
πi, w

ε
i , ρi−1, ∆ρi−1

)
}

We set wε
i = 1 + φ′i

(
1 − πi−1

r+ρe
i−1

r+ρi−1

)
. The homothetic form of

Vi,ε

(
πi, 1, ρi−1, ∆ρi−1

)
− A

1 − e−r

r
+
∫ ∞

0

f
(
ρi, ρi−1, ∆ρi−1

)
r + ρi

dρi


means that, with

Ui

(
ρi−1, ∆ρi−1

)
= A

1 − e−r

r
+
∫ ∞

0

f
(
ρi, ρi−1, ∆ρi−1

)
r + ρi

dρi



11



Vi,0 =
Max
φ′i

E


(

1 + φ′i

[
1 − πi−1

r + ρe
i−1

r + ρi−1

])1−α (
Vi,ε

(
πi, 1, ρi−1, ∆ρi−1

)
− Ui

(
ρi−1, ∆ρi−1

))
+Ui

=
Max
φ′i

∫
∆ρi−1

∫
ρi−1

∫
πi

(
1 + φ′i

[
1 − πi−1

r + ρe
i−1

r + ρi−1

])1−α

(Vi,ε[πi, 1, ρi−1, ∆ρi−1] − Ui)h(πi)g(ρi−1, ∆ρi−1)dπidρi−1d∆ρi−1

+Ui

where g
(
ρi−1, ∆ρi−1

)
is the joint density function of ρi−1 and ∆ρi−1 conditional on the state

of knowledge when cohort i is aged 0 and h (πi) is the density function of πi conditional on

the same information. Since the realisation of ρi−1 determines πi through the market-clearing

process we can write

Vi,0 =
Max
φ′i

∫
ρi−1

(
1 + φ′i

[
1 − πi−1

r + ρe
i−1

r + ρi−1

])1−α

{
Vi,ε

(
πi[ρi−1, ∆ρi−1], 1, ρi−1, ∆ρi−1

)
− U

(
ρi−1, ∆ρi−1

)}
f
(
ρi−1, ∆ρi−1

)
dρi−1d∆ρi−1

+
∫

ρi−1

U
(
ρi−1, ∆ρi−1

)
dρi−1d∆ρi−1

If tontines are not available then the analysis proceeds as set out above, but with the restriction

that φi = 1.

In either case, an obvious difficulty is that we cannot expect to find any functional form for

πi(ρi−1, ∆ρi−1)

6 Mortality Shocks

In common with empirical work on the topic, we assume that the mortality rate is log-normally

distributed with density function f (ρi). Thus

log ρi =
γ1 + νi

δ

where νi is a normally distributed error term. Following the analysis of section 3 we assume that

∆νi = ∆νi−1 + υi where υi˜N(−γ2, 1), Cov(υi, υj) = 0 i 6= j
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Working from ρi−2 which is known with certainty at the time cohort i makes its first economic

decisions, this gives

log ρi−1 = log ρi−2 +
νi−2 + υi−1

δ

log ρi = log ρi−2 +
2νi−2 + 2υi−1 + υi

δ

Setting γ2 = 1/2δ ensures that, if νi=2 = 0, E
(
ρi−1 | ρi−2

)
= ρi−2. Nevertheless, the asymmetry

in the log-normal distribution means that E
(
ρi | ρi−2

)
> ρi−2 even though E

(
ρi | ρi−1

)
= ρi−1.We

carry out our analysis with νi−2 = 0.

We assume that the first time period, is equivalent to forty years and that the expected mortality

rate in the second period is 5% p.a. giving a mortality rate of 2 per forty-year period. Thus

E
{
e

γ1+νi
δ

}
= 2 (6)

and the life expectancy on reaching retirement is E
{
e−

γ1+νi
δ

}
which is slightly above 1/2. Equation

(6) provides one restriction needed to establish γ1 and δ. We also assume that

V ar
{
e

γ1+νi−1
δ

}
= 0.04

in order to determine γ1 and δ uniquely with γ1 = 6.8989 and δ = 10.0249. In other words the

standard deviation of the mortality rate is 1/10 of its expected level. This then yields a value of ?

for γ2.The standard deviation of life expectancy at age sixty-five is on the high side compared to

the analysis of section 3, but some degree of mark-up is reasonable since the analysis there does not

take account of factors such as model uncertainty. The assumption of log-normality implies that we

can use the Gaussian quadrature to compute expectations when we calculate the optimal choices.

These parameter values give us a life expectancy of 0.5050 or 20.2 years in retirement.

7 The Market Solution

We set out here demand and supply curves for annuities. We look first at the situation where

tontines are available.

7.1 The Demand for Annuities

The demand curve for annuities is given as the value of φi which optimises equation (4) . The

homotheticity of the utility function implies that this is independent of wo
i . Given our specification

of ρi the integral can be evaluated using Gaussian quadrature; we use five abscissae with the
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assumption that νi−1 = 0. The optimum is then found using fminsearch in MATLAB. However, we

note a tendency to over-annuitisation. With πi = 1 we show in appendix A working to a second-

order approximation, that φi = α+1
α

. Since this is independent of the magnitude of V ar(ρi) provided

the latter is positive it is due to some fact other than the consequences of the differences between

arithmetic and harmonic means noted above.
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Figure 3: Demand for Annuities: Relative Risk Aversion = 4

The proportionate uncertainty in consumption arising from uncertainty in ρi is decreasing as a

function of r. If the interest rate is low then the overall return on a tontine, or on funds annuitised

at age 1+ε is dominated by ρi; it follows that shocks to ρi will have a large proportionate impact

and people will be keen to buy annuities even if the pay-out is poor. If r is large, then both ρi and

shocks to ρi are likely to be less important. As a consequence, at any given value of πi < 1 the

proportion of w1
i which old people wish to annuitise will be a declining function of r. We illustrate

demand curves for five values of r between 1
2
% p.a. and 21

2
% p.a. in figure 1. The calculations are

carried out on the assumption that an age of 1 represents forty years, so that r is forty times its

annual rate. We use a value of α = 4. This is towards the upper range of plausible estimates for

this value; we choose a value which implies a high degree of risk aversion because the aim of this
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paper is, within the framework of a structural model, to look at the effects of risk aversion on the

supply of and demand for annuities.

The curves confirm that the steepness of the demand curve is a function of the interest rate, for

the reasons we discussed above. At low annuity rates it is not surprising that old people would like

to be net sellers rather than net buyers of annuities. But the chart suggests that, for an annuity

market to exist when investors can choose between annuities and tontines, the value of πi cannot

be very far below 1. If sellers of annuities need to make a substantial charge for risk, then there

should not be an annuity market, and its existence can be explained only as a result of the legal

requirement for pension funds to be used to purchase annuities rather than tontines.

If tontines are not available, all wealth is annuitised and the demand curve is therefore vertical.

7.2 The Supply of Annuities

While the demand curve for annuities can be drawn unambiguously, the supply curve depends

on the uncertainty that is associated with future pay-out rates. The homotheticity of the utility

function implies that wealth w1
i when reaching age 1 is an increasing function of the profit realised

on the sale of annuities when young. Since the proportion of wealth annuitised at any pay-out ratio

is independent of the amount of wealth, a high level of wealth will raise total demand for annuities

and thus depress the pay-out ratio. Thus the response of the pay-out ratio dampens, at least to

some extent, the effect of uncertain returns from the sale of annuities, compared to a situation

where the pay-out ratio is unresponsive. To clarify the discussion here, we assume that the annuity

pay-out consumers expect when old will be the same as that used to derive the relationship between

current pay-out and supply; in other words g(πi) = δ(πi − πi−1) where δ(x) is the delta function

with δ(x) = 0 if x 6= 0 and
∫∞
−∞ δ(x) = 1 . A family of these supply curves is shown as a function

of the interest rate. It should, however, be borne in mind that, when the effects of the uncertainty

in the subsequent pay-out ratio are taken into account, the proportion of initial wealth engaged in

the sale of annuities will be higher than is shown in figure 4.

The supply curve for annuities is also, of course, sensitive to the persistence of mortality shocks

across cohorts. In order to demonstrate the effects of this we present two families of supply curves.

The first is constructed with the assumption that mortality shocks are serially independent while in

the second we assume that the mortality shocks follow the second-order process described in section

6.

We find again that the steepness of the curve is increasing in the interest rate. This once again

reflects the fact that, with high interest rates mortality risk is quantitatively less important than
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Figure 4: Supply of Annuities : Relative Risk Aversion = 4, No persistence of mortality shocks

with low interest rates. In consequence the proportion of wealth people are prepared to annuitise

rises more steeply as the pay-out on the annuity falls. With a pay-out of 1 young people want to

be buyers rather than sellers of annuities (selling a negative proportion of initial wealth). This is

a consequence of the fact that, with uncertainty, the fair pay-out ratio is below 1. Once again the

higher is the interest rate, the less important is mortality uncertainty and thus the fair pay-out

ratio is closer to 1.

When we look at the effects of persistence of mortality shocks we see the rather different picture

shown in figure 5. When young investors lose money because their parents live for longer than

expected, the persistence of mortality rates mean that, in addition they have a longer expected

period of retirement to support. Thus the financial effect of losses arising on the sale of annuities

is magnified compared with the situation where mortality rates are independent. Thus it is not

very surprising that the supply curves are both shallower and shifted to the left as compared to the

position where mortality rates are independent. The effect is at its most marked when the interest

rate is very low for the reason identified earlier. When interest rates are very low the capitalised

effects of shocks to mortality are greater than when they are higher.
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When the mortality rate of each cohort is independent of those of the other cohorts the supply

curve of annuities is not affected by whether retired people have to annuitise all of their wealth or

whether they can by tontines. This property, confirmed by simulation, follows from the homothetic

nature of the utility function. But when mortality rates are serially correlated the separation

property which leads to this result no longer holds. We show in figure 6 the supply curves when

tontines are not available. As compared to figure 5 these curves have moved to the left but are

steeper, so that at high pay-out ratios the supply of annuities is reduced while at low pay-out ratios

it is increased.
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8 Market Equilibrium

8.1 Solution Method

As with any structural model of demand and supply, we can identify the market-clearing price- in

this case we focus on its reciprocal, the pay-out ratio. We simulate a market-clearing process with

the price adjusting so that the share of old people’s wealth which young people are prepared to

annuitise is equal to the proportion that old people would like annuitised. The reciprocal of the

pay-out ratio can be thought of as the risk premium associated with demographic uncertainty.

The equilibrium condition is

φ′i (πi−1, πi (νi−1) , g[πi(πi−1, ∆πi−1)]) = φi−1 (πi−1) w1
i−1(νi−2)

with the supply of annuities shown to be a function of the current mark-down, πi−1, the pay-out in

the next period which is a function of νi−1, the shock to the mortality rate of the current elderly, and

the density function of the pay-out in the next period, g[πi(πi−1, ∆πi−1)] which may itself depend on

the current pay-out. The wealth of the current elderly is shown as a function of the mortality shock

which affected the cohort immediately preceding them, νi−2. If g[πi(πi−1, ∆πi−1)] and πi (νi−1)

were known, one would use a simple tatonnement to find, πi−1. Using the superscript j to denote

the jth iteration

πj+1
i−1 = πj

i−1 + λ
{
φ′i
(
πj

i−1, πi (νi−1) , g[πi(πi−1, ∆πi−1)]
)
− φi−1

(
πj

i−1

)
wo

i−1(νi−2)
}

ensures that when supply exceeds demand the pay-out is raised, making annuities more attractive

to buyers and less attractive to sellers. Experimentation is needed to find a value of λ which ensures

rapid convergence.

The wealth that old people bring to the market is a function of the profits that they make on

trading in annuities when they are young as described by equation (1). We therefore develop a

first estimate of the density function of πi, g0 (πi, ∆πi−1) , by finding the values of πi−1

(
ρi−1, ∆ρi−1

)
generated for different realisations of νi−1, the disturbances to logρi−1 on the assumption that πi

takes the value πi−1 and that this is known with certainty. In other words

g1
(
πi

(
ρi−1, ∆ρi−1

))
= δ

(
πi − π1

i−1

(
ρi−1, ∆ρi−1

))
where δ (x) is once again Dirac’s delta-function.

We now use g1
(
πi

(
ρi−1, ∆ρi−1

))
to iterate on each of the values of νi−1 required for the Gaussian

quadrature calculations as

π2,j
i−1

(
ρi−1, ∆ρi−1

)
= λ

{
φ′i
(
π2,j

i−1, g
1[π1

i

(
ρi−1, ∆ρi−1

)
]
)
− φi−1

(
π1

i−1

)
wo

i−1

(
ρi−1, ∆ρi−1

)}
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and use the resulting converged values, π2,n
i−1

(
ρi−1

)
to define the grid representing π2

i

(
ρi−1

)
. We

iterate, evaluating

πk,j
i−1

(
ρi−1, ∆ρi−1

)
= λ

{
φ′i
(
πk,j

i−1, g
k−1[πk−1

i

(
ρi−1, ∆ρi−1

)
]
)
− φi−1

(
πk−1

i−1

)
wo

i−1

(
ρi−1, ∆ρi−1

)}
until the converged values, πk,n

i−1

(
ρi−1

)
are close enough to πk−1,n

i−1

(
ρi−1

)
for all values of νi−1 . At

this point we have identified, for each value of νi−1 a value of πi−1 which clears the annuity market,

on the assumption that the density function g (πi) is consistent with the pattern of disturbances to

ρi−1.

8.2 Results

The structure we have set out allows us to compare the market equilibria and their implications

in four different cases. We look at the situation when tontines can be bought and also when they

are not available, and we also compare the implications of a stationary and serially independent

mortality rate with one where the mortality rate is stable in second differences. We present in table

3 for the situation where cohort i is selling annuities to cohort i − 1, showing the market-clearing

mark-down on the pay-out in the absence of uncertainty, πi−1, the propensities to invest in tontines

when young and when old (φ′i and φi−1), the expected propensity to consume out of wealth when

young, cy
i , evaluated at time 0 for cohort i, the expected life-time utility of the cohort (omitting the

contribution made by the term A) and relative to the case where tontines are available and where

the mortality rate is stationary and serially uncorrelated for which it is defined as 1, the level of

initial wealth which is needed to deliver the same level of utility as in that case. Thus this last

variable, denoted Yi allows us to identify the cost of one situation relative to another. However these

results do not fully take account of the effects of the uncertainty that young sellers of annuities face

about the future mark-down on annuity rates when they become buyers on reaching retirement and

for this reason they are subject to revision.

This table draws attention to a number of interesting points. First of all, in none of the solutions

is the mark-down more than 3% on the annuity which would be paid in the absence of mortality

risk. Thus, if the market is efficient, we should not expect to see mortality risk having a large effect

on annuity rates. When mortality rates are stationary and not serially correlated, the absence of

tontines has the effect of depressing the pay-out by 0.3% with small implications for consumption

and welfare. When mortality follows the second-order process the impact on the market-clearing

rate is larger, reflecting the movement in the supply curves shown above.
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Head Tontines Available Tontines not Available
Mortality Stationary
πi−1 0.9897 0.9868
φ′i 0.2763 0.3837
φi−1 0.7233 1
cy
i 0.9035 0.9028

Mortality Second Order
πi−1 0.9796 0.9724
φ′i 0.1324 0.3890
φi−1 0.3455 1
cy
i 0.9025 0.9003

Table 3: Market Equilibrium

9 Conclusions

A general equilibrium framework allows us to explore the demand for annuities, on the assumption

that people can choose between these and tontines as a means of providing for old age. With

plausible assumptions about mortality risk, the rate of return and the degree of risk aversion, the

pay-out ratio of an annuity which compensates annuity sellers for the risks that they are carrying

is over 97% of the pay-out of a fair annuity, giving a risk premium of less than 3%. even in the

most adverse of the circumstances we have investigated. The analysis shows clearly that there is a

demand for tontines because retired people would not rationally wish to be fully protected from the

risks associated with aggregate mortality uncertainty. Thus a policy goal should be to stimulate

the development of tontines as products available to old people as a means of financing retirement.
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A Over-annuitisation

It is simple to demonstrate that, in the absence of a risk premium old people tend to over-annuitise.

We set r + ρi = Ri and r + ρe
i = Re

i . Then

co
i = {(1 − φi) R + πiφiR

∗}wi

∂co
i

∂ρi

= (1 − φi) wi

∂co
i

∂φi

= πiR
∗ −R

and

E (uo
i ) = u (co

i ) +
σ2

2

{
2u (co

i )

R3
− 2u′ (co

i )

R2
(1 − φi) wi +

u′′ (co
i )

R
(1 − φi)

2 w2
i

}
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Maximising this with respect to φi

∂E (uo
i )

∂φi

=

(
u (co

i ) +
σ2

2

{
2u (co

i )

R3
− 2u′ (co

i )

R2
(1 − φi) wi +

u′′ (co
i )

R
(1 − φi)

2 w2
i

})
(πiR

∗ −R)

+
σ2u′ (co

i )

R2
wi −

σ2u′′ (co
i )

R
w2

i (1 − φi)

If πi = 1 and R∗ = R then the first order condition is

σ2u′ (co
i ) = σ2u′′ (co

i ) Rwi (1 − φi) (7)

With the utility function given by (??) this suggests the solution

φi =
α + 1

α
> 1 with α > 0

which is independent of the mortality risk. The result appears to suggest that overannutization

takes place even in the absence of aggregate mortality risk. However if σ2 = 0, then it is of course

not permissible to divide both sides of (7) by σ2. It does, however indicate that with values of πi

close to but below 1 there is likely to be over-annuitisation.
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