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1 Introduction 

The principle of “one person, one vote” is generally taken to be a cornerstone of democracy. It 

is not clear, however, how this principle ought to be operationalized in practice either in terms 

of apportioning an integer number of seats for given non -integer ‘ideal shares’ (see Balinski 

and Young 2001) or in determining what are the ideal shares. This paper addresses the latter 

problem for two-tier voting systems that involve multiple constituencies of different population 

size. We concentrate on situations in which representatives of constituencies in the higher-level 

assembly vote as a block (as in the US Electoral College) or in which a single agent represents 

each constituency but is endowed with a number of votes that somehow reflect population size 

(as in the EU Council of Ministers). Both boil down to weighted voting. 

Although it seems straightforward to allocate weights proportional to population sizes, this 

ignores the combinatorial properties of weighted voting, which often imply stark discrepancies 

between voting weight and actual voting power: In an assembly with simple majority rule and 

three representatives having weight 47, 43, and 10, all three possess exactly the same number 

of possibilities to form a winning coalition and hence the same a priori power. Moreover, direct 

proportionality disregards the possibly nonlinear relationship between population size and an 

individual’s effect on the respective constituency’s top -tier policy position. 

The most well-known solution to this problem is the one first suggested by Penrose (1946). 

Starting from the ideal world in which only constituency membership1 distinguishes voters, 

Penrose found that if members of any constituency are to have the same a priori chance to ind i-

rectly determine the outcome of top -tier decisions, then constituencies’ voting weights need to 

be such that their power at the top-tier as measured by the Penrose-Banzhaf index (Penrose 

1946; Banzhaf 1965) is proportional to the square root of the respective constituency’s popula-

tion size (also see Felsenthal and Machover 1998, sect. 3.4). This square root rule has recently 

become the benchmark for numerous studies of the EU Council of Ministers (see, e. g. Felsen-

thal and Machover 2001, 2004, Leech 2002) and it is at least a reference point for investig a-

tions concerning the US (see e.  g. Gelman, Katz and Bafumi 2004). 

Applying the square root rule has, unfortunately, two weaknesses: First, Penrose’s theorem 

critically depends on equiprobable ‘yes’ and ‘no’-decisions by all voters (or at least a ‘yes’-

                                                 
1We take the constituency configuration to be given exogenously. See, e. g., Epstein and O’Halloran (1999) on 

constructing majority-minority voting districts along ethnic, religious, or social lines.  
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probability which is random and distributed independently across voters with mean exactly 

0.5). If the ‘yes’-probability is slightly lower or higher, or if it exhibits even minor dependence 

across voters –  say, they are influenced by the same newspapers – then the square root rule may 

result in highly unequal representation (see Good and Mayer 1975 and Chamberlain and Roth s-

child 1981). Related empirical studies in fact have failed to confirm the predictions for average 

closeness of two -party elections which lie behind the square root rule (see Gelman, Katz, and 

Tuerlinckx 2002 and Gelman, Katz, and Bafumi 2004). 

Second, rigorous justifications for using the square root rule as the benchmark have so far 

concerned only preference-free binary voting.2  But real decisions are rarely binary, e. g., about 

either introducing a tax, building a road, accepting a candidate, introducing affirmative action, 

etc. or not. At least at intermediate levels there is a preference-driven compromise that involves 

many alternative tax levels, road attributes, suitable candidates, degrees of affirmative action, 

etc. 

The first criticism has been addressed in the literature, at least in abstract normative terms. 

Namely, one can argue that constitutional design should to be carried out behind a thick veil of 

ignorance in which no particular type of dependence or modification of equiprobability (which 

follows from the principle of insufficient reason) is justified. Regarding the second issue, this 

paper is to our knowledge the first to investigate equal representation for non-binary decisions 

that possibly involve strategic behavior. 

We consider policy alternatives from a one-dimensional convex space.3 Our formal model 

(see Section 2) imposes two key assumptions: first, the policy advocated by the top-tier repre-

sentative of any given constituency coincides with the ideal point of the respective constitu-

ency’s median voter (or the constituency’s core). Second, the decision taken at the top tier is 

the position of the pivotal representative (or the assembly’s core), with pivotality determined 

by the weights assigned to constituencies and a 50% decision quota. The respective core is 

meant to capture the result of strategic interaction. As long as this is a reasonable approxima-

tion, the actual systems determining collective choices are undetermined and could even differ 

                                                 
2For rigorous, very comprehensive treatments of the binary or simple-game world see Felsenthal and Machover 

(1998) or Taylor and Zwicker (1999). – The former (pp. 72ff) also justify the square root rule regarding voting 
weights by its minimal expected majority deficit. Feix, Lepelley, Merlin, Rouet, and Vidu (2005) report related 
results for the probability of the referendum paradox.   

3One could alternatively consider aggregate decisions that divide a ‘pie’, e. g., the distribution of public 
expenditures. This has been pursued empirically, for example, by Ansolabehere, Gerber, and Snyder (2002) and 
Horiuchi and Saito (2003). 
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across constituencies. 

In the benchmark case of voters with independent most-preferred policies, a given individ-

ual’s chance to be pivotal at the bottom tier is inversely proportional to the respective constitu-

ency’s population size. This makes it necessary and sufficient for equal representation of voters 

that the probability of any given constituency being pivotal at the top tier is proportional to its 

size.4  

The population size of a constituency affects the distribution of its median. A given voter’s 

chance to be doubly pivotal thus becomes a rather complex function of (the order statistics of) 

differently distributed  independent random variables. This makes a neat analytical statement 

similar to Penrose’s rule exceptionally hard and likely impossible, except for special limit situ a-

tions. We therefore resort to Monte -Carlo simulation (see Section  3). Considering a vast num-

ber of randomly generated population configurations as well as recent data for the EU and the 

US, top-tier weights proportional to the square root of population turn out optimal for most 

practically relevant population configurations. Even for extreme artificial cases, the rule yields 

good results and becomes optimal if the number of constituencies gets large. 

Our surprising main finding is thus that the square root rule is a much more robust norm for 

egalitarian design of two-tier voting systems than previous analysis suggests. In particular, it 

continues to apply in the presence of many finely graded policy alternatives and strategic inter-

actions consistent with the median voter theorem. To the extent that this still produces ind e-

pendent median vo ters, the rule is even robust to the introduction of preference dependence 

within or across constituencies. 

2 Model 

Consider a large population of voters partitioned into m constituencies C1, . . . , Cm with n j = | Cj | 

> 0 members each. Voters’ preferences are single-peaked with ideal point λ
j

i (for i = 1, . . . , nj 

and j = 1, . . . , m) in a convex one-dimensional policy space normalized to X ≡ [0, 1]. Assume 

for simplicity that all nj are odd numbers. 

For any random policy issue, let ⋅ : n j denote the permutation of voter numbers in constituency 

Cj  such that  
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1: : . . . 
j j j

j j
n n nλ λ≤ ≤  

holds. In other words, k : n j denotes the k-th leftmost voter in C j and λ
j

k:n j
 denotes the k-th left-

most ideal point (i. e., λ
j

k:nj is the k-th order statistic  of λ
j

1 , . . . , λ
j

nj ). 

A policy x X∈  is decided on by an electoral college E consisting of one representative 

from each constituency. Without going into details, we assume that the representative of Cj, 

denoted by j, adopts the ideal point of his constituency’s  median voter,5  denoted by  

 ( 1)/2:j j

jj
n nλ λ +=

. 

Let ?k:m denote the k-th leftmost ideal point amongst all the representatives (i. e., the k-th order 

statistic of  ?1, . . . , ?m). 

In the top -tier assembly or electoral college E, each constituency Cj has voting weight wj 

≥  0. Any subset S ⊆ {1, . . . , m} of representatives which achieves a combined weight ∑j∈S wj 

above q ≡ ½ 
1

m

jj
w

=∑ , i. e. a simple majority  of total weight, can implement a policy x X∈ . 

Consider the random variable P defined by  

 { } :
1

min 1,..., :
r

k m
k

P r m qw
=

 ≡ ∈ > 
 

∑ . 

Player P:m’s ideal point, λ
P:m

, is the unique policy that beats any alternative x X∈  in a pair-

wise majority vote, i.  e. constitutes the core of the voting game defined by weights and quota.6  

Without detailed equilibrium analysis of any decision procedure that may be applied in E (see 

Banks and Duggan 2000 for sophisticated non-cooperative support of policy outcomes inside or 

close to the core), we assume that the policy agreed by E  is in the core, i.  e. it equals the ideal 

point of the pivotal representative P:m. 

                                                                                                                                                           
4If voters’ utility is linear in distance, the criterion also guarantees equal expected utility, i. e., a priori power  and 

expected success  are then perfectly aligned. See Laruelle, Martinez, and Valenciano (2006) for a conceptual 
discussion of the latter. 

5We are aware that this may not in all applied contexts be appropriate. – The possibility that two ideal points 
exactly coincide, in which case the median voter (in contrast to the median policy) is not well-defined, is ignored. 
This is innocuous for any continuous ideal point distribution. 

6Things are more complicated if ∑ =
>

m

j jwq
1 , is assumed. Then, the complement of a losing coalition need no 

longer be winning. In this case there may not exist any policy x ∈ X  which beats all alternatives x' ≠ x despite 
unidimensionality of  X and single-peakedness of preferences. 
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In this setting we consider the following egalitarian norm: Each voter in any constituency 

should have an equal chance to determine the policy implemented by the electoral college. Or, 

more formally, there should exist a constant c > 0 such that  

 ∀ j ∈ {1, . . . , m}: ∀ i ∈ Cj : Pr(j = P:m ,  i = (n j+1)/2 : nj) ≡ c. (1) 

We would like to answer the following question: which allocation of weights w1,...,wm  satisfies 

this norm (at least approximately) for an arbitrary given partition of an electorate into m con-

stituencies?  In other words we search for an analogue of Penrose’s (1946) rule, which calls for 

proportionality of a constituency’s Penrose-Banzhaf index7  and square root of population. 

The probability of a voter’s double pivotality in (1) depends on the distribution of all vot-

ers’ ideal points. Though in practice ideal points in different constituencies may come from 

different distributions on X and may exhibit various dependencies, it is appealing from a no r-

mative constitutional-design point of view to presume that the ideal points of all voters in all 

constituencies are independently and identically distributed  (i. i. d.). 

Given that voters’ ideal points in constituency Cj are i. i. d., each voter i ∈ Cj has the same 

probability to be its median. Hence,  

 ∀ j ∈ {1, . . . , m}: ∀ i ∈ C j : Pr(i = (n j+1)/2 : n j) = 1/n j . 

Using that the events {i = (nj+1)/2 : nj} and {j = P:m} are independent, one can thus write (1) 

as  

 { } ( )Pr :
1,..., : .

j

j P m
j m c

n

=
∀ ∈ ≡                         (2) 

So if constituency Cj is twice as large as constituency Ck, representative j must have twice the 

chances to be pivotal than representative k in order to equalize individual voters’ chances to be 

pivotal. 

For illustration suppose that representatives’ ideal points λ
1
, . . . , λ

m
 are i. i.  d. Then,  

Pr(j = P:m) is simply the Shapley -Shubik index (SSI) value, φ j(w,q), of representative j in vo t-

ing body E defined by weight vector w = (w
1
, . . . , w

m
) and quota q (see Shapley and Shubik 

1954). Therefore, making the i. i. d. assumption at the level of representatives would imply a lin-

                                                 
7This index equals a constituency’s probability of being pivotal under equiprobable random ‘yes’-or-‘no’ votes 

at the top tier. Conditions for when this is approximately the voting weight are given by Lindner and Machover 
(2004). In general, implementing Penrose’s square root rule requires numerical solution of the inverse problem  of 
finding weights which induce a desired power distribution (see Leech 2003). 
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ear rule based on the SSI as the replacement for Penrose’s square root rule. In other words, w 

would have to be chosen such that φ j(w, q) is directly proportional to population size nj for all 

constituencies j = 1, . . . , m  – a relatively simple task. 

However, it is in our view more convincing in egalitarian analysis to assume i. i. d. ideal 

points at the level of individual voters. Then, representatives’ ideal points λ
1
, . . . , λ

m
 are inde-

pendently but (except in the trivial case n1 = . . . = nm) not identically distributed. If all voter 

ideal points come from the (arbitrary) identical distribution F with density f, then Cj’s median 

position is asymptotically normally distributed (see e. g. Arnold, Balakrishnan, and Nagaraja 

1992) with mean  

 ( )1 0.5j Fµ −=  

and standard deviation  

 
( )( )1

1
2 0.5

j

jf nF
σ −

=  . 

So, the larger a constituency Cj is, the more concentrated is the distribution of its median voter’s 

ideal point, λ
j
, on the median of the underlying ideal point distribution (assumed to be identical 

for all λ
j

i). This makes the representative of a larger constituency on average more central in the 

electoral college and more likely to be pivotal in it for a given weight allocation. 

It is important to observe that the assumption of the respective collective preferences having 

an identical a priori distribution is inconsistent with the assumption that all individual prefer-

ences are a priori identically distributed. The intuitively appealing linear rule of giving twice 

the weight (or SSI voting power) to a constituency double the size violates the one-person, one-

vote principle if one makes the latter assumption. We find it considerably more fitting and will 

assume i.  i. d. ideal points for all bottom-tier voters throughout this paper. Weights and SSI of 

constituencies hence need to be increasing in population size but less than linearly. 

Probability Pr(j = P:m) in (2) depends both on the different distributions of representatives’ 

ideal points (essentially the standard deviations σj determined by constituency sizes n j) and the 

voting weight assignment. This makes computation of the probability of a given constituency Cj 

being pivotal a complex numerical task even for the most simple case of uniform weights, in 

which the representative of C j with median top-tier ideal point is always pivotal, i. e.  
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P ≡ (m+1)/2 for odd  m. Define Ν  
j { }1,..., 1, 1,...,j j m≡ − + as the index set of all constituencies 

except Cj. Then, the probability of constituency C j being pivotal is   

 

( )( )

( ) ( )( ) ( )
    \ N N

( 1) /2

1Pr 1 / 2 : Pr exactly  of the , ,  satisfy 
2

1
j j

k k j

k k j
S k S k S

S m

mj m m k j

x x x dxfF F

λ λ λ

⊂ ∈ ∈
= −

− = + = ≠ < 
 

= ⋅ − ⋅∑ ∏ ∏∫
       (3) 

where fj and Fj denote the density and cumulative density functions of λ
j
 (j = 1, . . . , m). It 

seems feasible (but is beyond the scope of this paper) to provide an asymptotic approximation 

for this probability as a function of constituency sizes n1, . . . , nm for special cases, e. g. for  

n2 = . . . = nm (hence F2 = . . . = Fm). However, we doubt the existence of a reasonable ap-

proximation for arbitrary configurations (n1, . . . , nm). Proceeding to the case of weighted vo t-

ing  

(P ≡ (m+1)/2), even success in more generally approximating  

( ) ( ) ( )( ) ( )
    \ N N

1

Pr :  1 
j j

k jk
S k S k S

S p

j p m x x x dxfFF
⊂ ∈ ∈

= −

= = ⋅ − ⋅∑ ∏ ∏∫  

for any given realization p  of random variable P would be of little help because events {P = p} 

and {j = p :m} are no longer independent.8  So, typically,  

 ( ) ( ) ( )
1

Pr : Pr Pr :
m

p

j P m P p j p m
=

= ≠ = ⋅ =∑  

A purely analytical investigation of the model is therefore unlikely to produce much insight. 

The following section for this reason uses Monte-Carlo simulation in order to approximate the 

probability of any constituency Cj being pivotal for given partition of an electorate or configu-

ration {C1, . . . , Cm} and a fixed weight vector (w1, . . . , wm). Based on this, we try to find 

weights (w1
*, . . . , wm

*) which approximately satisfy the two equivalent equal representation 

conditions (1) and (2). 

   

                                                 
8To see this, consider the artificial case of representative j having weight w j > 0.5 even though all constituencies 
are of equal size, so that ideal points λk (k = 1, . . . , m) are i. i. d. . Since j is a dictator, Pr( j = P:m) = 1. But Pr(P = p) 
= 1/m  and Pr( j = p:m) = 1/m for all p. 
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3 Simulation results  

The problem of finding probability πj ≡ Pr(j = P:m) is similar to that of evaluating the odds of 

rolling a “6” with a funny -shaped dice: while one may conceivably solve a complex dynamic 

model with several partial differential equations, it is equally reliable to simply roll the dice 

many times and keep track of “6”s. In particular, π j can be viewed as the expected value of the 

random variable Hj ≡ gj
w(λ

1
, . . . , λ

m
) which equals 1 if j = P:m holds for given weight vector 

w and realized median ideal points λ
1
, . . . , λ

m
, and 0 otherwise. The Monte-Carlo method (Me-

tropolis and Ulam 1949) then exploits that the empirical average of s independent draws of Hj,  

 
1

1 s
s l

jj
l

hh s =

= ∑ , 

converges to Hj’s theoretical expectation  

 ( )E j jH π=  

by the law of large numbers. The speed of convergence in s can be assessed by the sample vari-

ance of h1, . . . , hs . Using the central limit theorem, it is then possible to obtain estimates of πj 

with a desired precision (e. g. a 95%-confidence interval) if one generates and analyzes a suffi-

ciently large number of realizations. 

To obtain a realization hj
l of H j, we first draw m random numbers λ1, . . . , λm from distrib u-

tions F1, . . . , Fm.9 Throughout our analysis, we take Fj to be a beta distribution  with parameters 

((nj +1)/2, (nj +1)/2). This corresponds to the median of n j independently [0,1]-uniformly dis-

tributed voter ideal points, i. e. all individual voter positions are assumed to be distributed un i-

formly.10 Second, the realized constituency positions are sorted and the pivotal position p is 

determined. Constituency Cp:m is thus identified as the pivotal player of E. It fo llows that hj
l = 1 

for j = p:m, and 0 for all other constituencies. 

The goal is to identify a simple rule for assigning voting weights to constituencies which  – 

if it exists –  approximately satisfies equal representation conditions (1) or (2) for various num-

                                                 
9We use a Java  computer program. The source code is available upon request. Directly drawing the constituency 

medians λ
j
 provides a huge computational advantage. Unfortunately, it prevents statements about the population 

median and, e. g., its average distance to the policy outcome. 
10The mentioned asymptotic results for order statistics imply that only F’s median position and density at the 

median matter when constituency sizes are large. So below findings are not specific to the assumption of uniform 
distributions at the bottom tier.  
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bers of constituencies m  and population configurations {C1, . . . , Cm}. A natural focus is the 

investigation of power laws  

 wj  =  nj 
α (4) 

with α ∈ [0,1]. For big m this approximately includes Penrose’s square root rule as the special 

case α = 0.5. 

For any given m and population configuration {C1, . . . , Cm} under consideration, we fix α 

and then approximate π j by its empirical average p̂ j  in a run of 10 million iterations. This is 

repeated for different values of α, ranging from 0 to 1 with a step size of 0.1 or 0.01, in order to 

find the coefficient α which comes ‘closest’ to implying equal representation for the given con-

figuration. 

We have considered two different criteria in parallel for evaluating distance between the 

(estimated) probability vector p̂ ≡ ( 1p̂ , . . . , 
m

p̂ ) realized by weights w and the ideal egalitar-

ian vector π * ≡ (
1

m
kk n=∑ )-1⋅(n1, . . . , nm). A first straightforward criterion is p̂ j ’s cumulative 

quadratic deviation from π j
*,  

 ( )2*
1 ˆ

m
j jj π π=
−∑  (5) 

which is equivalent to considering Euclidean distance between p̂  and π* in mm
R . This a priori 

treats deviations from π j
* equally for all j, i.  e. looks at deviations for constituencies as such 

rather than for individuals. 

It seems, however, desirable in an egalitarian context to focus on the latter. So our second 

criterion considers cumulative quadratic deviations between the realized and the ideal chances 

of an individual. Any voter in any constituency Cj would ideally determine the outcome with 

the same probability 1/
1

m

kk
n

=∑ , but vector p̂ , actually gives him or her the probability p̂ j /nj of 

doing so. Treating all nj voters in any constituency Cj equally then amounts to looking at  

 

2

1
1

1 ˆm
j

j m
j jkk

n
nn

π
=

=

 
 ⋅ −
 
 

∑
∑

 (6) 
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Minimization of (6) seems to us more relevant than that of (5). In any case optimal values of α 

are virtually unaffected by a switch between the two criteria. They are also almost unaffected 

by a switch from respective quadratic deviations to absolute deviations. So, with little loss of 

information, we will only present results for measure (6), referring to it as cumulative individ-

ual quadratic deviation  below. Section  3.1 first investigates computer-generated random env i-

ronments with constituency numbers between 10 and 100; we investigate several population 

configurations for each m to check the robustness of an optimal α. Sections 3.2 and 3.3 then 

briefly look at the EU Council of Ministers and the US Electoral College. 

3.1 Randomly generated configurations 

Table 1 reports the optimal values of α  that were obtained for four sets of configurations 

{C1,...,Cm}.11  For m ∈{10, 15, 20, 25, 30, 40, 50}, constituency sizes n1, . . . , nm  were ind e-

pendently drawn from a uniform distribution over [0.5⋅106, 99.5⋅106] . Numbers in column (I) 

are the the optimal {0, 0.1, . . . , 0.9, 1} ⊂ [0,1], where probabilities p̂ j were estimated by a 

simulation with 10  mio. iterations. Cumulative individual quadratic deviations for optimal α ’s 

are shown in brackets. Column (II) reports the respective values obtained for an independent 

second set of constituency configurations; columns (III) and (IV) do likewise but based on the 

finer grid α ∈{0, 0.01, 0.02, . . . , 0.99, 1}.12  

While results for m = 10 are still inconclusive, α ≈?0.5 emerges as the very robust ideal co-

efficient for larger number of constituencies. The reported cumulative individual quadratic 

deviations are so small that even if the power laws assumed in (4) do not contain the 

theoretically best rule for equal representation in our median-voter context (because possibly 

constituencies’ sizes are not the right reference point, but rather something like their Penrose-

Banzhaf or Shapley-Shubik index), they allow a sufficiently good approximation for most 

practical purposes. 

Results in Table 1 are strongly suggesting that (an approximation of) Penrose’s square root 

rule holds also in the context of median -voter based policy decisions in [0, 1]. But optimality of 

α ≈ 0.5 could be an artifact of considering uniformly distributed constituency sizes n1, . . . , nm, 

                                                 
11The configuration draws are independent across different values of m. Thus, the table actually reports optimal 

values obtained for 28 independent  configurations. 
12Hence columns (III) and (IV) each report on 101⋅7 simulation runs (with 10 mio. iterations each).  
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which perhaps unrealistically makes small constituencies as likely as large ones. We therefore 

conduct similar investigations using other distributional assumptions. 

# const (I) (II)  (III) (IV) 

10  0.5 0.6   0.39 0.00 

 (1.22×10 -11) (1.04×10-11)  (2.20×10-12) (2.39×10 -11) 

15  0.5 0.5   0.49 0.48 

 (1.43×10 -11) (1.45×10-13)  (2.79×10-14) (8.84×10 -14) 

20  0.5 0.5   0.49 0.49 

 (4.80×10 -14) (8.59×10-14)  (5.66×10-15) (6.91×10 -15) 

25  0.5 0.5   0.49 0.49 

 (9.25×10 -15) (1.28×10-14)  (5.37×10-15) (7.69×10 -15) 

30  0.5 0.5   0.49 0.49 

 (1.11×10 -15) (5.12×10-15)  (7.36×10-15) (2.38×10 -15) 

40  0.5 0.5   0.49 0.49 

 (3.38×10 -15) (5.11×10-15)  (3.69×10-15) (7.02×10 -15) 

50  0.5 0.5   0.50 0.50 

 (3.06×10 -15) (4.70×10-15)  (3.10×10-15) (3.30×10 -15) 

Table 1:  Optimal value of α for uniformly distributed constituency sizes (cumulative individ-
ual squared deviations from ideal probabilities in parentheses) 

Constituency sizes seem usually a matter of history, geography, or deliberate design. In the 

latter case, one might expect them to be clustered around some ‘ideal’ intermediate level. This 

makes a (truncated) normal distribution around some value n  a focal assumption for constitu-

ency configurations. Table 2 indicates that, in this case, α = 0.5 is no longer the general clear 

winner from the considered set of parameters {0, 0.1, . . . , 0.9, 1}. This is neither very surpris-

ing nor –  from a square-root-rule point of view – very disturbing: Moderately many and more 

or less equally sized constituencies give rather little scope for discrimination between constitu-

encies. Assigning slightly larger constituencies substantially more weight risks overshooting 

the mark, but assigning them only slightly more weight may not translate into an increased 

number of pivot positions at all. So, first, the optimal α can be expected to be rather sensitive to 

the precise constituency configuration at hand, especially when a small number of constituen-
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cies creates relatively few distinct opportunities to achieve a majority. And, second, in the wide 

range where extra weight to an above-the-average constituency translates into no or few extra 

winning coalitions, the objective function is very flat. This is nicely illustrated by Figure 1. Its 

minimization via Monte Carlo techniques is then particularly sensitive to remaining estimation 

errors. But note that the importance of these issues decreases as m gets large. This indicates that 

applicability of the square root rule rests on enough flexibility regarding the formation of dis-

tinct winning coalitions. 

 

# const (I) (II) (III) (IV) 

10  0.0 0.0  0.0 0.0 

 (1.22×10 -9) (1.65×10-9) (9.21×10-9) (1.83×10 -9) 

20  0.6 0.0  0.6 0.0 

 (2.19×10 -10) (2.93×10-10) (2.82×10-10) (3.83×10 -10) 

30  0.1 0.2  0.4 0.5 

 (1.07×10 -10) (1.07×10-10) (6.94×10-11) (6.76×10 -11) 

40  0.3 0.4  0.4 0.5 

 (1.72×10 -11) (2.08×10-11) (2.32×10-11) (2.81×10 -13) 

50  0.4 0.2  0.3 0.3 

 (1.60×10 -11) (7.39×10-12) (3.56×10-11) (4.72×10 -11) 

100   0.5 0.5  0.5 0.5 

 (1.01×10 -13) (2.30×10-12) (1.99×10-13) (3.44×10 -13) 

Table 2:  Optimal value of α for normally distributed constituency sizes (µ=1 mio., σ=200,000; 
truncated below 0)  
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Figure 1:  Cumulative individual quadratic deviation in normal-distribution runs (I) for differ-
ent numbers of constituencies 

When historical or geographical boundaries determine a population partition, a yet more 

natural distributional benchmark for nj is a power law such as Zipf’s law (or zeta distribution ), 

which has big empirical support in a variety of contexts.13  As an example, we consider the 

Pareto distribution with density function  

 ( ) 1
| , xg x x

x

κ

κ
κ κ

+
=  

on [x, ∞) . Parameter x provides a lower bound on nj and parameter κ determines how quickly 

the probability of drawing a large (rather than small or medium-sized) constituency approaches 

0. 

 

                                                 
13Examples for which (approximative) power-law behavior has been observed include sizes of human 

settlements (Gabaix 1999, Reed 2004 ), the value of oil reserves in oil fields, the size of meteor impacts on the 
moon, or even frequencies of words in long sequences of text. Explanations for this widespread regularity are 
based on ideas such as self-organized criticality and highly optimized tolerance (see e.  g. Newman 2000). 
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 Number of constituencies 

 κ  10  20 30  40 50  100 

1.0  0.5  0.5 0.5  0.5 0.5  0.5 

 (1.32×10 -9) (6.99×10 -11) (1.32×10-11) (1.87×10 -11) (1.31×10-10) (3.79×10 -12) 

1.8  0.5  0.5  0.5  0.5 0.5  0.5 

 (3.25×10 -9) (4.78×10 -11) (2.41×10-11) (2.25×10 -11) (1.86×10-11) (1.04×10 -12) 

3.4  0.0  0.5 0.5  0.5 0.5  0.5 

 (3.72×10 -9) (5.64×10 -11) (2.41×10-11) (3.27×10 -12) (2.67×10-12) (8.88×10 -13) 

5.0  0.0  0.0 0.1  0.15 0.1  0.5 

 (1.08×10 -8) (3.61×10-9) (1.03×10-10) (2.85×10 -11) (1.91×10-10) (7.54×10 -13) 

Table 3:  Optimal values of α  for constituency sizes from Pareto distribution on [0.1;∞)  
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Figure 2:  Cumulative individual quadratic deviation for m = 30 and different  

Pareto distributions 

Table 3 reports simulations with constituency sizes drawn from a Pareto distribution with  x 

= 0.1 and κ ∈ {1, 1.8, 3.4, 5}, where numbers refer to million inhabitants. As long as the distri-
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bution is only moderately skewed (small κ), findings correspond nicely to those for the uniform 

distribution: j jw n=  performs best and gets close to ensuring equal representation provided 

that the number of constituencies is sufficiently large. The former is no longer the case for a 

heavily skewed distribution of constituency sizes, i. e. when there are mostly small constituen-

cies and only one or perhaps two large constituencies (reminiscent of atomic players in an oth-

erwise oceanic game). Giving all constituencies equal weight does reasonably well. A coeffi-

cient α  greater, but still not far from zero, improves on this by creating additional pivot posi-

tions for the large constituency. But for a moderate number of constituencies, increasing α after 

the initial introduction of asymmetry produces quite little effect (again, the objective function is 

rather flat over a big range as indicated by Figure 2) and then suddenly overshoots, resulting in 

too much power for the large constituency. For the same combinatorial reasons as in the no r-

mal-distribution case, this problem gets less severe, the greater is the total number of constitu-

encies: For m = 100 or larger, α = 0.5 turns out to be clearly optimal even for high skewness 

(κ = 5). 

In summary, the above analysis of many different population configurations reveals three 

things. First, as Table 1 and Figures 1 and 2 show, α = 0.5 results in representation close to 

being as equal as possible for the given partition of the electorate. Second, for a moderately 

large number m of constituencies α ≈ 0.5 is optimal in the considered class of power laws 

unless all constituency sizes are very similar (e.  g., nj normally distributed with small variance) 

or rather similar with one or two outliers (corresponding to a heavily skewed distribution). 

Third, even in these extreme cases the optimal α converges to 0.5 as m gets large. We now turn 

to two prominent real-world two-tier voting systems. 

3.2 EU Council of Ministers 

Together with Commission and Parliament, the Council of Ministers is one of the European 

Union’s chief legislative bodies. It is widely held to be the most influential amongst the three 

and most voting power analysis concentrates on it.14  It consists of a national government repre-

                                                 
14See Felsenthal and Machover (2004), Baldwin and Widgren (2004), and Leech (2002) for examples. Napel and 

Widgren (2006) argue formally that the Commission’s and Parliament’s positions are nearly irrelevant in the EU25 
most common codecision procedure. 
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sentative from each of the EU member states, endowed with voting weight that is (weakly) in-

creasing in share of total population.15  

Figure 3 illustrates the probabilities that representatives from differently sized member 

states are pivotal in the Council assuming a 50% decision quota and assigning voting weight 

based on populations size via wj = nj
α .16  In line with above findings for randomly generated 

two-tier voting systems, α = 0.5 performs best amongst all coefficients in {0, 0.1, . . . , 1}. The 

figure shows how close the implied probability of country  j being pivotal comes to the respec-

tive ideal value, which would implement a priori perfectly equal representation. Only the most 

populous country, Germany, would be visibly misrepresented (here: over-represented). 
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Figure 3:  EU25 with weights wj = nj
α compared to ideal probabilities 

With the exceptions of Germany, Spain and Poland, the current Council weights agreed in 

the Treaty of Nice correspond roughly to the square root of populations. It follows that if a sin-

gle quota of 50 % were used in the Council of Ministers, probabilities p̂ j  would be close to 

their egalitarian values (with the mentioned exceptions). However, the Council uses a qualified 

                                                 
15The current voting rule is actually quite complex. In addition to standard weighted voting it involves the 

requirement that the majority weight supporting a policy represents a simple majority of member states and 62% 
of population. 
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majority of 72.2% of the weight plus additional population and number-of-supporters require-

ments. The latter have little effect (see Felsenthal and Machover 2001) but the former makes a 

real difference. 

Comparison of Figures 4 and 5 illustrates this. With a quota significantly above 50%, a pri-

ori greater centrality of median opinion in large countries such as Germany or France no longer 

provides greater chances of being pivotal in the Council. It actually reduces them. So under the 

qualified majority rule representation is not only even more biased against German voters, but 

now also French, British, and Italian representatives are less often pivotal than would be neces-

sary to give all voters in the EU equal representation in the Council. 
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Figure 4:  EU25 with Nice weights and hypothetical quota of 50% 

                                                                                                                                                           
16These and the following numbers are Monte-Carlo estimates obtained from six runs with 10 million iterations 

each. In case of qualified majority voting, the pivot is identified by assuming a status quo q = 0 ∈ X. 
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Figure 5:  EU25 with Nice weights and 72.2% single quota 

Note that this analysis not only puts historical voting patterns and preference similarities b e-

tween some members behind a veil of ignorance but also, as do the mentioned applied studies, 

it disregards differences between the bottom-tier voting procedures which determine national 

governments. For example, the UK uses plurality rule or a “first-past-the-post” system, whilst 

Germany uses a roughly proportional system.17  This difference might have a systematic effect 

on the respective accuracy of our median voter assumption at the constituency level. To the 

extent that it does not, our findings are robust. 

Investigation of a quota variation even for a very idealized Council illustrates that the deci-

sion threshold is not only affecting the balance of ‘external costs’ and ‘decision-making costs’ 

(Buchanan and Tullock 1962) or challenging the so -called ‘efficiency’ of a decision-making 

body (operationalized as the probability that a random proposal is passed in the classical 0-1 

setting by Felsenthal and Machover 2001 and Baldwin et al. 2001 amongst others). The quota 

                                                 
17Germany’s system is actually complex: some members of parliament are directly elected in a first-past-the-

post manner, others get seats in proportion to their party’s vote. Stratmann and Baur (2002) use this distinction 
amongst German parliamentarians to show that different electoral procedures indeed translate into different 
policies. 
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also has important implications for equality of representation and hence the legitimacy of deci-

sions. 

3.3 US Electoral College 

US citizens elect their president via an Electoral College. The 50 states and Washington DC 

each send representatives to it. Their number is weakly increasing in the represented share of 

total population. Although most Electors are not legally bound to vote in any particular way, all 

state representatives cast their vote for the presidential candidate who secured a plurality of the 

respective state’s popular vote with only minor exceptions. The US Electoral College is there-

fore commonly treated as a weighted voting system. It actually inspired the important devel-

opment of the generating function approach  (see Mann and Shapley 1962 and recently Algaba 

et al. 2003), which is the main computational technique for evaluating power under weighted 

voting in binary settings. Large numbers of players could hitherto only be tackled by the Monte 

Carlo method (see Mann and Shapley 1960). 

Decisions in the Electoral College have in the recent past been essentially binary. The piv-

otal player amongst the states’ median voters might, however, feature prominently in a more 

sophisticated model of how the two main contestants are selected. In any case, consideration of 

strategic policy choices in a convex space provides a useful benchmark for the preference-free 

dichotomous model considered by Penrose (1946) and, specifically addressing the Electoral 

College, Banzhaf (1968).18   

 

                                                 
18Early weighted voting analysis of US presidential elections also includes Brams (1978, ch. 3). 
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Figure 6:  US Electoral College with weights wj = nj 
α compared to ideal probabilities 

Figure 6 illustrates the result of determining (hypothetical) weights for state representatives 

based on current US state population data. Corroborating the findings of Penrose and Banzhaf, 

the square root rule corresponding to α = 0.5 is again extremely successful in ensuring equal 

representation. Moreover, as shown by Figure 7, it is clearly the best amongst all considered 

rules. 
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Figure 7:  Cumulative individual quadratic deviation for US Electoral College 
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4 Concluding remarks 

As highlighted, e. g., by Good and Mayer (1975) and Chamberlain and Rothschild (1981), even 

slight changes regarding decision making at the individual or collective level can produce very 

different recommendations for operationalizing the one-person, one-vote principle, interpreted 

here as identical (and positive) indirect expected influence on final outcomes by all voters. 

Apart from our ‘veil of ignorance’ perspective with a priori identical but independent voters, 

the setting considered in this paper is very remote from the preference-free binary model con-

sidered by Penrose (1946), Banzhaf (1965, 1968) and others. It is thus surprising that voting 

weight proportional to square root of population , which corresponds to Penrose’s original su g-

gestion for most practical purposes,19 emerges as optimal for both prominent real-world exam-

ples as well as numerous artificial population configurations. 

This result matters not only from an abstract point of view. It shows that numerous applied 

studies have indeed used a robust benchmark. This is also highlighted by recent work of Beis-

bart and Bovens (2005), which discovers optimality of the square root rule in a very different 

binary, utility-based egalitarian model. And at least for large constituency populations consist-

ing of many small blocks, Barberà and Jackson (2005) produce similar conclusions in an en-

tirely utilitarian framework.20 In summary, the square root rule is a simple and trustworthy 

norm, not an artifact of a particular objective function or setting. This insight can hopefully 

increase its effect on constitutional design in the real world.21  

We see several promising directions for future research. First, it is desirable to obtain an a-

lytical results at least for some special cases. At a level unfortunately still hidden to us, the cen-

tral limit theorem and approximate proportionality of square root of population and standard 

deviation of the respective median position seem to be the ultimate source of above observ a-

tions. 

                                                 
19In fact, Penrose (1946) seems to have deliberately blurred the distinction between voting weight and voting 

power in his discussion of equal representation in a world assembly. 
20Also see Beisbart et al. (2005) for a related utilitarian investigation. 
21The square root rule already played a significant role in the public discussion of a possible EU Constitution. 

See, for example, the open letter by Bilbao et al. (2004) to the EU members’ governments with repercussions in 
various national news outlets. 
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Second, the effects of changing the top-tier decision quota deserve attention in particular in 

the context of the European Union. Our preliminary investigations indicate that optimality of 

α = 0.5 remains unaffected by small increases of the top-tier quota. Of course, even approx i-

mately equal representation is impossible under unanimity rule (keeping the bottom -tier role of 

the median). In between, optimal assignments tend to give large constituencies greater weight 

than implied by α = 0.5. 

Third, it is likely that also in our setting some combinatorial index of voting power, rather 

than voting weight, would be the best reference point for proportionality to square root of popu-

lation. Standard indices (e. g., Penrose-Banzhaf or Shapley -Shubik index) can, however, be 

ruled out because they implicitly assume identical stochastic behavior of top-tier voters, from 

which a simple linear rule involving the Shapley -Shubik index would follow. There conceiv a-

bly exist many other candidates. Finding a suitable index would be useful for small constitu-

ency numbers. Given the close-to-equal representation obtained above already for as few as 15 

constituencies, this seems no priority though. 
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