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Ex-Post Risk Premia and Tests of Multi-Beta Models
in Large Cross-Sections

Abstract

A limiting theory for estimating and testing linear beta-pricing models with a large number of assets

and a fixed time-series sample size is presented. Since the ordinary least squares (OLS) estimator

of the ex-ante risk premia is asymptotically biased and inconsistent in this context, the focus of the

paper is on the modified OLS estimator of the ex-post risk premia proposed by Shanken (1992).

We derive the asymptotic distribution of this estimator and show how its limiting variance can be

consistently estimated. In addition, we characterize the asymptotic distribution of a cross-sectional

test of the fundamental beta-pricing relation. Finally, we show how our results can be extended to

deal with unbalanced panels. The practical relevance of our findings is demonstrated using Monte

Carlo simulations and an empirical application to beta-pricing models with traded risk factors. Our

analysis suggests that the market, size, and value factors are often priced in the cross-section of

NYSE-AMEX-NASDAQ individual stock returns over short time spans. Overall, there is not much

evidence of pricing for the profitability and investment factors of Fama and French (2015).

Keywords: Beta-pricing models; Ex-post risk premia; Two-pass cross-sectional regressions; Large

N asymptotics; Specification test.

JEL classification numbers: C12; C13; G12.



The traditional empirical methodology for exploring asset pricing models entails estimation of asset

betas (systematic risk measures) from time-series factor model regressions, followed by estimation

of risk premia via cross-sectional regressions (CSR) of asset returns on the estimated betas. In the

classic analysis of the capital asset pricing model (CAPM) by Fama and MacBeth (1973), a CSR is

run each month, with inference ultimately based on the time-series mean and standard error of the

monthly risk premium estimates. Also see the related paper by Black, Jensen, and Scholes (1972).

A formal econometric analysis of the two-pass methodology was first provided by Shanken

(1992). He shows how the asymptotic standard errors of the second-pass ordinary least squares

(OLS) and generalized least squares (GLS) risk premium estimators are influenced by estimation

error in the first-pass betas, requiring an adjustment to the traditional Fama-MacBeth standard

errors. A test of the validity of the pricing model’s constraint on expected returns can also be

derived from the CSR residuals (see, for example, Shanken (1985)).1

While most of the limiting results in Shanken (1992) require that the time-series sample size,

T , is large and the number of securities, N , is fixed, Section 6 of his paper (see also Litzenberger

and Ramaswamy (1979)) presents some preliminary results on the estimation of the second-pass

risk premia when N is large and T is fixed. Shanken (1992, p. 20) argues that “This perspective

is particularly relevant given the large number of securities for which returns data are available.”

Litzenberger and Ramaswamy (1979, p. 178) describe the pros and cons of using portfolios instead

of individual securities in asset-pricing tests: “Because of the errors in variables problem, most

previous empirical tests have grouped stocks into portfolios. Since errors in measurement in betas

for different securities are less than perfectly correlated, grouping risky assets into portfolios would

reduce the asymptotic bias in OLS estimators. However, grouping results in a reduction of efficiency

caused by the loss of information.” We don’t take a stand on whether a researcher should use

portfolios or individual securities in the estimation and testing of asset-pricing models. Motivated

by the increasingly widespread use of large cross-sections of individual securities (with a limited

time-series dimension) in empirical asset-pricing studies, we think that researchers would benefit

1Jagannathan and Wang (1998) relax the conditional homoskedasticity assumption in Shanken (1992) and derive
expressions for the asymptotic variances of the OLS and GLS estimators that are valid under fairly general distri-
butional assumptions. Hou and Kimmel (2006), Shanken and Zhou (2007), and Kan, Robotti, and Shanken (2013)
provide a unifying treatment of the two-pass methodology in the presence of global (or fixed) model misspecification.
We refer the readers to Jagannathan, Skoulakis, and Wang (2010), Kan and Robotti (2012), and Gospodinov and
Robotti (2012) for a synthesis of the two-pass methodology.
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from a rigorous large N and fixed T econometric framework in addition to the large T and fixed

N methods that have already been proposed in the literature.

Since a consistent estimate of the “ex-ante” risk premia cannot be obtained with T fixed,2 in the

following analysis we follow Shanken (1992) and focus on “ex-post” risk premia. The ex-post risk

premia equal the ex-ante risk premia plus the (unconditionally) unexpected factor outcomes. In this

context, a risk premium estimator is
√
N -consistent if it converges in probability at speed

√
N to

the vector of ex-post risk premia as N →∞. We start by showing that Shanken’s (1992) modified

estimator of the ex-post risk premia is a member of a broader class of OLS bias-adjusted estimators.

Under fairly standard assumptions, we derive the rate of convergence and show the
√
N -consistency

of the modified Shanken’s estimator. More importantly, we establish the asymptotic normality of

the Shanken’s bias-adjusted estimator and derive an explicit expression for its asymptotic covariance

matrix. We also show how this covariance matrix can be consistently estimated and used to conduct

inference on the risk premia estimates. Furthermore, we provide a new test for the validity of the

beta-pricing restrictions and characterize its distribution when N →∞ and T is fixed. Finally, we

show how our results need to be modified when the panel is unbalanced. It is worth emphasizing

that our analysis is applicable to models with traded factors as well as to models that include also

factors that are not traded.

We also explore the small N properties of our various test statistics via Monte Carlo simulations.

We calibrate the model parameters using real data on individual stocks from the Center for Research

in Security Prices (CRSP). Overall, our simulation results suggest that the tests are reliable for the

sample sizes often encountered in empirical finance.

Empirically, our interest is in rigorously evaluating the performance of several prominent beta-

pricing models using individual monthly stock returns from the CRSP database. In addition to

the basic CAPM, we study the three-factor and five-factor models of Fama and French (1993,

2015). Although these models were primarily motivated by empirical observation, their size, value,

profitability, and investment factors are sometimes viewed as proxies for more fundamental economic

factors. While our specification test often rejects the hypothesis of a perfect fit for these three

models, we find some convincing evidence of pricing for the market, size, and value factors over

2When T is fixed, increasing the number of assets affects the residual variation but does not eliminate the uncer-
tainty about the unanticipated factor realizations (see Shanken (1992) for details).
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short time spans. The evidence of pricing for the profitability and investment factors proposed by

Fama and French (2015) is somewhat weaker.

To our knowledge, we are the first to provide a formal asymptotic analysis of Shanken’s bias-

adjusted estimator when N is large and T is fixed. Our limiting results should be viewed as

useful complements to the simulation analysis in Chordia, Goyal, and Shanken (2015). There are

only a few other papers concerned with pricing that deal with a large cross section and a small

time series. Under the assumption that the covariance matrix of the disturbances is diagonal

and known, Litzenberger and Ramaswamy (1979) employ a modified version of the weighted least

squares second-pass estimator that is consistent without portfolio grouping. Kim and Skoulakis

(2014) employ the regression calibration approach to obtain a
√
N -consistent estimator of the ex

post risk premia in a two-pass CSR setting. However, the results in Kim and Skoulakis (2014)

are only applicable when the factors are returns on zero net investment portfolios. When T , in

addition to N , is allowed to go to infinity, Gagliardini, Ossola, and Scaillet (2015) and Bai and Zhou

(2015) derive the limiting properties of some bias-adjusted estimators of the ex-post and ex-ante

second-pass risk premia, respectively. In particular, the asymptotic theory in Gagliardini, Ossola,

and Scaillet (2015) requires that N and T tend to infinity jointly such that N grows not faster than

a power (less than 3) of T . Finally, Jegadeesh and Noh (2014) and Pukthuanthong, Roll, and Wang

(2014) propose instrumental variable estimators of the second-pass risk premia as an alternative to

the asymptotically biased OLS CSR estimator of Fama and MacBeth (1973).

When it comes to a test of the fundamental beta-pricing relation, we are the first to propose

a two-pass CSR test of the model’s pricing errors that is valid when N is large and T is fixed.

Extending the classical test of Gibbons, Ross, and Shanken (1989), Pesaran and Yamagata (2012)

propose a number of tests of the null hypothesis of zero alphas in the first-pass relation. Their

setup accommodates only traded factors in the analysis and the feasible versions of their tests are

justified only when both N and T tend to infinity jointly such that N/T 3 → 0. Gagliardini, Ossola,

and Scaillet (2015) extend the work of Pesaran and Yamagata (2012) to the case in which the

factors are not necessarily traded portfolios.

The rest of the paper is organized as follows. Section I provides a brief review of the two-pass

CSR methodology and introduces the main notation. Section II presents the asymptotic analysis of

Shanken’s (1992) bias-adjusted estimator of the ex-post risk premia when N →∞ and T is fixed.
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Moreover, under the assumption of zero ex-ante pricing errors, we derive the limiting distribution of

the specification test described above when N is large and T is fixed. Finally, we show how the main

analysis can be extended to accommodate unbalanced panels. We explore the small N properties

of the various tests in Section III. Section IV presents our main empirical findings, and Section V

summarizes our conclusions. The proofs of the main results are collected in the Appendix.

1 Two-Pass Methodology

A beta-pricing model seeks to explain cross-sectional differences in expected asset returns in terms

of asset betas computed relative to the model’s systematic economic factors. Let ft = [f1t, . . . , fKt]
′

be a K-vector of observable factors at time t and Rt = [R1t, . . . , RNt]
′ be an N -vector of test asset

returns at time t (t = 1, . . . , T ).

Assume that asset returns are governed by the following multifactor model:

Rit = αi + βi1f1t + · · ·+ βiKfKt + εit = αi + β′ift + εit, i = 1, . . . , N, t = 1, . . . , T, (1)

where αi is an asset specific intercept scalar, βi = [βi1, . . . , βiK ]′ is a vector of multiple regression

betas of asset i w.r.t. the K factors, and the εit’s are factor model residuals.

Assumption 1. (Loadings) As N →∞,

1

N

N∑
i=1

βi → µβ, (2)

1

N

N∑
i=1

βiβ
′
i → Σβ, (3)

where Σβ is a finite symmetric and positive-definite matrix.

The first part of Assumption 1 states that the limiting cross-sectional average of the betas

exists, while the second part states that the limiting cross-sectional average of the squared betas

exists and is a symmetric and positive-definite matrix. Without loss of generality, we assume the

βi to be non random.3

In vector and matrix notation, we can write the above model as

Rt = α+Bft + εt, t = 1, . . . , T, (4)

3See Gagliardini, Ossola, and Scaillet (2015) for a treatment of beta-pricing models with random betas.
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where α = [α1, . . . , αN ]′, B = [β1, . . . , βN ]′, and εt = [ε1t, . . . , εNt]
′.

Assumption 2. (Shanken, 1992) Assume that the vector εt is independently and identically

distributed (i.i.d.) over time with

E[εt|F ] = 0N (5)

and

Var[εt|F ] = Σ (rank N), (6)

where Σ has generic element σij = E[εitεjt] (for i, j = 1, . . . , N), F = [f1, . . . , fT ]′ is the T × K

matrix of factors, and 0N is an N -vector of zeros.

The i.i.d. assumption over time is common to many studies, including Shanken (1992). This

assumption could be relaxed at the cost of a more cumbersome notation. The proposed K-factor

beta-pricing model specifies that asset expected returns are linear in B, that is,

E[Rt] = XΓ, (7)

where X = [1N , B] is assumed to be of full column rank, 1N is an N -vector of ones, and Γ = [γ0, γ
′
1]
′

is a vector consisting of the zero-beta rate (γ0) and ex-ante risk premia on the K factors (γ1). When

the model is misspecified, the N -vector of pricing errors, e = E[Rt] −XΓ, will be nonzero for all

values of Γ.

Assumption 3. Assume that E[ft] does not vary over time and denote this expectation by E[f ].

To introduce the notion of ex-post risk premia, let R̄i = 1
T

∑T
t=1Rit, R̄ = [R̄1, . . . , R̄N ]′, and

ε̄ = 1
T

∑T
t=1 εt. Averaging (4) over time, imposing (7), and noting that E[Rt] = α+BE[f ] yield

R̄ = XΓP + ε̄, (8)

where ΓP = [γ0, γ
P
1
′]′ and

γP1 = γ1 + f̄ − E[f ]. (9)

By (8), expected returns are still linear in the asset betas conditional on the factor outcomes. The

random coefficient vector γP1 is referred to, accordingly, as the vector of ex-post risk premia. It

equals the ex-ante risk premia plus the (unconditionally) unexpected factor outcomes. Assump-

tion 3 rules out time variation in the ex-post risk premia γP1 . When T →∞, f̄ will converge to E[f ]

and the ex-post and ex-ante risk premia will coincide. However, in general, γ1 and γP1 will differ
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when T is finite. Therefore, the notion of ex-post risk premia naturally emerges when estimating

beta-pricing models in a large N and fixed T framework.

We now turn to estimation of the model. The popular two-pass method first obtains estimates

β̂i, the betas of asset i, by running the following multivariate regression:

Ri = αi1T + Fβi + εi, i = 1, . . . , N, (10)

where Ri = [Ri1, . . . , RiT ]′ is a time series of returns on asset i, 1T is a T -vector of ones, and

εi = [εi1, . . . , εiT ]′. Defining F̃ = F − 1T f̄
′, it is easy to show that

β̂i = βi + (F̃ ′F̃ )−1F̃ ′εi, (11)

or, in matrix form,

B̂ = B + ε′P, (12)

where ε = [ε1, . . . , εN ] is a T × N matrix and P = F̃ (F̃ ′F̃ )−1. We then run a single CSR of the

sample mean vector R̄ on X̂ = [1N , B̂] to estimate Γ (ΓP ) in the second pass. Specifically, we have

R̄ = X̂Γ + η, (13)

where η =
(
ε̄+B(f̄ − E[f ])− (X̂ −X)Γ

)
and

R̄ = X̂ΓP + ηP , (14)

where ηP =
(
ε̄− (X̂ −X)ΓP

)
. If we use the identity matrix as the weighting matrix in the second-

pass CSR, we obtain the following OLS estimator for both the feasible representations in (13) and

(14):

Γ̂ =

[
γ̂0

γ̂1

]
= (X̂ ′X̂)−1X̂ ′R̄. (15)

As Shanken (1992) points out, one cannot hope for a consistent estimate of Γ in (13) with T fixed.

The reason is that f̄ does not converge in probability to E[f ] unless T → ∞. Although Bai and

Zhou (2015) conjecture that the impact of the term f̄−E[f ] is small in practice, we follow Shanken

(1992) and conduct our analysis based on the representation in (14). Shanken (1992) and Bai and

Zhou (2015) among others show that the OLS estimator of ΓP in (15) is biased and inconsistent

when T is fixed. Nevertheless, Shanken (1992) shows that the bias of the OLS estimator can be

corrected. Denote the trace operator by tr(·) and a K-vector of zeros by 0K . In addition, let
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σ̂2 = 1
N(T−K−1)tr(ε̂

′ε̂), where ε̂ is the T × N matrix of residuals from the first-pass. Then, the

bias-adjusted OLS estimator of Shanken (1992) is given by4

Γ̂∗ =

[
γ̂∗0

γ̂∗1

]
=
(

Σ̂X − Λ̂
)−1 X̂ ′R̄

N
, (16)

where

Σ̂X =
X̂ ′X̂

N
(17)

and

Λ̂ =

[
0 0′K

0K σ̂2(F̃ ′F̃ )−1

]
. (18)

Conditional on the factor realizations, in the next section we will provide a formal asymptotic

analysis of Γ̂∗ and we will investigate the limiting behavior of a model specification test based on

the ex-post sample pricing errors

êP = R̄− X̂Γ̂∗. (19)

The errors-in-variables (EIV) correction in (16) entails subtracting the estimated covariance

matrix of the beta estimation errors from B̂′B̂, in an attempt to better approximate the matrix

B′B. However, it is possible that this EIV correction will overshoot and that the matrix
(

Σ̂X − Λ̂
)

will not be positive definite. This complicates the analysis of the finite-sample properties of Γ̂∗.

To deal with the possibility that the estimator will occasionally produce extreme results, in the

simulation and empirical sections of the paper we multiply the matrix Λ̂ by a scalar k (0 ≤ k ≤ 1),

effectively implementing a shrinkage estimator. If k is zero, we get the OLS estimator back, whereas

if k is one we obtain the modified Shanken’s estimator. The choice of k, the parameter that

determines the degree of shrinkage between the OLS and modified OLS estimators, is based on

the eigenvalues of the matrix
(

Σ̂X − kΛ̂
)

. Starting from k = 1, if the minimum eigenvalue of this

matrix is negative and/or the condition number of this matrix is bigger than 20, then we lower k by

an arbitrarily small amount. We iterate this procedure until the minimum eigenvalue is positive and

the condition number becomes smaller than 20.5 In our simulation experiments, we find that this

shrinkage estimator is “virtually unbiased”. This is mainly due to the fact that in our simulations

we encounter very few instances in which
(

Σ̂X − Λ̂
)

is not positive definite.

4As in most past studies and to keep the notation somewhat manageable, we do not distinguish between general
factors and factors that are portfolio returns. Therefore, we do not incorporate the additional pricing restriction that
is implied when a given factor is a portfolio return.

5Following Greene (2008), Gagliardini, Ossola, and Scaillet (2015) rely on similar methods to implement their
trimming conditions.
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2 Asymptotic Analysis

The analysis in this section assumes that N →∞ and T is fixed. In addition, our results are derived

under the assumption of weak cross-sectional dependence between the factor model disturbances

(see Assumption 4 in Appendix A). This assumption is routinely made in most studies on large N

asymptotics. We first present the limiting distribution of Shanken’s bias-adjusted estimator and

explain how its asymptotic covariance matrix can be consistently estimated. In addition, we show

that the modified estimator of Shanken (1992) is a member of a broader family of OLS bias-adjusted

estimators. Finally, we characterize the limiting behavior of a test of the beta-pricing restrictions

and show how our analysis can be extended to deal with an unbalanced panel.

2.1 Asymptotic Distribution of the Bias-Adjusted OLS Estimator

In many empirical studies, interest lies in the point estimates of the second-pass risk premia. A

statistically significant element of γ̂∗1 associated with a given factor is often interpreted as evidence

that its risk premium is nonzero. In this subsection, we study the asymptotic distribution of

Γ̂∗ under the assumption that the model is correctly specified. Let ΣX =

[
1 µ′β
µβ Σβ

]
, σ2 =

lim 1
N

∑N
i=1 σ

2
i with σ2i = E[ε2it], Uε = lim 1

N

∑N
i,j=1E

[
vec(εiε

′
i − σ2i IT )vec(εjε

′
j − σ2j IT )′

]
, M =

IT − D(D′D)−1D′, where IT is a T × T identity matrix and D = [1T , F ], Q = 1T
T − Pγ

P
1 , and

Z = (Q ⊗ P) + vec(M)
T−K−1γ

P ′
1 P ′P. In the following theorem, we provide the rate of convergence and

the limiting distribution of Γ̂∗.

Theorem 1

(i) Under Assumptions 1–3 and 4 in Appendix A,

Γ̂∗ − ΓP = Op

(
1√
N

)
. (20)

(ii) Under Assumptions 1–3 and 4–5 in Appendix A,

√
N
(

Γ̂∗ − ΓP
)

d→ N
(
0K+1, V + Σ−1X WΣ−1X

)
, (21)

where

V =
σ2

T

[
1 + γP1

′
(
F̃ ′F̃ /T

)−1
γP1

]
Σ−1X (22)

8



and

W =

[
0 0′K

0K Z ′UεZ

]
. (23)

Proof: See Appendix B and Lemmas 1 to 5 in Appendix A.

Note that the variance expression in (21) is very simple. The first part of this asymptotic

covariance matrix, V , accounts for the estimation error in the betas, and it is very similar to

the large T variance expression of the second-pass OLS estimator proposed by Shanken (1992)

in Theorem 1(ii). The term c ≡ γP1
′
(
F̃ ′F̃ /T

)−1
γP1 is an asymptotic adjustment for EIV, and

cσ
2

T Σ−1X is the corresponding EIV component of variance. As Shanken (1992) points out, the EIV

adjustment reflects the fact that the variance of the beta estimates is directly related to residual

variance and inversely related to factor variability.

The second part of the asymptotic covariance matrix, Σ−1X WΣ−1X , represents the additional fixed

T and large N adjustment to the overall variance. This term is the inflation in variance due to

the bias adjustment and vanishes only when T → ∞. In addition, the W matrix accounts for the

cross-sectional variation in the residual variances of asset returns.

To conduct statistical inference, we need a consistent estimator of the asymptotic covariance

matrix in Theorem 1(ii). Let M (2) = M �M , where � denotes the Hadamard product operator.

In addition, define

σ̂4 =
1
N

∑T
t=1

∑N
i=1 ε̂

4
it

3tr
(
M (2)

) . (24)

and let

Ẑ = (Q̂⊗ P) +
vec(M)

T −K − 1
γ̂∗

′
1 P ′P (25)

with

Q̂ =
1T
T
− P γ̂∗1 . (26)

The following theorem provides a consistent estimator of the asymptotic covariance matrix of the

estimates.

Theorem 2 Under Assumptions 1 to 3 and 4–5 in Appendix A, we have

V̂ +
(

Σ̂X − Λ̂
)−1

Ŵ
(

Σ̂X − Λ̂
)−1 p→ V + Σ−1X WΣ−1X , (27)

9



where

V̂ =
σ̂2

T

[
1 + γ̂∗1

′
(
F̃ ′F̃ /T

)−1
γ̂∗1

]
(Σ̂X − Λ̂)−1, (28)

Ŵ =

[
0 0′K

0K Ẑ ′ÛεẐ

]
, (29)

and Ûε is a consistent plug-in estimator of Uε (see Appendix C).

Proof: See Appendix B and Lemmas 1 to 6 in Appendix A.

It is worth noting that the modified estimator of Shanken (1992) belongs to a larger family of

OLS bias-adjusted estimators. Starting from the standard OLS estimator, it is easy to show that

Γ̂ = ΓP + (X̂ ′X̂)−1
(
X ′ε̄−X ′(X̂ −X)ΓP + (X̂ −X)′ε̄− (X̂ −X)′(X̂ −X)ΓP

)
. (30)

By Lemmas 2(i), 3(i), 4(i), and 5(i) in Appendix A, we have

(X̂ ′X̂)−1
(
X ′ε̄−X ′(X̂ −X)ΓP + (X̂ −X)′ε̄

)
= Op

(
1√
N

)
. (31)

Moreover, Lemmas 2(i) and 2(iii) in Appendix A imply that

(X̂ ′X̂)−1(X̂ −X)′(X̂ −X)ΓP = Op(1). (32)

While the bias term in (31) vanishes when N →∞, the bias term in (32) renders the OLS estimator

asymptotically biased and inconsistent. Nevertheless, the bias in (32) can be corrected. Using

Lemma 1(i) in Appendix A, a
√
N -consistent (target) estimator of ΓP is given by

Γ̃ =
(
X̂ ′X̂

)−1
X̂ ′R̄+

(
X̂ ′X̂

N

)−1 [
0 0′K

0K σ̂2(F̃ ′F̃ )−1

]
Γ̆, (33)

where Γ̆ denotes any preliminary
√
N -consistent estimator of ΓP . If we impose the restriction that

Γ̃ = Γ̆, then IK+1 −

(
X̂ ′X̂

N

)−1 [
0 0′K

0K σ̂2(F̃ ′F̃ )−1

] Γ̃ = (X̂ ′X̂)−1X̂ ′R̄,

which implies that

Γ̃ =
(

Σ̂X − Λ̂
)−1 X̂ ′R̄

N
= Γ̂∗, (34)
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that is, the modified estimator of Shanken (1992). Therefore, the bias-adjusted estimator of

Shanken (1992) is obtained when the target and preliminary estimators are set equal to each

other. In general, it is up to the econometrician to decide what Γ̆ to use in the analysis and the

choice of preliminary estimator clearly involves some degree of arbitrariness. In this sense, the

modified estimator of Shanken (1992) has the attractive feature of allowing us to sidestep the issue

of choosing a preliminary
√
N -consistent estimator of ΓP .

2.2 Limiting Distribution of the Specification Test

In this section, we are interested in deriving an OLS-type test of the validity of the beta-pricing

model. The null hypothesis underlying the beta-pricing restriction can be formulated as

H0 : ei = 0 ∀i = 1, 2, . . . , (35)

where ei is the pricing error associated with asset i. Let Xi = [1, β′i], X̂i = [1, β̂′i], and denote by

êPi the ex-post sample pricing error for asset i. Then, we have

êPi = R̄i − X̂iΓ̂
∗ (36)

= ei +Q′εi − X̂i

(
Γ̂∗ − ΓP

)
. (37)

It follows that

êPi
p→ ei +Q′εi ≡ ePi . (38)

Equation (38) shows that even when the ex-ante pricing error, ei, is zero, êPi will not converge

in probability to zero. This is a consequence of the fact that when T is fixed, Q′εi = ε̄i will not

converge to zero even under the null of zero ex-ante pricing errors. This is the price that we have to

pay when N is large and T is fixed. Nonetheless, a test of H0 with good size and power properties

can be developed. Since we estimate ΓP via OLS cross-sectional regressions, we propose a test

based on the sum of the squared ex-post sample pricing errors, that is,

Q̂ =
1

N

N∑
i=1

(êPi )2. (39)

Consider the centered statistic

S =
√
N

(
Q̂ − σ̂2

T

(
1 + γ̂∗1

′(F̃ ′F̃ /T )−1γ̂∗1

))
. (40)

The following theorem provides the limiting distribution of S under H0 : ei = 0 for all i.
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Theorem 3 Under Assumptions 1 to 3 and 4–5 in Appendix A and under H0 : ei = 0 for all i,

we have

S d→ N (0,V) , (41)

where V = Z ′QUεZQ and ZQ = (Q⊗Q)− vec(M)
T−K−1Q

′Q.

Proof: See Appendix B and Lemmas 1 to 5 in Appendix A.

The expression for the asymptotic variance of the test in (41) is rather simple. This variance

can be consistently estimated by replacing Q with Q̂ and Uε with Ûε. Specifically, using Theorem 2

and Lemma 6 in Appendix A, we have

Ẑ ′QÛεẐQ
p→ Z ′QUεZQ, (42)

where

ẐQ =
(
Q̂⊗ Q̂

)
− vec(M)

T −K − 1
Q̂′Q̂. (43)

Then, under H0, it follows that
S

(Ẑ ′QÛεẐQ)
1
2

d→ N (0, 1). (44)

It can be shown that our test will have power when e2i > 0 for a sufficiently large number of

securities. In the next section, we will undertake a Monte Carlo simulation experiment calibrated

to real data in order to determine whether our test possesses desirable size and power properties.

2.3 Unbalanced Panel

In this section, we extend out methodological results to the case of an unbalanced panel. Following

Gagliardini, Ossola, and Scaillet (2015), we assume a missing at random design (see, for example,

Rubin, 1976), that is independence between unobservability and return generating process. This

allows us to keep the factor structure linear. In the following analysis, we explicitly account for the

randomness of Ti, the time-series sample size for asset i. Define the following T × T matrix

Ji = diag(Ji1 . . . Jit . . . JiT ) i = 1, . . . , N, (45)

where Jit = 1 if the return on asset i is observed by the econometrician at date t, and zero otherwise.

We assume that Jit is i.i.d. across i and t. In addition, let Ri,u = JiRi, Fi,u = JiF , and εi,u = Jiεi,

12



and assume that asset returns are governed by the multifactor model

JitRit = Jitαi + Jitf
′
tβi + Jitεit, (46)

that is, the same data generating process of the previous section multiplied by Jit. Let R̄i,u =

1
Ti

∑T
t=1 JitRit, f̄i,u = 1

Ti

∑T
t=1 Jitft, and ε̄i,u = 1

Ti

∑T
t=1 Jitεit. Averaging (46) over time, imposing

the beta-pricing restriction, and noting that E[Rit] = αi + β′iE[f ] yields

R̄i,u = γ0 + β̂′i,uγ
P
1i,u + ηPi,u, (47)

where γP1i,u = γ1 + f̄i,u−E[f ], ηPi,u = ε̄i,u− (β̂i,u−βi)′γP1i,u, β̂i,u = βi+P ′i,uεi, Pi,u = F̃i,u(F̃ ′i,uF̃i,u)−1,

and F̃i,u = Fi,u − Ji1T f̄ ′i,u. Since the panel is unbalanced, there is now a sequence of ex-post risk

premia, one for each asset i.

In matrix form, we have

R̄u = γ01N +


β̂′1,u 0′K(N−1)

...
. . .

...

0′K(N−1) β̂′N,u


 γP11,u

...
γP1N,u

+

 ηP1,u
...

ηPN,u

 , (48)

where R̄u = (R̄1,u, . . . , R̄N,u)′. Define theN×K matrix X̂u =
[
1N , B̂u

]
, where B̂u =

(
β̂1,u, . . . , β̂N,u

)′
.

Denote by ε̂i,u the T -vector of residuals from the first-pass (unbalanced) OLS regressions in

Ri,u = αiJi1T + Fi,uβi + εi,u, i = 1, . . . , N. (49)

The proposed modified estimator of the ex-post risk premia in the unbalanced panel case is

Γ̂∗u =

[
γ̂∗0,u

γ̂∗1,u

]
=
(

Σ̂X,u − Λ̂u

)−1 X̂ ′uR̄u
N

, (50)

where

Σ̂X,u =
X̂ ′uX̂u

N
, Λ̂u =

[
0 0′K

0K σ̂2uF̂u

]
, (51)

σ̂2u =
1

N

N∑
i=1

(
1

Ti −K − 1
tr
(
ε̂i,uε̂

′
i,u

))
, (52)

and

F̂u =
1

N

N∑
i=1

(
F̃ ′i,uF̃i,u

)−1
. (53)
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The estimator Γ̂∗u in (50) generalizes the modified estimator of Shanken (1992) to the unbalanced

panel case and coincides with the Shanken’s estimator when the panel is balanced. Let τ = E [1/Ti],

θ = Var
(
Jit
Ti

)
, and assume that these moments exist. In addition, define ΣX,i =

[
1 β′i
βi βiβ

′
i

]
and

let ΣFβ = plim 1
N

∑N
i=1 β

′
i F
′F βiΣX,i, Fu = plim 1

N

∑N
i=1 P ′i,uPi,u, and Qi,u = Ji1T

Ti
−Pi,uγP1 . Finally,

define Zi,u =

[(
Qi,u ⊗ Pi,u

)
+

vec
(
Mi,u

)
Ti−K−1 γ

P
1
′P ′i,uPi,u

]
and Mi,u =

[
IT − JiD(D′JiD)−1D′Ji

]
Ji. The

consistency and asymptotic normality of the proposed estimator are provided in the following

theorem.

Theorem 4

(i) Under Assumptions 1–3 and 4 in Appendix A,

Γ̂∗u − ΓP = Op

(
1√
N

)
. (54)

(ii) Under Assumptions 1–3 (and 4–5 in Appendix A),

√
N
(

Γ̂∗u − ΓP
)

d→ N
(
0K+1, Vu + Σ−1X (Wu + Θ)Σ−1X

)
, (55)

where

Vu = σ2
(
τ + γP

′
1 FuγP1

)
Σ−1X , (56)

Wu =

 0 0′K

0K plim 1
N

∑N
i=1 Z

′
i,uUεZi,u

 , (57)

Θ = θΣFβ − σ2Ψ, (58)

with

Ψ =

[
0 γP1

′Fγ
F ′γγP1 Fγβ

]
, (59)

Fγ = plim
1

N

N∑
i=1

P ′i,uPi,u(f̄i,u − f̄)′βi, (60)

and

Fγβ = plim
1

N

N∑
i=1

(βiβ
′
i(f̄i,u − f̄)γP1

′P ′i,uPi,u + P ′i,uPi,uγP1 (f̄i,u − f̄)′βiβ
′
i

−(f̄i,u − f̄)′βiβ
′
i(f̄i,u − f̄)P ′i,uPi,u). (61)
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Proof: See Online Appendix.

It should be noted that the asymptotic covariance matrix in Theorem 4 is similar to the one for

the balanced panel case provided in Theorem 1, and it is still has a sandwich form. The additional

terms in part (ii) of Theorem 4 account for the randomness of the sample size Ti. When the panel

is balanced, Theorem 4 reduces to Theorem 1 since Ti = T , Jit = 1, f̄i,u = f̄ , which implies that

τ = 1/T , θ = 0, Ψ = Θ = 0(K+1)×(K+1), and all the relevant quantities do not depend on i anymore.

In conducting statistical tests, we need a consistent estimator of the asymptotic covariance

matrix in Theorem 4(ii). Let τ̂ = 1
N

∑N
i=1

1
Ti

, Σ̂a
X,i =

[
1 β̂′i,u
β̂i,u Σ̂a

β̂i,u

]
, where Σ̂a

β̂i,u
= β̂i,uβ̂

′
i,u −

σ̂2uP ′i,uPi,u, b̂i = tr(F ′F Σ̂a
β̂i,u

), and Ai = P ′i,uPi,uF ′F . Also, let Ûi =
∑T

t=1(P ′i,u ⊗ f ′tP ′i,u)Ûε(Pi,u ⊗

Pi,uft), where Ûε (as in the balanced panel case) is a plug-in estimator of Uε that depends only on

σ̂4,u =
1
N

∑T
t=1

∑N
i=1 ε̂

4
it,u

3 1
N

∑N
i=1 tr

(
M

(2)
i,u

) , with ε̂it,u being the t-th element of ε̂i,u and M
(2)
i,u = Mi,u �Mi,u. Finally,

let Σ̂Fβ = 1
N

∑N
i=1 b̂iΣ̂

a
X,i − Υ̂, where Υ̂ = 1

N

∑N
i=1

[
0 2σ̂2uβ̂

′
i,uA

′
i

2σ̂2uAiβ̂i,u 2σ̂2u(AiΣ̂
a
β̂i,u

+ Σ̂a
β̂i,u

A′i) + Ûi

]
,

θ̂ = 1
NT

∑T
t=1

∑N
i=1

Jit
T 2
i
− 1
T 2 , and Ẑi,u =

[(
Q̂i,u ⊗ Pi,u

)
+

vec(Mi,u)
Ti−K−1 γ̂

∗′
1,uP ′i,uPi,u

]
, where Q̂i,u = Ji1T

Ti
−

Pi,uγ̂∗1,u.

The following theorem provides a consistent estimator of the asymptotic covariance matrix of

the estimates.

Theorem 5 Under Assumptions 1 to 3 and 4-5 in Appendix A, we have

V̂u +
(

Σ̂X,u − Λ̂u

)−1
(Ŵu + Θ̂)

(
Σ̂X,u − Λ̂u

)−1 p→ Vu + Σ−1X (Wu + Θ)Σ−1X , (62)

where

V̂u =
[
σ̂2u

(
τ̂ + γ̂∗

′
1,uF̂uγ̂∗1,u

)](
Σ̂X,u − Λ̂u

)−1
, (63)

Ŵu =

 0 0′K

0K
1
N

∑N
i=1 Ẑ

′
i,uÛεẐi,u

 , (64)

Θ̂ = θ̂Σ̂Fβ − σ̂2uΨ̂, (65)

with

Ψ̂ =

[
0 γ̂∗

′
1,uF̂γ

F̂ ′γ γ̂∗1,u F̂γβ

]
, (66)
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F̂γ =
1

N

N∑
i=1

P ′i,uPi,u(f̄i,u − f̄)′β̂i,u, (67)

F̂γβ =
1

N

N∑
i=1

Σ̂a
β̂i,u

(f̄i,u − f̄)γ̂∗
′

1,uP ′i,uPi,u

+
1

N

N∑
i=1

P ′i,uPi,uγ̂∗1,u(f̄i,u − f̄)′Σ̂a
β̂i,u

− 1

N

N∑
i=1

(f̄i,u − f̄)′Σ̂a
β̂i,u

(f̄i,u − f̄)P ′i,uPi,u. (68)

Proof: See Online Appendix.

Turning to the specification test analysis, let

êPu = R̄u − X̂uΓ̂∗u (69)

be the N -vector of ex-post sample pricing errors. Define Q̂u = êP
′

u êPu
N as the sum of squared

ex-post sample pricing errors and denote by Σ̂a
β̂u

=
(
B̂′
uB̂u
N − σ̂2uF̂u

)
, b̂ = tr(F ′F Σ̂a

β̂u
), ωN =

1
N

∑N
i=1

∑T
t=1

(
Jit
Ti
− 1

T

)2
tr
(
Pi,uftf ′tP ′i,u

)
, and ZQi,u =

[(
Q′i,u ⊗Q′i,u

)
− Q′

i,uQi,uvec(Mi,u)
′

Ti−K−1

]′
. Fi-

nally, consider the centered statistic

Su =
√
N
(
Q̂u − σ̂2u(τ̂ + γ̂∗

′
1,uF̂uγ̂∗1,u)− θ̂ b̂

)
. (70)

Theorem 6 Under Assumptions 1 to 3 and 4–5 in Appendix A and under H0 : ei = 0 for all i,

we have

Su
d→ N (0,Vu +Wu) , (71)

where

Vu = plim
1

N

N∑
i=1

Z̃ ′Qi,uUεZ̃Qi,u , (72)

Wu = 4σ2plim
1

N

N∑
i=1

W ′iWi (73)

with

Z̃Qi,u = ZQi,u +

(
ωN

(
vec(Mi,u)

Ti −K − 1

)
−

T∑
t=1

(
Jit
Ti
− 1

T

)2

vec
(
Pi,uftf ′tP ′i,u

))
(74)
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and

Wi =

[
(γP1i,u − γP1 )′βiQ

′
i,u −

T∑
t=1

(
Jit
Ti
− 1

T

)2

β′iftf
′
tP ′i,u

]′
. (75)

Note that when the panel is balanced, Theorem 6 reduces to Theorem 3 since Jit
Ti

= 1
T and f̄i,u = f̄ ,

which implies that Wu = 0, Qi,u = Q, and Z̃Qi,u = ZQi,u = ZQ.

This variance can be consistently estimated. Let ẐQi,u =

[(
Q̂′i,u ⊗ Q̂′i,u

)
− Q̂′

i,uQ̂i,uvec(Mi,u)
′

Ti−K−1

]′
and ˆ̃ZQi,u = ẐQi,u +

(
ωN

(
vec(Mi,u)
Ti−K−1

)
−
∑T

t=1

(
Jit
Ti
− 1

T

)2
vec
(
Pi,uftf ′tP ′i,u

))
. Then,

V̂u =
1

N

N∑
i=1

ˆ̃Z ′Qi,uÛε,u
ˆ̃ZQi,u (76)

and

Ŵu = 4σ̂2u
1

N

N∑
i=1

(
Q̂′i,uQ̂i,u(f̄i,u − f̄)′Σ̂a

β̂i,u
(f̄i,u − f̄)

+

T∑
t=1

(
Jit
Ti
− 1

T

)4

tr
(
ftf
′
tP ′i,uPi,uftf ′tΣ̂a

β̂i,u

)
−2 Q̂′i,uPi,u

T∑
t=1

(
Jit
Ti
− 1

T

)2

ftf
′
tΣ̂

a
β̂i,u

(f̄i,u − f̄)

)
. (77)

Monte Carlo simulations (not reported to conserve space) show that the parameter and specification

tests based on Theorems 5 and 6 have excellent size and power properties even when the number

of missing observations is 30-40% of the entire sample.

3 Simulation Evidence

In this section, we undertake a Monte Carlo simulation experiment to study the empirical rejection

rates of the specification and t-tests for the OLS bias-adjusted estimator of Shanken (1992). The

return generating process under the null of a correctly specified beta-pricing model is given by

Rt = γ01N +B (γ1 + ft − E[f ]) + εt, (78)

where εt ∼ N (0, Σ). To study the power of the specification test, we generate the returns on the

test assets as in (4), that is, we do not impose the beta-pricing restriction.
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In all of our simulation experiments, we consider balanced panels with time-series dimension

of T = 36 and T = 72 observations. Specifically, ft in (78) and in (4) is the excess market return

(from Kenneth French’s website) from January 2008 to December 2010 for T = 36, and the excess

market return from January 2008 to December 2013 for T = 72. In our simulation designs, the

factor realizations are taken as given and kept fixed throughout. This is consistent with the fact

that our analysis of the ex-post risk premia is conditional on the realizations of the factors. In

addition, E[f ] in (78) is set equal to the time-series mean of ft over the 2008-2010 sample when

performing the analysis for T = 36 and to the time-series mean of ft over the 2008-2013 sample

when performing the analysis for T = 72. To obtain representative values for the parameters γ0,

γ1, B, and Σ in (78) and (4), we employ a sample of 3000 stocks from CRSP in addition to the

excess market return.6 Based on this balanced panel of 3000 stock returns and the excess market

return, for each time-series sample size, we compute the OLS estimates of B, γ0, and γ1. Then, we

set the B, γ0, and γ1 parameters in (78) and in (4) equal to these OLS estimates. The calibration

of Σ is a more delicate task and is described in the next subsection. In the simulations, we consider

cross-sections of N = 100, 500, 1000, and 3000 stocks. All results are based on 10,000 Monte Carlo

replications. Our econometric approach, designed for large N and fixed T , should be able to handle

this large number of assets over relative short time spans. The rejection rates of the various tests

are computed using our asymptotic results in Section 2.

3.1 Percentage Errors and Root Mean Squared Errors of the Estimates

We start from the case in which Σ is a scalar matrix, that is, Σ = σ2IT . In the simulations, we set

σ2 equal to the cross-sectional average (over the 3000 stocks) of the σ2i ’s estimated from the data.

Table I reports the percentage error (bias) and root mean squared error (RMSE), all in percent, of

the OLS estimator and of the OLS bias-adjusted estimator of Shanken (1992). Panels A and B are

for T = 36 and T = 72, respectively.

Table I about here

6Specifically, we download monthly stock data from January 2008 to December 2013 from the CRSP database and
apply two filters in the selection of stocks. First, we require that a stock has a Standard Industry Classification (SIC)
code (we adopt the 49 industry classifications listed on Kenneth French’s website). Second, we keep a stock in our
sample only for the months in which its price is at least 3 dollars. The resulting dataset consists of 3065 individual
stocks and we randomly select 3000 of them.
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Panel A clearly shows that the bias of the OLS estimator is substantial. For γ̂0, the bias ranges

from 28.8% for N = 100 to 22.9% for N = 3000, while for γ̂1 the bias ranges from -24.8% for

N = 100 to -17.8% for N = 3000. For Γ̂∗, the bias is small for N = 100 (-2.3% for γ̂∗0 and

1.8% for γ̂∗1) and becomes negligible for N ≥ 500. As for the RMSE, the typical bias-variance

trade-off emerges up to N = 500, with the OLS estimator exhibiting a smaller RMSE than the

OLS bias-adjusted estimator. When N > 500, the RMSE of the OLS bias-adjusted estimator

becomes substantially smaller than the one of the OLS estimator. Panel B for T = 72 conveys a

similar message. As expected from the theoretical analysis, the larger time-series dimension helps

in reducing the bias and RMSE associated with the OLS estimator. However, the bias for the OLS

estimator is still substantial and ranges from -18.5% for N = 100 to -11.7% for N = 3000. For the

bias-adjusted estimator, the bias becomes negligible even for N = 100 when T = 72.

Next, we consider the case in which the Σ matrix is either diagonal or full. As emphasized

above, our theoretical results hinge upon the assumption that the model disturbances are weakly

cross-sectionally correlated. In order to generate shocks under a weak factor structure, we consider

the following data generating process (DGP). Define

ε(1) = η

(√
θ

N δ

)
c′ +
√

1− θZ, (79)

where η and c are T and N -vectors of i.i.d. standard normal random variables, respectively, Z is

a (T ×N) matrix of i.i.d. standard normal random variables, 0 ≤ θ ≤ 1 is a shrinkage parameter

that controls the weight assigned to the diagonal and extra-diagonal elements of Σ, and δ is a

parameter that controls the strength of the cross-sectional dependence of the shocks (the bigger is

δ, the weaker is the dependence). Our T ×N matrix of shocks is then generated as

ε = ε(1)


σ21

σ22
. . .

σ2N


0.5 

θ
N2δ c

2
1 + (1− θ)

θ
N2δ c

2
2 + (1− θ)

. . .
θ

N2δ c
2
N + (1− θ)


−0.5

,

(80)

where ci is the i-th element of c. Given this specification for the shocks, for our theoretical results

to hold we require δ > 0.25.

In Table II, we report results for the diagonal case, that is, we set θ = 0 in the above DGP.

To obtain representative values of the shock variances, while accounting for the fact that Σ̂ is
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ill-conditioned when T is small and N is large, we first estimate the residual variances from the

historical data. Then, at each Monte Carlo iteration, we generate a string of Beta(p, q)-distributed

random variables with the p and q parameters calibrated to the cross-sectional mean and variance

of the σ̂2i ’s. This resampling procedure is used to minimize the impact of an ill-conditioned Σ̂ on

the simulation results.

Table II about here

Overall, we find that the OLS estimator exhibits a slightly higher bias compared to the scalar

Σ case. The OLS bias-adjusted estimator continues to perform very well in terms of bias for all

the time-series and cross-sectional dimensions considered. The RMSEs of both estimators are now

a bit higher than in the scalar Σ case, and the OLS bias-adjusted estimator still outperforms the

OLS estimator for N ≥ 500.

Finally, in Tables III and IV, we allow for weak cross-sectional dependence of the model distur-

bances by setting θ = 0.5 in the above DGP.

Tables III and IV about here

In Table III, we consider the situation in which δ, the parameter that regulates the strength of

the cross-sectional dependence, is equal to 0.5. Consistent with our theoretical results, the bias-

adjusted estimator continues to perform very well in this scenario. Setting δ = 0.25 in Table IV

has only a modest effect on the bias and RMSEs of the two estimators. Overall, the first 4 tables

reveal a superiority of the bias-adjusted estimator of Shanken (1992) over the OLS estimator, not

only in terms of bias, but also in terms of RMSE when N > 500. Furthermore, the bias-adjusted

estimator shows little sensitivity to changes in the length of the time series, consistent with the

idea that this estimator should perform well for any given T .

3.2 Rejection Rates of the t-tests

In Tables V through VIII, we consider the empirical rejection rates of centered t-tests of statistical

significance. The null hypothesis is that the parameter of interest is equal to its true value. The

results are reported for different levels of significance (10%, 5%, and 1%) and for different values
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of the number of time-series and cross-sectional observations using 10,000 simulations, assuming

that the model disturbances are generated from a multivariate normal distribution with covariance

matrix calibrated as in Tables I through IV. The t-statistics are compared with the critical values

from a standard normal distribution. We consider three t-statistics. For the OLS estimator of the

ex-post risk premia, the first t-statistic is the one that uses the traditional Fama-MacBeth standard

error (tFM ), while the second t-statistic is the one that uses the EIV-adjusted standard error in

Theorem 1(ii) of Shanken (1992, tEIV ). Both of these t-statistics were developed in a large T and

fixed N framework. We report them here to determine how misleading inference can be when using

these t-statistics in a large N and fixed T setup. Finally, the third t-statistic is the one associated

with the OLS bias-adjusted estimator and is based on the asymptotic distribution in part (ii) of

our Theorem 1.

Table V about here

Starting from the scalar Σ case, Table V shows that the t-statistics associated with the OLS

estimator only slightly overreject the null hypothesis for N = 100. However, as N increases, the

performance of these t-statistics substantially deteriorates. For example, when N = 3000, the

rejections rate of the Fama-MacBeth t-statistic associated with γ̂1 is either 41.6% for T = 36 or

33.3% for T = 72 at the 5% nominal level. The strong size distortions of the Fama-MacBeth t-test

don’t show any improvement when accounting for the EIV bias due to the estimation of the betas in

the first stage. In contrast our proposed t-statistic, based on Theorems 1 and 2, performs extremely

well for all T and N . A similar picture emerges in the Σ full case (Tables VI and VII), with the

rejection rates of our proposed t-test being always aligned with the critical values from a standard

normal distribution.

Tables VI and VII about here

In Table VIII, we increase the strength of the cross-sectional dependence of the residuals by

setting δ = 0.25.

Table VIII about here
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In this situation, we start to notice some slight overrejections for the t-test associated with the

OLS bias-adjusted estimator. For example, when T = 36 and N = 3000, the rejection rate for the

t-test associated with γ̂∗1 is 6.8% at the 5% level, and when T = 72 and N = 3000, the rejection

rate for the t-test associated with γ̂∗1 is 5.8% at the 5% level. Overall, these results suggest that our

proposed t-test is relatively well behaved even when moving towards a fairly strong factor structure

in the residuals. Furthermore, using the standard tools that were developed in a large T and fixed

N framework can lead to strong overrejections of the null hypothesis, with the likely consequence

that a factor will be found to be priced even when it does not help explain the cross-sectional

variation in individual stock returns.

3.3 Rejection Rates of the Specification Test

In Tables IX and X, we investigate the size and power properties of our specification test based on

the results in Theorem 3. Table IX is for T = 36, while Table X is for T = 72.

Tables IX and X about here

Since the specification test has a standard normal distribution, we consider two-sided p-values

in the computation of the rejection rates. The results in the two tables suggest that the rejection

rates of our test under the null that the model is correctly specified are excellent for the scalar and

diagonal cases. When simulating with Σ full, the specification test is very well sized when δ = 0.5

but it overrejects a bit too much when δ = 0.25. The power properties of our specification test are

fairly good when N = 100 and excellent when N ≥ 500. As expected, power increases when the

number of assets becomes large and the rejection rates are similar across time-series sample sizes.

Overall, these simulation results suggest that the tests should be fairly reliable for the time-series

and cross-sectional dimensions encountered in our empirical work.

4 Empirical Analysis

In this section, we empirically investigate the performance of some prominent beta-pricing speci-

fications using individual stock return data. We consider three linear beta-pricing models: (i) the

single-factor CAPM, (ii) the three-factor model of Fama and French (1993, FF3), and (iii) the five-
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factor model recently proposed by Fama and French (2015, FF5). The five factors entering these

empirical specifications are the market excess return (mkt), the return difference between portfolios

of stocks with small and large market capitalizations (smb), the return difference between port-

folios of stocks with high and low book-to-market ratios (hml), the average return on two robust

operating profitability portfolios minus the average return on two weak operating profitability port-

folios (rmw), and the average return on two conservative investment portfolios minus the average

return on two aggressive investment portfolios (cma). The factor data is from Kenneth French’s

website. We use individual stock data from the CRSP database and apply the same two filters

described in the simulation section of the paper in the selection of the stocks. The data is monthly,

from January 1966 until December 2013. We carry out our empirical analysis over three-year and

six-year nonoverlapping periods. After filtering the data, the average number of stocks across the

16 three-year periods is 2329 and across the eight six-year periods is 1684. We choose to conduct

our analysis over relatively short time spans to minimize the possibility of structural breaks in the

betas that could in turn adversely affect the performance of our tests. In addition, focusing on

short time periods renders us less exposed to the potential criticism that our analysis does not

allow for time-variation in the betas and/or in the risk premia. In any event, we think that it is

interesting to investigate how some prominent beta-pricing specifications perform over short time

spans when using individual assets instead of portfolios.

We start by analyzing the performance of the various beta-pricing models over the 16 three-year

periods.

Table XI about here

Panel A of Table XI shows that there is widespread evidence of model misspecification for the

CAPM. In 11 out of 16 cases, the CAPM seems to be at odds with the data at the 5% nominal

level. The CAPM fares relatively well over the 1972-1974 period and over the 80’s, but quite poorly

in more recent times. The number of model rejections is about the same when considering FF3 and

FF5 (10 in both cases at the 5% nominal level). Moreover, all the models are rejected by the data

at any conventional nominal level during the periods that surround the two most recent recessions

of the US economy. As for the eight six-year periods, both CAPM and FF3 are rejected in seven

out of eight cases, while FF5 in five of the eight subperiods at the 5% nominal level. All models
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continue to fare poorly over the two most recent recessions in US history even when employing

longer time spans.

Table XII about here

Our finding of widespread model misspecification is not very surprising given that these three

models have been repeatedly rejected in the literature using portfolios of stocks. Next, we examine

the pricing results based on the ΓP OLS bias-adjusted estimator. We first consider pricing in the

CAPM over the 16 three-year and eight six-year nonoverlapping periods.

Tables XIII and XIV about here

The market factor in the CAPM is priced in 12 out of 16 cases at the 5% nominal level (and

in 14 out of 16 cases at the 10% nominal level) when considering three-year periods, and in six

out of eight cases at the 5% nominal level when considering six-year periods. The performance of

the market factor somewhat decreases when considering FF3. We now have evidence of pricing

in 6 out of 16 cases at the 5% nominal level (and in 7 out of 16 cases at the 10% nominal level)

when considering three-year periods, and in five out of eight cases at the 5% nominal level when

considering six-year periods. The performance of the market factor further decreases in FF5. Over

the longer time spans, the parameter estimate associated with the market factor is statistically

significant in three out of the eight cases at the 5% level. Statistical significance over the shorter

time spans is achieved in only two out of the 16 cases at the 5% level. As for hml and smb, there is

fairly strong evidence of pricing when considering FF3, but statistical significance decreases in the

five-factor model. Finally, the profitability and investment factors in FF5 are rarely priced. We

have some evidence of nonzero risk premia, at the 5% nominal level, over the 1984-1989, 2002-2004,

and 2002-2007 periods for rmw, and over the 1987-1989, 1990-1995, and 2002-2007 periods for cma.

Our empirical findings are consistent with the results in Kim and Skoulakis (2014) who find that

hml is often a priced factor in the cross-section of individual stock returns over short time spans.

Somewhat differently from their paper, we find fairly strong pricing ability also for the market

and size factors. Moreover, our results complement the empirical findings in Chordia, Goyal, and

Shanken (2015) who, unlike us, carry out the analysis over the full sample period 1963-2013. They

find little evidence of pricing for the market and value factors and some evidence of pricing for the
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size, profitability, and investment factors. In contrast, our analysis suggests that the market, size,

and value factors are often priced factors in the cross-section of individual equities over relatively

short time spans.

5 Conclusion

We analyze the large N and fixed T properties of the OLS bias-adjusted estimator of Shanken

(1992) when an underlying beta-pricing model holds exactly. As far as we know, our study is the

first to analytically consider the limiting sampling distribution of the modified Shanken’s estimator.

We also propose a new model specification test that has desirable size and power properties.

Our empirical analysis employs individual monthly stock returns from the CRSP database over

nonoverlapping three and six-year periods from 1966 until 2013. The three prominent beta-pricing

specifications that we consider are the CAPM, the three-factor model of Fama and French (1993),

and the newly proposed five-factor model of Fama and French (2015). We find strong evidence of

model misspecification over the various time periods. Although all the models are in general rejected

by the data, we do find some convincing pricing ability for some of the factors. In particular, the

market factor seems to be strongly priced in the cross-section of individual stocks, followed by the

size and value factors of Fama and Franch (1993). Overall, we find little evidence of pricing for the

investment and profitability factors proposed by Fama and French (2015).

Looking to the future, asset-pricing models with non-traded factors as well as a different data

frequency could, of course, be examined. In terms of the methodology, although our simulation

results are encouraging, the finite-sample properties of the test statistics proposed in this paper

should be explored further. In addition, since our empirical results point to substantial model mis-

specification, it would be useful to derive misspecification-robust standard errors of the parameter

estimates in a large N framework. Model comparison under correctly specified and potentially

misspecified models would also be an interesting research avenue. Finally, the impact of spurious

factors (that is, factors that exhibit very small correlations with the returns on the test assets) on

statistical inference could be examined.
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Appendix A: Additional Assumptions and Lemmas

All the limits are taken for N → ∞. In addition, the expectation operator used throughout this

appendix has to be understood as conditional of F .

Assumption 4. (Idiosyncratic component) We require

(i)

1

N

N∑
i=1

(
σ2i − σ2

)
= o

(
1√
N

)
(A.1)

with 0 < σ2 <∞.

(ii)

sup
j

N∑
i=1

| σij | 1{i 6=j} = o (1) , (A.2)

where 1{·} denotes the indicator function.

(iii)

1

N

N∑
i=1

µ4i → µ4 (A.3)

with 0 < µ4 <∞ and µ4i = E[ε4it].

(iv)

1

N

N∑
i=1

σ4i → σ4 (A.4)

with 0 < σ4 <∞.

(v)

sup
i
E[ε4it] ≤ C <∞ (A.5)

for a generic constant C.

(vi)

E[ε3it] = 0. (A.6)

(vii)

1

N

N∑
i=1

κ4,iiii → κ4 (A.7)
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with 0 < |κ4| <∞, where κ4,iiii = κ4(εit, εit, εit, εit) denotes the fourth-order cumulant of the

random variables {εit, εit, εit, εit}.

(viii) For every 3 ≤ h ≤ 8, all the mixed cumulants of order h are such that

sup
i1

N∑
i2,...,ih=1

|κh,i1i2...ih | = o (N) (A.8)

for at least one ij (2 ≤ j ≤ h) different than i1.

Assumption 4 essentially describes the cross-sectional behavior of the model disturbances. As-

sumption 4(i) limits the cross-sectional heterogeneity of the return conditional variances. Assump-

tion 4(ii) implies that the conditional correlation among asset returns is sufficiently weak. In

particular, it implies that the maximum eigenvalue of the conditional covariance of asset returns

is bounded, which is a fairly common assumption in factor pricing models such as the Arbitrage

Pricing Theory (see, for example, Chamberlain and Rothschild, 1983). In Assumption 4(iii), we

simply assume the existence of the limit of the conditional fourth moment average across assets.

In Assumption 4(iv), the magnitude of σ4 reflects the degree of cross-sectional heterogeneity of

the conditional variance of asset returns. Assumption 4(v) is a bounded fourth moment condi-

tion uniform across assets. Assumption 4(vi) is a convenient symmetry assumption but it is not

strictly necessary for our results. It could be relaxed at the cost of a more cumbersome notation.

Assumption 4(vii) allows for non Gaussianity of asset returns because |κ4| > 0. For example, this

assumption is satisfied when the marginal distribution of asset returns is a Student t with degrees

of freedom greater than four.

Assumption 5.

(i)

1√
N

N∑
i=1

εi
d→ N

(
0T , σ

2IT
)
. (A.9)

(ii)

1√
N

N∑
i=1

vec(εiε
′
i − σ2i IT )

d→ N (0T2 , Uε). (A.10)

(iii) For a generic T -vector CT ,

1√
N

N∑
i=1

(
C ′T ⊗

(
1
βi

))
εi

d→ N (0K+1, Vc), (A.11)
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where Vc ≡ cσ2ΣX and c = C ′TCT . In particular, 1√
N

∑N
i=1 (C ′T ⊗ βi) εi

d→ N (0K , V
†
c ), where

V †c ≡ cσ2Σβ.

Lemma 1

(i) Under Assumptions 2 to 4, we have

σ̂2 − σ2 = Op

(
1√
N

)
. (A.12)

(ii) In addition, under Assumption 5, we have

√
N(σ̂2 − σ2) d→ N (0, uσ2) . (A.13)

Proof

(i) Rewrite σ̂2 − σ2 as

σ̂2 − σ2 =

(
σ̂2 − 1

N

N∑
i=1

σ2i

)
+

(
1

N

N∑
i=1

σ2i − σ2
)

=

(
σ̂2 − 1

N

N∑
i=1

σ2i

)
+ o

(
1√
N

)
(A.14)

by Assumption 4(i). Moreover,

σ̂2 − 1

N

N∑
i=1

σ2i =
tr (Mεε′)

N(T −K − 1)
− tr (M)

T −K − 1

1

N

N∑
i=1

σ2i

=
tr
(
P
(∑N

i=1 σ
2
i IT − εε′

))
N (T −K − 1)

+
tr (εε′)− T

∑N
i=1 σ

2
i

N(T −K − 1)
. (A.15)

As for the second term on the right-hand side of (A.15), we have

tr (εε′)− T
∑N

i=1 σ
2
i

N(T −K − 1)
=

∑N
i=1

∑T
t=1

(
ε2it − σ2i

)
N(T −K − 1)

= Op

(
1√
N

√
T

(T −K − 1)

)
= Op

(
1√
N

)
. (A.16)

As for the first term on the right-hand side of (A.15), we have

tr
(
P
(∑N

i=1 σ
2
i IT − εε′

))
N (T −K − 1)

=

∑T
t=1 dt (D′D)−1D′

(∑N
i=1 σ

2
i ιt −

∑N
i=1 εiεit

)
N(T −K − 1)

=

∑T
t=1 pt

(∑N
i=1 σ

2
i ιt −

∑N
i=1 εiεit

)
N(T −K − 1)

, (A.17)
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where ιt is a T -vector with 1 in the t-th position and zeros elsewhere, dt is the t-th row of D,

and pt = dt (D′D)−1D′. Since (A.17) has zero mean, we only need to consider its variance to

determine the rate of convergence. We have

Var

∑T
t=1 pt

(∑N
i=1 σ

2
i ιt −

∑N
i=1 εiεit

)
N(T −K − 1)


=

1

N2(T −K − 1)2
E

 N∑
i,j=1

T∑
t,s=1

pt
(
σ2i ιt − εiεit

) (
σ2j ιs − εjεjs

)′
p′s


=

1

N2(T −K − 1)2

N∑
i,j=1

T∑
t,s=1

ptE
[(
σ2i ιt − εiεit

) (
σ2j ιs − εjεjs

)′]
p′s. (A.18)

Moreover, we have

E
[(
σ2i ιt − εiεit

) (
σ2j ιs − εjεjs

)′]
= E

[
σ2i σ

2
j ιtι
′
s + εiε

′
jεitεjs − σ2i ιtε′jεjs − σ2j εitεiι′s

]

=



µ4iιtι
′
t + σ4i (IT − 2ιtι

′
t) if i = j, t = s

κ4,iijjιtι
′
t + σ2ij(IT + ιtι

′
t) if i 6= j, t = s

σ4i ιsι
′
t if i = j, t 6= s

σ2ijιsι
′
t if i 6= j, t 6= s.

(A.19)
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It follows that

Var

∑T
t=1 pt

(∑N
i=1 σ

2
i ιt −

∑N
i=1 εiεit

)
N(T −K − 1)


=

1

N2(T −K − 1)2

T∑
t=1

N∑
i=1

pt
(
µ4iιtι

′
t + σ4i (IT − 2ιtι

′
t)
)
p′t

+
1

N2(T −K − 1)2

T∑
t=1

∑
i 6=j

pt
(
κ4,iijjιtι

′
t + σ2ij

(
IT + ιtι

′
t

))
p′t

+
1

N2(T −K − 1)2

N∑
i=1

σ4i
∑
t6=s

ptιsι
′
tp
′
s

+
1

N2(T −K − 1)2

∑
i 6=j

σ2ij
∑
t6=s

ptιsι
′
tp
′
s

= O

(
1

N

)
(A.20)

by Assumptions 4(ii), 4(iii), 4(iv), and 4(viii), which implies that the first term on the right-

hand side of (A.15) is Op

(
1√
N

)
. Putting the pieces together concludes the proof of part (i).

(ii) Using Assumption 4(i) and the properties of the vec operator, we can write
√
N(σ̂2 − σ2) as

√
N(σ̂2 − σ2) =

1

T −K − 1
vec(M)′

1√
N

N∑
i=1

vec
(
εiε
′
i − σ2i IT

)
+ o (1) . (A.21)

The desired result then follows from using Assumption 5(ii). This concludes the proof of

part (ii).

Lemma 2 Let

Λ =

[
0 0′K

0K σ2(F̃ ′F̃ )−1

]
. (A.22)

(i) Under Assumptions 1 to 4, we have

X̂ ′X̂ = Op(N). (A.23)

In addition, under Assumption 5, we have

(ii)

Σ̂X
p→ ΣX + Λ, (A.24)
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and

(iii)

(X̂ −X)′(X̂ −X)

N

p→ Λ. (A.25)

Proof

(i) Consider

X̂ ′X̂ =

 N 1′N B̂

B̂′1N B̂′B̂

 . (A.26)

Then, we have

B̂′1N =

N∑
i=1

β̂i =

N∑
i=1

βi + P ′
N∑
i=1

εi. (A.27)

Under Assumptions 2 to 4,

Var

(
T∑
t=1

N∑
i=1

εit(ft − f̄)

)
=

T∑
t,s=1

N∑
i,j=1

(ft − f̄)(fs − f̄)′E[εitεjs]

≤
T∑
t=1

N∑
i,j=1

(ft − f̄)(ft − f̄)′|σij |

= O

(
Nσ2

T∑
t=1

(ft − f̄)(ft − f̄)′

)
= O (NT ) . (A.28)

Using Assumption 1, we have

B̂′1N = Op

(
N +

(
N
T

) 1
2

)
= Op(N). (A.29)

Next, consider

B̂′B̂ =

N∑
i=1

β̂iβ̂
′
i

=

N∑
i=1

(
βi + P ′εi

) (
βi
′ + εi

′P
)

=

N∑
i=1

βiβi
′ + P ′

(
N∑
i=1

εiεi
′

)
P

+P ′
(

N∑
i=1

εiβi
′

)
+

(
N∑
i=1

βiεi
′

)
P. (A.30)
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By Assumption 1,
N∑
i=1

βiβi
′ = O(N). (A.31)

Using similar arguments as for (A.28),

P ′
(

N∑
i=1

εiβi
′

)
= Op

((
N

T

) 1
2

)
(A.32)

and (
N∑
i=1

βiεi
′

)
P = Op

((
N

T

) 1
2

)
. (A.33)

For P ′
(∑N

i=1 εiεi
′
)
P, consider its central part and take the norm of its expectation. Using

Assumptions 2 to 4, ∥∥∥∥∥E
[
F̃ ′

(
N∑
i=1

εiεi
′

)
F̃

]∥∥∥∥∥
=

∥∥∥∥∥∥E
 T∑
t,s=1

N∑
i=1

(ft − f̄)(fs − f̄)′εitεis

∥∥∥∥∥∥
≤

T∑
t,s=1

N∑
i=1

‖(ft − f̄)(fs − f̄)′‖|E [εitεis] |

=

T∑
t=1

N∑
i=1

∥∥∥(ft − f̄) (ft − f̄)′∥∥∥σ2i
= O

(
Nσ2

T∑
t=1

∥∥(ft − f̄)(ft − f̄)′
∥∥) = O(NT ). (A.34)

Then, we have

P ′
(

N∑
i=1

εiεi
′

)
P = Op

(
N

T

)
(A.35)

and

B̂′B̂ = Op

(
N +

(
N

T

) 1
2

+
N

T

)
= Op(N). (A.36)

This concludes the proof of part (i).

(ii) Using part (i) and under Assumption 2 to 5, we have

N−1B̂′1N =
1

N

N∑
i=1

βi +Op

(
1√
N

)
(A.37)
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and

N−1B̂′B̂ =
1

N

N∑
i=1

βiβ
′
i + P ′

(
1

N

N∑
i=1

εiε
′
i

)
P + P ′

(
1

N

N∑
i=1

εiβ
′
i

)
+

(
1

N

N∑
i=1

βiε
′
i

)
P

=
1

N

N∑
i=1

βiβ
′
i + P ′

(
1

N

N∑
i=1

εiε
′
i −

1

N

N∑
i=1

σ2i IT +
1

N

N∑
i=1

σ2i IT − σ2IT + σ2IT

)
P

+P ′
(

1

N

N∑
i=1

εiβ
′
i

)
+

(
1

N

N∑
i=1

βiε
′
i

)
P

=
1

N

N∑
i=1

βiβ
′
i + P ′

(
1

N

N∑
i=1

(
εiε
′
i − σ2i IT

))
P +

1

N

N∑
i=1

(
σ2i − σ2

)
P ′P + σ2P ′P

+P ′
(

1

N

N∑
i=1

εiβ
′
i

)
+

(
1

N

N∑
i=1

βiε
′
i

)
P

=
1

N

N∑
i=1

βiβ
′
i + σ2P ′P +Op

(
1√
N

)
+ o

(
1√
N

)
+Op

(
1√
N

)
+Op

(
1√
N

)
.

(A.38)

Assumption 1 concludes the proof of part (ii).

(iii) Note that

(X̂ −X)′(X̂ −X)

N
=

1

N

[
0′N

(B̂ −B)′

]
[0N , (B̂ −B)]

=

[
0 0′K

0K P ′ εε′N P

]
, (A.39)

where 0N is an N -vector of zeros. As in part (ii) we can write

εε′

N
=

1

N

N∑
i=1

(
εiε
′
i − σ2i IT

)
+

(
1

N

N∑
i=1

(
σ2i − σ2

))
IT + σ2IT . (A.40)

Assumptions 4(i) and 5(ii) conclude the proof since

P ′ εε
′

N
P = σ2P ′P +Op

(
1√
N

)
+ o

(
1√
N

)
. (A.41)

Lemma 3

(i) Under Assumptions 1 to 4, we have

X ′ε̄ = Op

(√
N
)
. (A.42)
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(ii) In addition, under Assumption 5, we have

1√
N
X ′ε̄

d→ N (0K+1, V ) . (A.43)

Proof

(i) We have

X ′ε̄ =
1

T

T∑
t=1

[
1′N
B′

]
εt (A.44)

and

Var

(
1

T

T∑
t=1

1′N εt

)
=

1

T 2

T∑
t,s=1

N∑
i,j=1

E[εitεjs]

≤ 1

T 2

T∑
t=1

N∑
i,j=1

|σij |

= O

(
NT

T 2
σ2
)

= O (N) . (A.45)

Moreover, using Assumptions 1 and 4(ii),

Var

(
1

T

T∑
t=1

B′εt

)
=

1

T 2

T∑
t,s=1

N∑
i,j=1

E[εitεjs]βiβ
′
j

≤ 1

T 2

T∑
t=1

N∑
i,j=1

|βiβ′j ||σij |

= O

(
NT

T 2
σ2
)

= O (N) . (A.46)

Putting the pieces together, X ′ε̄ = Op

(√
N
)

. This concludes the proof of part (i).

(ii) We have

1√
N
X ′ε̄ =

1√
N
X ′ε′

1T
T

=
1√
N

N∑
i=1

(
1′T
T
⊗
[

1
βi

])
εi. (A.47)

Assumption 5(iii) concludes the proof of part (ii).
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Lemma 4

(i) Under Assumptions 2 to 4, we have

(X̂ −X)′XΓP = Op

(√
N
)
. (A.48)

(ii) In addition, under Assumption 5, we have

1√
N

(X̂ −X)′XΓP
d→ N (0K+1,K) , (A.49)

where

K ≡ σ2
[

0 0′K
0K ΓP ′ΣXΓP (F̃ ′F̃ )−1

]
. (A.50)

Proof

(i) We have

(X̂ −X)′XΓP =

[
0′N
P ′ε

]
XΓP . (A.51)

Using similar arguments as for (A.28) concludes the proof of part (i).

(ii) Using the properties of the vec operator

1√
N

(X̂ −X)′XΓP =
1√
N

[
0 0′K

P ′ε1N P ′εB

] [
γ0
γP1

]
=

1√
N

[
0

P ′εXΓP

]

=
1√
N

N∑
i=1

 0′T

ΓP ′
[

1
βi

]
⊗ P ′

 εi. (A.52)

Using Assumption 5(iii) concludes the proof of part (ii).

Lemma 5

(i) Under Assumptions 2 to 4, we have

(X̂ −X)′ε̄ = Op

(√
N
)
. (A.53)

(ii) In addition, under Assumption 5, we have

1√
N

(X̂ −X)′ε̄
d→ N (0K+1,W) . (A.54)
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Proof

(i)

(X̂ −X)′ε̄ =

[
0
P ′εε̄

]
=

[
0

P ′εε′ 1TT

]
=

[
0

P ′
[(
εε′ −

∑N
i=1 σ

2
i IT

)
+
(∑N

i=1 σ
2
i −Nσ2

)
IT

]
1T
T

]
= Op(

√
N)

(A.55)

by Assumption 4.

(ii)

1√
N

(X̂ −X)′ε̄ =
1√
N

[
0

P ′
[(
εε′ −

∑N
i=1 σ

2
i IT

)
+
(∑N

i=1 σ
2
i −Nσ2

)
IT

]
1T
T

]

=

[
0′T 2(

1′T
T ⊗ P

′
) ] 1√

N

N∑
i=1

vec(εiε
′
i − σ2i IT ) + o(1). (A.56)

The o(1) term in (A.56) is due to Assumption 4(i). Using Assumption 5(ii) concludes the

proof of part (ii).

Lemma 6 Under Assumption 4 and the identification assumption κ4 = 0, we have

σ̂4
p→ σ4. (A.57)

Proof

We need to show that (i) E(σ̂4)→ σ4 and (ii) Var(σ̂4) = O
(
1
N

)
.

(i) By Assumptions 4(iv), 4(vi), and 4(vii), we have

E

[
1

N

T∑
t=1

N∑
i=1

ε̂4it

]
=

1

N

T∑
t=1

N∑
i=1

E
[
ε̂4it
]

=
1

N

T∑
t=1

N∑
i=1

T∑
s1,s2,s3,s4=1

mts1mts2mts3mts4E [εis1εis2εis3εis4 ]

=
1

N

T∑
t=1

N∑
i=1

κ4,iiii

T∑
s=1

m4
ts + 3

1

N

T∑
t=1

N∑
i=1

σ4i

(
T∑
s=1

m2
ts

)2

→ κ4

T∑
t=1

T∑
s=1

m4
ts + 3σ4

T∑
t=1

(
T∑
s=1

m2
ts

)2

, (A.58)
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where ε̂it = ι′tMεi and M = [mts] for t, s = 1, . . . , T . Note that

T∑
s=1

m2
ts = ||mt||2

= i′tMit

= i′t
(
IT −D(D′D)−1D′

)
it

= 1− tr
(
D(D′D)−1D′iti

′
t

)
= 1− tr

(
Piti

′
t

)
= 1− ptt

= mtt, (A.59)

where ptt is the (t, t)-element of P . Then, we have

T∑
t=1

(
T∑
s=1

m2
ts

)2

=
T∑
t=1

m2
tt = tr

(
M (2)

)
. (A.60)

By setting κ4 = 0, it follows that

E [σ̂4] → σ4. (A.61)

This concludes the proof of part (i).
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(ii) As for the variance of σ̂4, we have

Var

(
1

N

N∑
i=1

T∑
t=1

ε̂4it

)
=

1

N2

N∑
i,j=1

T∑
t,s=1

Cov
(
ε̂4it, ε̂

4
js

)
=

1

N2

N∑
i,j=1

T∑
t,s=1

T∑
u1,u2,
u3,u4=1

T∑
v1,v2,
v3,v4=1

mtu1mtu2mtu3mtu4msv1msv2msv3msv4

×Cov (εiu1εiu2εiu3εiu4 , εjv1εjv2εjv3εjv4)

=
1

N2

N∑
i,j=1

T∑
t,s=1

T∑
u1,u2,
u3,u4=1

T∑
v1,v2,
v3,v4=1

mtu1mtu2mtu3mtu4msv1msv2msv3msv4

×

(
κ8 (εiu1 , εiu2 , εiu3 , εiu4 , εjv1 , εjv2 , εjv3 , εjv4)

+

(6,2)∑
κ6 (εiu1 , εiu2 , εiu3 , εiu4 , εjv1 , εjv2) Cov (εjv3 , εjv4)

+

(4,4)∑
κ4 (εiu1 , εiu2 , εjv1 , εjv2)κ4 (εiu3 , εiu4 , εjv3 , εjv4)

+

(4,2,2)∑
κ4 (εiu1 , εiu2 , εjv1 , εjv2) Cov (εiu3 , εiu4) Cov (εjv3 , εjv4)

+

(2,2,2,2)∑
Cov (εiu1 , εiu2) Cov (εiu3 , εjv1) Cov (εiu4 , εjv2) Cov (εjv3 , εjv4)

)
,

(A.62)

where κ4 (·), κ6 (·), and κ8 (·) denote the fourth, sixth, and eighth-order mixed cumulants,

respectively. By
∑(ν1,ν2,...,νk) we denote the sum over all possible partitions of a group of

K random variables into k subgroups of size ν1, ν2, . . . , νk, respectively. As an example,

consider
∑(6,2).

∑(6,2) defines the sum over all possible partitions of the group of eight

random variables {εiu1 , εiu2 , εiu3 , εiu4 , εjv1 , εjv2 , εjv3 , εjv4} into two subgroups of size six and

two, respectively. Moreover, since E [εit] = E
[
ε3it
]

= 0, we do not need to consider further

partitions in the above relation.7 Then, under Assumptions 4(i), 4(ii), 4(v), and 4(viii), it

follows that

Var

(
1

N

N∑
i=1

T∑
t=1

ε̂4it

)
= O

(
1

N

)
(A.63)

and Var (σ̂4) = O
(
1
N

)
. This concludes the proof of part (ii).

7According to the theory on cumulants (Brillinger, 1975), evaluation of Cov (εiu1εiu2εiu3εiu4 , εjv1εjv2εjv3εjv4)
requires to consider the indecomposable partitions of the two sets {εiu1 , εiu2 , εiu3 , εiu4}, {εjv1 , εjv2 , εjv3 , εjv4}, meaning
that there must be at least one subset that includes an element of both sets.
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Appendix B: Proofs of the Theorems

Proof of Theorem 1

(i) Starting from (16), the modified estimator of Shanken (1992) can be written as

Γ̂∗ =
(

Σ̂X − Λ̂
)−1 X̂ ′R̄

N

=
(

Σ̂X − Λ̂
)−1 X̂ ′

N

[
X̂ΓP + ε̄− (X̂ −X)ΓP

]
=

(
Σ̂X − Λ̂

)−1 [X̂ ′X̂
N

ΓP +
X̂ ′

N
ε̄− X̂ ′

N
(X̂ −X)ΓP

]

=
(

Σ̂X − Λ̂
)−1(X̂ ′X̂

N

)ΓP +

(
X̂ ′X̂

N

)−1
X̂ ′

N
ε̄−

(
X̂ ′X̂

N

)−1
X̂ ′

N
(X̂ −X)ΓP


=

IK+1 −

(
X̂ ′X̂

N

)−1
Λ̂

−1 ΓP +

(
X̂ ′X̂

N

)−1
X̂ ′

N
ε̄−

(
X̂ ′X̂

N

)−1
X̂ ′

N
(X̂ −X)ΓP

 .
(B.1)

Hence:

Γ̂∗ − ΓP =

(
X̂ ′X̂

N
− Λ̂

)−1 [
X̂ ′

N
ε̄− X̂ ′

N
(X̂ −X)ΓP + Λ̂ΓP

]

=
(

Σ̂X − Λ̂
)−1 [X̂ ′

N
ε̄−

(
X̂ ′

N
(X̂ −X)− Λ̂

)
ΓP

]

=
(

Σ̂X − Λ̂
)−1 [X̂ ′

N
ε̄−

[
1′N

ε′

NPγ
P
1

B′ε′

N Pγ
P
1 + P ′ εε′N Pγ

P
1 − σ̂2(F̃ ′F̃ )−1γP1

]]
. (B.2)

By Lemmas 1(i) and 2(i),
(

Σ̂X − Λ̂
)

= Op(1). In addition, Lemmas 3(i) and 5(i) imply that

X̂ ′ε̄

N
=

1

N
(X̂ −X)′ε̄+

1

N
X ′ε̄

= Op

(
1√
N

)
(B.3)

and Assumption 5(i) implies that

P ′
N∑
i=1

εi = Op

(√
N
)
. (B.4)
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Note that

P ′ εε
′

N
PγP1 − σ̂2(F̃ ′F̃ )−1γP1 (B.5)

can be rewritten as

P ′
(
εε′

N
− 1

N

N∑
i=1

σ2i IT

)
PγP1 −

[
(σ̂2 − σ2)−

(
1

N

N∑
i=1

σ2i − σ2
)]

(F̃ ′F̃ )−1γP1 . (B.6)

Assumption 5(ii) implies that

P ′
(
εε′

N
−
∑N

i=1 σ
2
i

N
IT

)
PγP1 = Op

(
1√
N

)
. (B.7)

Using Lemma 1(i) and Assumption 4(i) concludes the proof of part (i) since σ̂2 − σ2 =

Op

(
1√
N

)
and 1

N

∑N
i=1 σ

2
i − σ2 = o

(
1√
N

)
.

(ii) Starting from (B.2), we have

√
N(Γ̂∗ − ΓP ) =

(
Σ̂X − Λ̂

)−1 [ X̂ ′ε̄√
N
−

(
X̂ ′√
N

(X̂ −X)ΓP

)
+
√
N Λ̂ΓP

]

=
(

Σ̂X − Λ̂
)−1 [ X̂ ′ε̄√

N
−
[

1′N
B̂′

] [
0N ,

ε′P√
N

]
ΓP +

√
N Λ̂ΓP

]

=
(

Σ̂X − Λ̂
)−1[X ′ε̄√

N
+

1√
N

[
0′N
P ′ε

]
ε′1T
T
− 1√

N

[
1′N ε

′P
B̂′ε′P

]
γP1 +

√
N Λ̂ΓP

]

=
(

Σ̂X − Λ̂
)−1 [[ 1′N

B′

]
ε′1T

T
√
N

+

[
−1′N

ε′P√
N
γP1

P ′ εε′√
N

1T
T −B

′ ε′P√
N
γP1 − P ′ εε

′
√
N
PγP1

]

+
√
Nσ̂2(F̃ ′F̃ )−1γP1

]

=
(

Σ̂X − Λ̂
)−1  1′N√

N
ε′
(
1T
T − Pγ

P
1

)
B′ε′√
N

(
1T
T − Pγ

P
1

)
+ P ′ εε′√

N

(
1T
T − Pγ

P
1

)
+ tr(Mεε′)√

N(T−K−1)P
′PγP1


=

(
Σ̂X − Λ̂

)−1 [[ 1′N ε
′

√
N
Q

B′ε′√
N
Q

]
+

[
0

P ′ εε′√
N
Q+ tr(Mεε′)√

N(T−K−1)P
′PγP1

]]

≡
(

Σ̂X − Λ̂
)−1

(I1 + I2) . (B.8)

Using Lemmas 1(i) and 2(ii), we have(
Σ̂X − Λ̂

)
p→

([
1 µ′β
µβ Σβ + σ2(F̃ ′F̃ )−1

]
−
[

0 0′K
0K σ2(F̃ ′F̃ )−1

])
= ΣX . (B.9)
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Consider now the terms I1 and I2. Both terms have mean zero and, under Assumption 4(vi),

they are asymptotically uncorrelated. Assumptions 1, 4(i), 5(i), and 5(iii) imply that

Var(I1) = E

[
Q′ 1√

N

∑N
i=1 εi

1√
N

∑N
j=1 ε

′
jQ Q′ 1√

N

∑N
i=1 εi

1√
N

∑N
j=1 ε

′
j(Q⊗ β′j)

1√
N

∑N
i=1(Q

′ ⊗ βi)εi 1√
N

∑N
j=1 ε

′
jQ

1√
N

∑N
i=1(Q

′ ⊗ βi)εi 1√
N

∑N
j=1 ε

′
j(Q⊗ β′j)

]

=

[
Q′ 1N

∑N
i=1E[εiε

′
i]Q Q′ 1N

∑N
i=1E[εiε

′
i](Q⊗ β′i)

1
N

∑N
i=1(Q

′ ⊗ βi)E[εiε
′
i]Q

1
N

∑N
i=1(Q

′ ⊗ βi)E[εiε
′
i](Q⊗ β′i)

]
+ o(1)

→
[

σ2Q′Q σ2Q′(Q⊗ µ′β)

σ2(Q′ ⊗ µβ)Q σ2(Q′Q⊗ Σβ)

]
= σ2Q′QΣX =

σ2

T

[
1 + γP1

′
(
F̃ ′F̃ /T

)−1
γP1

]
ΣX . (B.10)

Next, consider I2. Since P ′ 1√
N

∑N
i=1 σ

2
iQ+ 1

T−K−1tr
(
M 1√

N

∑N
i=1 σ

2
i

)
P ′PγP1 = 0K , we have

I2 =

[
0

(Q′ ⊗ P ′)vec
(

1√
N

∑N
i=1(εiε

′
i − σ2i IT )

)
+ 1

T−K−1tr
(
M 1√

N

∑N
i=1(εiε

′
i − σ2i IT )

)
P ′PγP1

]

≡
[

0
I22

]
. (B.11)

Therefore, Var(I2) has the following form:

Var(I2) =

[
0 0′K

0K E [I22I
′
22]

]
. (B.12)

Under Assumptions 4(i) and 5(ii), we have

E
[
I22I

′
22

]
= E
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(Q′ ⊗ P ′) 1√

N

N∑
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vec(εiε
′
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N
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]

+E

[
(Q′ ⊗ P ′) 1√

N
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′
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N

N∑
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′
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γP1
′P ′P

]

+E
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P ′PγP1

vec(M)′

T −K − 1

1√
N

N∑
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vec(εiε
′
i − σ2i IT )

1√
N

N∑
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vec(εjε
′
j − σ2j IT )′(Q⊗ P)

]

+E

[
P ′PγP1

vec(M)′

T −K − 1

1√
N

N∑
i=1

vec(εiε
′
i − σ2i IT )

1√
N

N∑
j=1

vec(εjε
′
j − σ2j IT )′

vec(M)

T −K − 1

×γP1 ′P ′P

]

→

[
(Q′ ⊗ P ′) + P ′PγP1

vec(M)′

T −K − 1

]
Uε

[
(Q⊗ P) +

vec(M)

T −K − 1
γP1
′P ′P

]
. (B.13)

Defining Z =
[
(Q⊗ P) + vec(M)

T−K−1γ
P
1
′P ′P

]
concludes the proof of part (ii).
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Proof of Theorem 2

By Theorem 1(i), γ̂∗1
p→ γP1 . Lemma 1(i) implies that Λ̂ is a consistent estimator of Λ. Hence, using

Lemma 2(ii), we have that
(

Σ̂X − Λ̂
)

p→ ΣX , which implies that V̂
p→ V . A consistent estimator

of W requires a consistent estimator of the matrix Uε, which can be obtained using Lemma 6. This

concludes the proof of Theorem 2.

Proof of Theorem 3

We first establish a simpler, asymptotically equivalent, expression for
√
N
(
êP ′êP

N − σ̂2Q̂′Q̂
)

. Then,

we derive the asymptotic distribution of this approximation. Consider the sample ex-post pricing

errors

êP = R̄− X̂Γ̂∗. (B.14)

Starting from R̄ = X̂ΓP + ηP with ηP = ε̄− (X̂ −X)ΓP , we have

êP = X̂ΓP + ε̄− (X̂ −X)ΓP − X̂Γ̂∗

= ε̄− X̂(Γ̂∗ − ΓP )− (X̂ −X)ΓP . (B.15)

Then,

êP ′êP = ε̄′ε̄+ ΓP ′(X̂ −X)′(X̂ −X)ΓP

−2(Γ̂∗ − ΓP )′X̂ ′ε̄− 2ΓP ′(X̂ −X)′ε̄

+2ΓP ′(X̂ −X)′X̂(Γ̂∗ − ΓP )

+(Γ̂∗ − ΓP )′X̂ ′X̂(Γ̂∗ − ΓP ). (B.16)

Note that

ε̄′ε̄

N
=

1

T 2
1′T
εε′

N
1T

p→ σ2

T
, (B.17)

and, by Lemma 2(iii),

ΓP ′
(X̂ −X)′(X̂ −X)

N
ΓP = γP1

′P ′ εε
′

N
PγP1

p→ σ2γP1
′(F̃ ′F̃ )−1γP1 . (B.18)

Using Lemmas 3(i) and 5(i) and Theorem 1, we have

(Γ̂∗ − ΓP )′X̂ ′ε̄

N
=

(Γ̂∗ − ΓP )′(X̂ −X)′ε̄

N
+

(Γ̂∗ − ΓP )′X ′ε̄

N
= Op

(
1

N

)
(B.19)
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and

ΓP ′(X̂ −X)′ε̄

N
= Op

(
1√
N

)
. (B.20)

In addition, using Lemmas 2(i), 2(iii), 4(i), and Theorem 1, we have

ΓP ′(X̂ −X)′X̂(Γ̂∗ − ΓP )

N
=

ΓP ′(X̂ −X)′(X̂ −X)(Γ̂∗ − ΓP )

N
+
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N
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( 1√
N

)
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(
1

N

)
(B.21)

and

(Γ̂∗ − ΓP )′X̂ ′X̂(Γ̂∗ − ΓP )

N
= Op

(
1

N

)
. (B.22)

It follows that

êP ′êP

N

p→ σ2

T
+ σ2γP1

′(F̃ ′F̃ )−1γP1 ≡ σ2Q′Q. (B.23)

Collecting terms and rewriting explicitly only the ones that are Op

(
1√
N

)
, we have

êP ′êP

N
=

ε̄′ε̄

N
(B.24)

+
ΓP ′(X̂ −X)′(X̂ −X)ΓP

N
(B.25)

−2
ΓP ′(X̂ −X)′ε̄

N
(B.26)

+2
ΓP ′(X̂ −X)′(X̂ −X)(Γ̂∗ − ΓP )

N
(B.27)

+Op

( 1

N

)
. (B.28)

Consider the sum of the three terms in (B.24)-(B.26). Under Assumption 4(i), we have
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− 2
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where the o
(

1√
N

)
term comes from (σ̄2 − σ2)Q′Q. As for the term in (B.27), define(

Σ̂X − Λ̂
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where every block of
(
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is Op(1) by the nonsingularity of ΣX and Slutsky’s theorem.

Using the same arguments as for Theorem 2, we have
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where the two approximations on the right-hand side of the previous expression refer to
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respectively. Therefore, we have
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It follows that
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implying that the asymptotic distribution of
√
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This concludes the proof of Theorem 3.

Appendix C: Form of Uε

Denote by Uε the T 2 × T 2 matrix

Uε =



U11 · · · U1t · · · U1T

...
. . .

...
...

...

Ut1 · · · Utt · · · UtT

...
...

...
. . .

...

UT1 · · · UTt · · · UTT


. (C.1)

Each block of Uε is a T × T matrix. The blocks along the main diagonal, denoted by Utt,

t = 1, 2, . . . , T , are themselves diagonal matrices with (κ4 + 2σ4) in the (t, t)-th position and σ4 in

the (s, s) position for every s 6= t, that is,

↓
t-th column

Utt = →
t-th row



σ4 · · · 0 · · · · · · · · · 0
...

. . .
...

...
...

...
...

0 · · · σ4 0 · · · · · · 0
0 · · · 0 (κ4 + 2σ4) 0 · · · 0
0 · · · · · · 0 σ4 · · · 0
...

...
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 σ4


. (C.2)

The blocks outside the main diagonal, denoted by Uts, s, t = 1, 2, . . . , T with s 6= t, are all made of
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zeros except for the (s, t)-th position that contains σ4, that is,

↓
t-th column

Uts = →
s-th row



0 · · · 0 · · · · · · · · · 0
...

. . .
...

...
...

...
...

0 · · · 0 0 · · · · · · 0
0 · · · 0 σ4 0 · · · 0
0 · · · · · · 0 0 · · · 0
...

...
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 0


. (C.3)

Under Assumption 4 and Lemma 6 in Appendix A, it is easy to show that Ûε in Theorem 2 is a

consistent plug-in estimator of Uε that only depends on σ̂4.
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Table I
Bias and RMSE of the OLS and OLS Bias-Adjusted Estimators in a One-Factor

Model (Σ Scalar)

The table reports the percentage bias (Bias) and root mean squared error (RMSE), all in percent, over
10,000 simulated data sets. The model disturbances are generated from a multivariate normal distribution
with a covariance matrix calibrated to 3000 NYSE-AMEX-NASDAQ individual stock returns over the period
2008:1–2013:12.

Statistics N = 100 N = 500 N = 1000 N = 3000

Panel A: T = 36

Bias(γ̂0) 28.8% 26.2% 24.6% 22.9%
Bias(γ̂∗0) -2.3% -0.3% 0.3% -0.2%
RMSE(γ̂0) 0.3675 0.1875 0.1427 0.1066
RMSE(γ̂∗0) 0.4509 0.1892 0.1255 0.0699
Bias(γ̂1) -24.8% -20.0% -18.8% -17.8%
Bias(γ̂∗1) 1.8% 0.1% -0.2% 0.2%
RMSE(γ̂1) 0.3539 0.1642 0.1277 0.1000
RMSE(γ̂∗1) 0.4529 0.1655 0.1098 0.0609

Panel B: T = 72

Bias(γ̂0) 11.6% 9.8% 8.7% 7.9%
Bias(γ̂∗0) -0.8% -0.0% -0.0% -0.1%
RMSE(γ̂0) 0.2504 0.1198 0.0877 0.0628
RMSE(γ̂∗0) 0.2881 0.1165 0.0766 0.0426
Bias(γ̂1) -18.5% -14.1% -12.4% -11.7%
Bias(γ̂∗1) 1.0% -0.0% 0.2% 0.1%
RMSE(γ̂1) 0.2437 0.1063 0.0787 0.0597
RMSE(γ̂∗1) 0.2868 0.1026 0.0674 0.0379
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Table II
Bias and RMSE of the OLS and OLS Bias-Adjusted Estimators in a One-Factor

Model (Σ Diagonal)

The table reports the percentage bias (Bias) and root mean squared error (RMSE), all in percent, over
10,000 simulated data sets. The model disturbances are generated from a multivariate normal distribution
with a covariance matrix calibrated to 3000 NYSE-AMEX-NASDAQ individual stock returns over the period
2008:1–2013:12.

Statistics N = 100 N = 500 N = 1000 N = 3000

Panel A: T = 36

Bias(γ̂0) 30.1% 25.8% 24.8% 23.0%
Bias(γ̂∗0) -0.7% -0.8% 0.4% -0.1%
RMSE(γ̂0) 0.4047 0.1976 0.1495 0.1100
RMSE(γ̂∗0) 0.5027 0.2054 0.1364 0.0763
Bias(γ̂1) -25.5% -19.6% -18.7% -17.9%
Bias(γ̂∗1) 0.9% 0.6% -0.1% 0.1%
RMSE(γ̂1) 0.3949 0.1733 0.1339 0.1033
RMSE(γ̂∗1) 0.5104 0.1815 0.1208 0.0681

Panel B: T = 72

Bias(γ̂0) 11.2% 10.0% 8.6% 8.0%
Bias(γ̂∗0) -1.2% 0.2% -0.1% 0.0%
RMSE(γ̂0) 0.2673 0.1246 0.0899 0.0643
RMSE(γ̂∗0) 0.3116 0.1223 0.0804 0.0446
Bias(γ̂1) -18.1% -14.3% -12.3% -11.8%
Bias(γ̂∗1) 1.5% -0.3% 0.3% -0.0%
RMSE(γ̂1) 0.2621 0.1112 0.0809 0.0612
RMSE(γ̂∗1) 0.3120 0.1087 0.0711 0.0400
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Table III
Bias and RMSE of the OLS and OLS Bias-Adjusted Estimators in a One-Factor

Model (Σ Full, δ = 0.5)

The table reports the percentage bias (Bias) and root mean squared error (RMSE), all in percent, over
10,000 simulated data sets. The model disturbances are generated from a multivariate normal distribution
with a covariance matrix calibrated to 3000 NYSE-AMEX-NASDAQ individual stock returns over the period
2008:1–2013:12.

Statistics N = 100 N = 500 N = 1000 N = 3000

Panel A: T = 36

Bias(γ̂0) 28.8% 26.0% 24.6% 22.7%
Bias(γ̂∗0) -2.6% -0.6% 0.3% -0.4%
RMSE(γ̂0) 0.4065 0.1960 0.1506 0.1089
RMSE(γ̂∗0) 0.5081 0.2031 0.1385 0.0760
Bias(γ̂1) -24.2% -19.6% -18.9% -17.7%
Bias(γ̂∗1) 2.7% 0.7% -0.3% 0.3%
RMSE(γ̂1) 0.3963 0.1727 0.1352 0.1028
RMSE(γ̂∗1) 0.5159 0.1806 0.1220 0.0681

Panel B: T = 72

Bias(γ̂0) 11.8% 9.4% 8.6% 8.0%
Bias(γ̂∗0) -0.5% -0.5% -0.1% -0.0%
RMSE(γ̂0) 0.2671 0.1227 0.0910 0.0642
RMSE(γ̂∗0) 0.3099 0.1225 0.0820 0.0447
Bias(γ̂1) -19.0% -13.6% -12.4% -11.7%
Bias(γ̂∗1) 0.5% 0.6% 0.1% 0.1%
RMSE(γ̂1) 0.2614 0.1104 0.0819 0.0611
RMSE(γ̂∗1) 0.3096 0.1100 0.0720 0.0405
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Table IV
Bias and RMSE of the OLS and OLS Bias-Adjusted Estimators in a One-Factor

Model (Σ Full, δ = 0.25)

The table reports the percentage bias (Bias) and root mean squared error (RMSE), all in percent, over
10,000 simulated data sets. The model disturbances are generated from a multivariate normal distribution
with a covariance matrix calibrated to 3000 NYSE-AMEX-NASDAQ individual stock returns over the period
2008:1–2013:12.

Statistics N = 100 N = 500 N = 1000 N = 3000

Panel A: T = 36

Bias(γ̂0) 28.8% 26.6% 24.2% 23.5%
Bias(γ̂∗0) -2.5% 0.1% -0.3% 0.5%
RMSE(γ̂0) 0.4191 0.2053 0.1536 0.1135
RMSE(γ̂∗0) 0.5254 0.2152 0.1450 0.0809
Bias(γ̂1) -24.8% -19.9% -18.5% -18.3%
Bias(γ̂∗1) 2.0% 0.2% 0.2% -0.4%
RMSE(γ̂1) 0.4116 0.1824 0.1380 0.1072
RMSE(γ̂∗1) 0.5355 0.1935 0.1288 0.0731

Panel B: T = 72

Bias(γ̂0) 12.2% 9.7% 8.8% 7.9%
Bias(γ̂∗0) -0.1% -0.2% 0.1% -0.1%
RMSE(γ̂0) 0.2795 0.1287 0.0939 0.0645
RMSE(γ̂∗0) 0.3252 0.1292 0.0853 0.0459
Bias(γ̂1) -19.3% -13.9% -12.6% -11.7%
Bias(γ̂∗1) 0.0% 0.2% -0.1% 0.2%
RMSE(γ̂1) 0.2761 0.1155 0.0854 0.0615
RMSE(γ̂∗1) 0.3279 0.1158 0.0763 0.0416
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Table V
Size of t-tests in a One-Factor Model (Σ Scalar)

The table presents the size properties of t-tests of statistical significance. The null hypothesis is that the
parameter of interest is equal to its true value. The results are reported for different levels of significance
(10%, 5%, and 1%) and for different values of the number of stocks (N) using 10,000 simulations, assuming
that the model disturbances are generated from a multivariate normal distribution with a covariance matrix
calibrated to 3000 NYSE-AMEX-NASDAQ individual stock returns over the period 2008:1–2013:12. tFM (·)
denotes the t-statistic associated with the OLS estimator that uses the traditional Fama-MacBeth standard
error, while tEIV (·) denotes the t-statistic associated with the OLS estimator that uses the EIV-adjusted
standard error in Theorem 1(ii) of Shanken (1992). Finally, the rejection rates for the t-test associated with
the OLS bias-adjusted estimator are based on the asymptotic distribution in part (ii) of Theorem 1. The
t-statistics are compared with the critical values from a standard normal distribution.

Panel A: T = 36

N 0.10 0.05 0.01 0.10 0.05 0.01

tFM (γ̂0) tFM (γ̂1)
100 0.128 0.074 0.021 0.141 0.078 0.022
500 0.186 0.113 0.040 0.213 0.132 0.047
1000 0.243 0.156 0.059 0.290 0.197 0.075
3000 0.438 0.324 0.153 0.538 0.416 0.219

tEIV (γ̂0) tEIV (γ̂1)
100 0.127 0.073 0.020 0.140 0.077 0.022
500 0.185 0.113 0.039 0.211 0.132 0.047
1000 0.243 0.156 0.059 0.289 0.197 0.075
3000 0.437 0.323 0.152 0.537 0.415 0.218

t(γ̂∗0) t(γ̂∗1)
100 0.097 0.051 0.010 0.100 0.048 0.010
500 0.105 0.053 0.011 0.107 0.055 0.012
1000 0.103 0.052 0.010 0.105 0.054 0.011
3000 0.098 0.051 0.011 0.100 0.049 0.010
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Table V (Continued)
Size of t-tests in a One-Factor Model (Σ Scalar)

Panel B: T = 72

N 0.10 0.05 0.01 0.10 0.05 0.01

tFM (γ̂0) tFM (γ̂1)
100 0.123 0.063 0.016 0.124 0.066 0.016
500 0.167 0.099 0.030 0.181 0.109 0.033
1000 0.211 0.133 0.041 0.237 0.154 0.053
3000 0.378 0.263 0.109 0.449 0.333 0.150

tEIV (γ̂0) tEIV (γ̂1)
100 0.122 0.063 0.015 0.123 0.065 0.016
500 0.166 0.099 0.030 0.181 0.108 0.033
1000 0.210 0.132 0.040 0.236 0.153 0.052
3000 0.377 0.261 0.108 0.448 0.331 0.149

t(γ̂∗0) t(γ̂∗1)
100 0.096 0.047 0.009 0.100 0.048 0.009
500 0.097 0.049 0.010 0.098 0.049 0.010
1000 0.100 0.047 0.009 0.103 0.048 0.009
3000 0.103 0.054 0.010 0.106 0.054 0.010
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Table VI
Size of t-tests in a One-Factor Model (Σ Diagonal)

The table presents the size properties of t-tests of statistical significance. The null hypothesis is that the
parameter of interest is equal to its true value. The results are reported for different levels of significance
(10%, 5%, and 1%) and for different values of the number of stocks (N) using 10,000 simulations, assuming
that the model disturbances are generated from a multivariate normal distribution with a covariance matrix
calibrated to 3000 NYSE-AMEX-NASDAQ individual stock returns over the period 2008:1–2013:12. tFM (·)
denotes the t-statistic associated with the OLS estimator that uses the traditional Fama-MacBeth standard
error, while tEIV (·) denotes the t-statistic associated with the OLS estimator that uses the EIV-adjusted
standard error in Theorem 1(ii) of Shanken (1992). Finally, the rejection rates for the t-test associated with
the OLS bias-adjusted estimator are based on the asymptotic distribution in part (ii) of Theorem 1. The
t-statistics are compared with the critical values from a standard normal distribution.

Panel A: T = 36

N 0.10 0.05 0.01 0.10 0.05 0.01

tFM (γ̂0) tFM (γ̂1)
100 0.122 0.066 0.019 0.125 0.072 0.018
500 0.163 0.104 0.033 0.179 0.112 0.036
1000 0.226 0.141 0.050 0.248 0.166 0.060
3000 0.398 0.292 0.128 0.474 0.362 0.174

tEIV (γ̂0) tEIV (γ̂1)
100 0.120 0.065 0.018 0.124 0.070 0.017
500 0.163 0.103 0.033 0.179 0.111 0.036
1000 0.225 0.141 0.050 0.247 0.165 0.060
3000 0.397 0.291 0.127 0.473 0.362 0.173

t(γ̂∗0) t(γ̂∗1)
100 0.093 0.045 0.011 0.091 0.044 0.010
500 0.102 0.051 0.010 0.096 0.049 0.011
1000 0.099 0.048 0.009 0.101 0.051 0.009
3000 0.099 0.053 0.012 0.099 0.051 0.010
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Table VI (Continued)
Size of t-tests in a One-Factor Model (Σ Diagonal)

Panel B: T = 72

N 0.10 0.05 0.01 0.10 0.05 0.01

tFM (γ̂0) tFM (γ̂1)
100 0.115 0.060 0.015 0.121 0.064 0.015
500 0.157 0.089 0.027 0.165 0.096 0.030
1000 0.199 0.121 0.036 0.219 0.137 0.044
3000 0.353 0.250 0.103 0.416 0.302 0.134

tEIV (γ̂0) tEIV (γ̂1)
100 0.114 0.059 0.014 0.119 0.063 0.015
500 0.157 0.089 0.027 0.163 0.096 0.029
1000 0.198 0.120 0.036 0.218 0.136 0.044
3000 0.351 0.248 0.102 0.414 0.301 0.132

t(γ̂∗0) t(γ̂∗1)
100 0.097 0.048 0.010 0.096 0.048 0.007
500 0.095 0.046 0.010 0.093 0.047 0.010
1000 0.097 0.049 0.011 0.095 0.049 0.010
3000 0.103 0.052 0.010 0.102 0.051 0.010
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Table VII
Size of t-tests in a One-Factor Model (Σ Full, δ = 0.5)

The table presents the size properties of t-tests of statistical significance. The null hypothesis is that the
parameter of interest is equal to its true value. The results are reported for different levels of significance
(10%, 5%, and 1%) and for different values of the number of stocks (N) using 10,000 simulations, assuming
that the model disturbances are generated from a multivariate normal distribution with a covariance matrix
calibrated to 3000 NYSE-AMEX-NASDAQ individual stock returns over the period 2008:1–2013:12. tFM (·)
denotes the t-statistic associated with the OLS estimator that uses the traditional Fama-MacBeth standard
error, while tEIV (·) denotes the t-statistic associated with the OLS estimator that uses the EIV-adjusted
standard error in Theorem 1(ii) of Shanken (1992). Finally, the rejection rates for the t-test associated with
the OLS bias-adjusted estimator are based on the asymptotic distribution in part (ii) of Theorem 1. The
t-statistics are compared with the critical values from a standard normal distribution.

Panel A: T = 36

N 0.10 0.05 0.01 0.10 0.05 0.01

tFM (γ̂0) tFM (γ̂1)
100 0.126 0.069 0.020 0.125 0.070 0.021
500 0.166 0.097 0.030 0.181 0.109 0.034
1000 0.227 0.143 0.049 0.258 0.170 0.063
3000 0.393 0.282 0.123 0.472 0.354 0.168

tEIV (γ̂0) tEIV (γ̂1)
100 0.124 0.068 0.019 0.123 0.068 0.021
500 0.166 0.096 0.030 0.180 0.109 0.034
1000 0.227 0.142 0.049 0.257 0.170 0.063
3000 0.392 0.281 0.122 0.470 0.353 0.167

t(γ̂∗0) t(γ̂∗1)
100 0.097 0.045 0.012 0.094 0.046 0.011
500 0.094 0.045 0.009 0.095 0.045 0.010
1000 0.106 0.051 0.011 0.102 0.050 0.010
3000 0.100 0.051 0.011 0.100 0.053 0.011
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Table VII (Continued)
Size of t-tests in a One-Factor Model (Σ Full, δ = 0.5)

Panel B: T = 72

N 0.10 0.05 0.01 0.10 0.05 0.01

tFM (γ̂0) tFM (γ̂1)
100 0.113 0.062 0.014 0.119 0.061 0.014
500 0.150 0.086 0.025 0.165 0.096 0.029
1000 0.202 0.127 0.041 0.228 0.141 0.047
3000 0.353 0.246 0.102 0.417 0.302 0.137

tEIV (γ̂0) tEIV (γ̂1)
100 0.112 0.062 0.014 0.117 0.060 0.014
500 0.149 0.085 0.025 0.164 0.096 0.029
1000 0.201 0.126 0.041 0.227 0.141 0.047
3000 0.352 0.244 0.100 0.415 0.301 0.136

t(γ̂∗0) t(γ̂∗1)
100 0.094 0.046 0.010 0.091 0.044 0.009
500 0.095 0.047 0.010 0.094 0.050 0.011
1000 0.105 0.052 0.011 0.102 0.052 0.010
3000 0.102 0.052 0.012 0.102 0.053 0.013
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Table VIII
Size of t-tests in a One-Factor Model (Σ Full, δ = 0.25)

The table presents the size properties of t-tests of statistical significance. The null hypothesis is that the
parameter of interest is equal to its true value. The results are reported for different levels of significance
(10%, 5%, and 1%) and for different values of the number of stocks (N) using 10,000 simulations, assuming
that the model disturbances are generated from a multivariate normal distribution with a covariance matrix
calibrated to 3000 NYSE-AMEX-NASDAQ individual stock returns over the period 2008:1–2013:12. tFM (·)
denotes the t-statistic associated with the OLS estimator that uses the traditional Fama-MacBeth standard
error, while tEIV (·) denotes the t-statistic associated with the OLS estimator that uses the EIV-adjusted
standard error in Theorem 1(ii) of Shanken (1992). Finally, the rejection rates for the t-test associated with
the OLS bias-adjusted estimator are based on the asymptotic distribution in part (ii) of Theorem 1. The
t-statistics are compared with the critical values from a standard normal distribution.

Panel A: T = 36

N 0.10 0.05 0.01 0.10 0.05 0.01

tFM (γ̂0) tFM (γ̂1)
100 0.125 0.068 0.017 0.124 0.068 0.018
500 0.163 0.095 0.034 0.174 0.109 0.039
1000 0.215 0.131 0.046 0.241 0.155 0.057
3000 0.389 0.280 0.125 0.459 0.343 0.164

tEIV (γ̂0) tEIV (γ̂1)
100 0.123 0.067 0.017 0.123 0.067 0.017
500 0.162 0.095 0.033 0.174 0.109 0.039
1000 0.214 0.130 0.046 0.240 0.155 0.057
3000 0.388 0.278 0.124 0.458 0.341 0.163

t(γ̂∗0) t(γ̂∗1)
100 0.109 0.060 0.015 0.112 0.059 0.015
500 0.115 0.062 0.018 0.117 0.064 0.019
1000 0.122 0.065 0.016 0.119 0.066 0.017
3000 0.121 0.069 0.018 0.124 0.068 0.018
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Table VIII (Continued)
Size of t-tests in a One-Factor Model (Σ Full, δ = 0.25)

Panel B: T = 72

N 0.10 0.05 0.01 0.10 0.05 0.01

tFM (γ̂0) tFM (γ̂1)
100 0.119 0.060 0.014 0.123 0.066 0.015
500 0.155 0.091 0.025 0.163 0.098 0.030
1000 0.199 0.126 0.042 0.222 0.138 0.050
3000 0.334 0.229 0.092 0.390 0.280 0.124

tEIV (γ̂0) tEIV (γ̂1)
100 0.117 0.059 0.014 0.122 0.065 0.015
500 0.155 0.090 0.025 0.162 0.098 0.030
1000 0.198 0.125 0.042 0.222 0.138 0.049
3000 0.333 0.228 0.091 0.388 0.278 0.123

t(γ̂∗0) t(γ̂∗1)
100 0.108 0.057 0.012 0.110 0.059 0.015
500 0.114 0.062 0.015 0.119 0.065 0.015
1000 0.121 0.063 0.015 0.122 0.067 0.016
3000 0.111 0.057 0.012 0.114 0.058 0.014
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Table IX
Rejection Rates of the Specification Test in a One-Factor Model

The table presents the size and power properties of the test of correct model specification. The null hypothesis
is that the model is correctly specified. The alternative hypothesis is that the model is misspecified. The
results are reported for different levels of significance (10%, 5%, and 1%) and for different values of the
number of stocks (N) using 10,000 simulations, assuming that the model disturbances are generated from
a multivariate normal distribution with a covariance matrix calibrated to 3000 NYSE-AMEX-NASDAQ
individual stock returns over the period 2008:1–2010:12 (T = 36). Finally, the rejection rates for the
specification test are based on the asymptotic distribution in Theorem 3. The rejection rates of the test are
based on two-sided p-values.

Size Power

N 10% 5% 1% 10% 5% 1%

Panel A: Σ Scalar

100 0.103 0.049 0.009 0.882 0.823 0.675
500 0.098 0.050 0.009 1.000 1.000 0.998
1000 0.101 0.052 0.011 1.000 1.000 1.000
3000 0.101 0.050 0.009 1.000 1.000 1.000

Panel B: Σ Diagonal

100 0.085 0.037 0.010 0.634 0.529 0.340
500 0.093 0.046 0.010 0.983 0.967 0.894
1000 0.099 0.050 0.009 1.000 1.000 0.996
3000 0.097 0.046 0.011 1.000 1.000 1.000

Panel C: Σ Full (δ = 0.5)

100 0.084 0.040 0.011 0.639 0.534 0.332
500 0.101 0.050 0.012 0.982 0.965 0.887
1000 0.095 0.049 0.011 1.000 1.000 0.997
3000 0.108 0.056 0.011 1.000 1.000 1.000

Panel D: Σ Full (δ = 0.25)

100 0.110 0.060 0.021 0.621 0.522 0.336
500 0.145 0.084 0.029 0.977 0.956 0.874
1000 0.145 0.088 0.029 1.000 0.999 0.993
3000 0.146 0.087 0.030 1.000 1.000 1.000
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Table X
Rejection Rates of the Specification Test in a One-Factor Model

The table presents the size and power properties of the test of correct model specification. The null hypothesis
is that the model is correctly specified. The alternative hypothesis is that the model is misspecified. The
results are reported for different levels of significance (10%, 5%, and 1%) and for different values of the
number of stocks (N) using 10,000 simulations, assuming that the model disturbances are generated from
a multivariate normal distribution with a covariance matrix calibrated to 3000 NYSE-AMEX-NASDAQ
individual stock returns over the period 2008:1–2013:12 (T = 72). Finally, the rejection rates for the
specification test are based on the asymptotic distribution in Theorem 3. The rejection rates of the test are
based on two-sided p-values.

Size Power

N 10% 5% 1% 10% 5% 1%

Panel A: Σ Scalar

100 0.095 0.045 0.009 0.929 0.891 0.781
500 0.101 0.047 0.009 1.000 1.000 1.000
1000 0.104 0.055 0.010 1.000 1.000 1.000
3000 0.099 0.048 0.010 1.000 1.000 1.000

Panel B: Σ Diagonal

100 0.085 0.041 0.010 0.771 0.676 0.480
500 0.098 0.046 0.010 1.000 1.000 0.997
1000 0.101 0.049 0.012 1.000 1.000 1.000
3000 0.102 0.051 0.011 1.000 1.000 1.000

Panel C: Σ Full (δ = 0.5)

100 0.085 0.039 0.011 0.770 0.681 0.482
500 0.092 0.046 0.009 1.000 0.999 0.996
1000 0.094 0.049 0.010 1.000 1.000 1.000
3000 0.097 0.047 0.010 1.000 1.000 1.000

Panel D: Σ Full (δ = 0.25)

100 0.120 0.063 0.023 0.749 0.660 0.470
500 0.140 0.083 0.029 1.000 0.999 0.994
1000 0.149 0.086 0.030 1.000 1.000 1.000
3000 0.153 0.093 0.034 1.000 1.000 1.000

64



Table XI
Specification Tests of Various Beta-Pricing Models over Three-Year Periods

The table presents the p-value of the specification test (pS) for CAPM, FF3, and FF5. The null hypothesis
is that the model is correctly specified. The results are reported for different nonoverlapping three-year
periods from January 1966 until December 2013. We also report the number of stocks (N) in each period.
The p-value for the specification test is based on the asymptotic distribution in Theorem 3.

Panel A: CAPM

66-68 69-71 72-74 75-77 78-80 81-83 84-86 87-89
pS 0.001 0.023 0.841 0.000 0.012 0.135 0.213 0.403
N 1139 1236 1024 1183 1319 1309 1579 1973

90-92 93-95 96-98 99-01 02-04 05-07 08-10 11-13
pS 0.007 0.232 0.006 0.000 0.002 0.001 0.000 0.003
N 1961 2908 3377 3180 3397 3875 3647 4153

Panel B: FF3

66-68 69-71 72-74 75-77 78-80 81-83 84-86 87-89
pS 0.001 0.000 0.090 0.000 0.029 0.037 0.085 0.947

90-92 93-95 96-98 99-01 02-04 05-07 08-10 11-13
pS 0.028 0.171 0.012 0.000 0.000 0.446 0.000 0.091

Panel C: FF5

66-68 69-71 72-74 75-77 78-80 81-83 84-86 87-89
pS 0.315 0.000 0.161 0.692 0.131 0.048 0.012 0.040

90-92 93-95 96-98 99-01 02-04 05-07 08-10 11-13
pS 0.043 0.032 0.065 0.042 0.000 0.018 0.003 0.375
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Table XII
Specification Tests of Various Beta-Pricing Models over Six-Year Periods

The table presents the p-value of the specification test (pS) for CAPM, FF3, and FF5. The null hypothesis
is that the model is correctly specified. The results are reported for different nonoverlapping six-year periods
from January 1966 until December 2013. We also report the number of stocks (N) in each period. The
p-value for the specification test is based on the asymptotic distribution in Theorem 3.

Panel A: CAPM

66-71 72-77 78-83 84-89 90-95 96-01 02-07 08-13
pS 0.003 0.000 0.000 0.465 0.000 0.000 0.015 0.000
N 865 881 1031 1126 1653 2212 2638 3065

Panel B: FF3

66-71 72-77 78-83 84-89 90-95 96-01 02-07 08-13
pS 0.006 0.000 0.000 0.078 0.000 0.000 0.013 0.000

Panel C: FF5

66-71 72-77 78-83 84-89 90-95 96-01 02-07 08-13
pS 0.271 0.000 0.000 0.065 0.000 0.001 0.209 0.002
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Table XIII
t-tests for Various Beta-Pricing Models over Three-Year Periods

The table presents the t-statistics for CAPM, FF3, and FF5. tx denotes the t-test of statistical significance
for the parameter associated with factor x, with standard errors based on the results in Theorems 1 and 2.
The null hypothesis is that the factor is not priced. The results are reported for different nonoverlapping
three-year periods from January 1966 until December 2013.

Panel A: CAPM

66-68 69-71 72-74 75-77 78-80 81-83 84-86 87-89
tmkt 7.676 -5.504 1.993 14.699 15.961 -1.355 -1.906 5.883

90-92 93-95 96-98 99-01 02-04 05-07 08-10 11-13
tmkt 10.864 1.253 6.399 13.701 -1.655 4.785 6.998 13.342

Panel B: FF3

66-68 69-71 72-74 75-77 78-80 81-83 84-86 87-89
tmkt 1.335 0.367 2.860 4.897 4.328 0.148 1.419 2.902
tsmb 11.205 -10.278 -7.743 4.406 3.491 4.188 -4.670 -0.997
thml -2.788 -2.991 1.846 1.727 -2.920 2.842 0.922 -6.054

90-92 93-95 96-98 99-01 02-04 05-07 08-10 11-13
tmkt 1.916 0.407 2.262 1.569 -0.397 0.161 2.938 0.988
tsmb 2.074 -0.333 -2.628 0.500 4.841 -0.137 1.797 -0.168
thml -4.133 -0.402 -3.486 -0.552 3.320 -0.612 -0.213 0.235

Panel C: FF5

66-68 69-71 72-74 75-77 78-80 81-83 84-86 87-89
tmkt 0.365 1.522 0.518 0.580 0.283 0.152 1.830 2.174
tsmb 0.641 -1.853 -1.207 -0.055 0.172 0.211 -1.361 -1.322
thml -0.304 -1.420 0.402 0.189 -0.315 0.184 1.617 -3.759
trmw -0.262 0.583 -0.292 -0.147 0.221 0.134 1.537 -1.087
tcma 0.100 0.076 0.140 -0.119 -0.166 0.271 -1.803 2.510

90-92 93-95 96-98 99-01 02-04 05-07 08-10 11-13
tmkt 1.415 0.312 2.028 0.543 0.707 0.053 -0.106 0.250
tsmb 1.429 -0.256 -1.363 0.036 4.315 -0.053 -0.050 -0.099
thml -2.553 -0.301 -1.594 -0.361 0.305 -0.070 -0.126 -0.187
trmw 0.236 0.213 0.598 0.014 4.204 0.055 0.127 0.145
tcma -1.078 0.321 -1.267 0.000 -0.417 -0.069 -0.131 -0.080
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Table XIV
t-tests for Various Beta-Pricing Models over Six-Year Periods

The table presents the t-statistics for CAPM, FF3, and FF5. tx denotes the t-test of statistical significance
for the parameter associated with factor x, with standard errors based on the results in Theorems 1 and 2.
The null hypothesis is that the factor is not priced. The results are reported for different nonoverlapping
six-year periods from January 1966 until December 2013.

Panel A: CAPM

66-71 72-77 78-83 84-89 90-95 96-01 02-07 08-13
tmkt 6.751 -0.075 12.820 -1.355 12.256 11.038 3.973 13.045

Panel B: FF3

66-71 72-77 78-83 84-89 90-95 96-01 02-07 08-13
tmkt 3.305 0.192 1.303 1.953 5.016 4.869 2.032 3.336
tsmb 1.600 -0.525 5.716 -5.480 2.175 0.369 4.855 5.078
thml -4.346 -0.151 -1.879 0.138 -5.053 -4.104 2.597 0.508

Panel C: FF5

66-71 72-77 78-83 84-89 90-95 96-01 02-07 08-13
tmkt 0.914 0.035 0.313 1.891 4.566 3.093 3.919 1.366
tsmb 0.693 0.396 0.995 -4.501 2.273 -0.074 4.653 1.969
thml -0.886 -0.105 -0.348 -0.394 -3.864 -2.521 -2.071 -0.652
trmw 0.680 -1.431 0.456 2.761 -0.624 -0.115 3.130 0.672
tcma -0.217 0.104 -0.314 0.960 -5.263 -0.810 -4.155 -0.519

68


	Two-Pass Methodology
	Asymptotic Analysis
	Asymptotic Distribution of the Bias-Adjusted OLS Estimator
	Limiting Distribution of the Specification Test
	Unbalanced Panel

	Simulation Evidence
	Percentage Errors and Root Mean Squared Errors of the Estimates
	Rejection Rates of the t-tests
	Rejection Rates of the Specification Test

	Empirical Analysis
	Conclusion

