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INTRODUCTION
Multivariate options are widely used when there is a need to hedge
against a number of risks simultaneously, such as when there is an
exposure to several currencies or the need to provide cover against
an index such as the FTSE100, or indeed any portfolio of assets.
In the case of a basket option the payoff depends on the value of
the entire portfolio or basket of assets where the basket is some
weighted average of the underlying assets. The principal reason for
using basket options is that they are cheaper to use for portfolio
insurance than a corresponding portfolio of plain vanilla options on
the individual assets. This cost saving depends on the correlation
structure between the assets; the lower the correlation between
currency pairs in a currency portfolio for instance, the greater the
cost saving.

However, the accurate pricing of basket options is a non-trivial
task when, as is generally the case, there is no accurate ana-
lytic expression of the distribution of the weighted sum of the
underlying assets in the basket. Apart from using Monte Carlo
(MC) methods, basket options are often priced by assuming the
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COPULAS

basket or index is a single underlying asset and then applying
standard option pricing theory based on the Black–Scholes (1973)
framework. However, a weighted sum of lognormals is not itself
lognormally distributed and potentially significant errors are intro-
duced through this approximation by ignoring the distributional
characteristics of the individual underlying assets and the nature
of their dependencies beyond simple correlation. Recent surveys
of pricing multiple contingent claims can be found, for instance in
Carmona and Durrleman (2003, 2006).

In this paper we exploit recent developments in the use of copula
methods by Hurd et al (2005) to price multivariate currency options
and in doing so we extend related approaches put forward in
the limited literature in this area – for instance by Cherubini and
Luciano (2002), Bennett and Kennedy (2004), Taylor and Wang
(2005), Beneder and Baker (2005) and van den Goorbergh et al
(2005). One property of copulas is that they split a complex task
(modelling a joint distribution) into two simpler tasks (modelling
the margins and the dependence pattern). This property makes
it substantially easier to construct multivariate distributions in
general and hence to accurately price multivariate options, as we
demonstrate below.

In the next section we describe the approach we have taken
to derive the prices for basket, spread and best-of-two options
following the general procedure developed by Hurd et al (2005).
We first describe the theoretical argument for deriving the risk-
neutral measure consistent estimation of the implied joint density.
Hurd et al (2005) were unable to find suitable parametric copulas
that closely fitted the data. We therefore use the Bernstein copula,
which exhausts the space of all possible copula functions, as a
general approximation procedure for copulas before turning to the
application and drawing some conclusions.

THE METHODOLOGY
Our methodology builds on earlier unpublished work by Bikos
(2000), who uses one-parameter copulas such as the Gaussian and
the Frank copula to model the joint distribution of the US dollar–
sterling and euro–sterling exchange rates. The marginal distribu-
tions are given by univariate risk-neutral densities estimated using
the Malz (1997) method and the parameter of the copula function is

2
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PRICING MULTIVARIATE CURRENCY OPTIONS WITH COPULAS

chosen in such a way that the empirical correlation coefficient (com-
puted from the variances of the two bilateral exchange rates and
the cross-rate) equals the implied correlation coefficient (computed
from ATM volatilities). A very similar approach has been taken in
a recent contribution by Taylor and Wang (2005), who also fit to the
implied correlation coefficient, but use a more refined setup which
ensures that the implied joint density belongs to a common risk-
neutral numeraire measure. Both studies (Bikos, Taylor and Wang)
suggest that one-parameter copulas provide a reasonable fit to the
data but essentially use one observation to fit a single parameter.1

A more general approach is taken by Bennett and Kennedy
(2004), who use copulas in conjunction with a triangular no-
arbitrage condition to price quanto FX options, ie, FX options whose
payout is in a third currency. Similarly to Bikos and to Taylor
and Wang, they use option-implied densities as margins for the
bivariate distribution. However, they estimate their copula function
by fitting an entire set of option contracts in the third bilateral
(over different strike prices) instead of fitting just the implied
correlation coefficient. This additional information enables them to
use a Gaussian copula which is perturbed by a cubic spline and
which therefore allows for a more flexible dependence structure
between the three currency pairs. In the context of the quanto pric-
ing problem this approach is appealing because the perturbation
function indicates the extent of departure from the standard Black–
Scholes model corresponding to a joint lognormal distribution.

Estimating copulas consistent with triangular no-arbitrage

We extend these previous methods by estimating a joint distribu-
tion that is consistent with the option-implied marginal distribution
of the third bilateral over its entire support. In order to do this we
proceed in the following steps.

Step 1 Let Si,j
t denote the price of one unit of currency j in terms

of currency i at time t and Mi,j
t1,t2

the forward exchange rate at time

t1 with maturity at time t2 ≥ t1. Next we define za,b
0,t,T, zc,a

0,t,T, zc,b
0,t,T

to be the logarithmic deviations of three triangular exchange rates
Sa,b

t , Sc,a
t , Sc,b

t from their respective forward rates Ma,b
0,T, Mc,a

0,T, Mc,b
0,T,

3
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COPULAS

ie,

zi,j
0,t,T ≡ log Si,j

t − log Mi,j
0,T = log

Si,j
t

Mi,j
0,T

(8.1)

For ease of notation we will usually write zi,j instead of zi,j
0,t,T, unless

the time-subscripts are necessary to avoid ambiguity. Hurd et al
(2005) show that at any time t ≤ T the relationship between the
univariate PDF of za,b under the risk-neutral measure2 Qa and the
bivariate PDF of zc,a and zc,b under the risk-neutral measure Qc is
given by

f Qa
za,b (s) =

∫ ∞

−∞
f Qc
zc,a,zc,b(u, u + s)eu du (8.2)

The additional term eu is necessary, because the left-hand side and
the right-hand side of Equation (8.2) are expressed under different
measures. Note also that triangular arbitrage implies that

za,b = zc,b − zc,a (8.3)

Step 2 By Sklar’s theorem there exists a copula C(·) with
density c(·) which allows us to write the bivariate distribution of
zc,a

T and zc,b
T in its canonical representation

f Qc
zc,a,zc,b(u, v) = c(F Qc

zc,a (u), F Qc
zc,b (v)) f Qc

zc,a (u) f Qc
zc,b (v) (8.4)

Step 3 We then estimate a parametric representation, ĉ(·; θ̂),
of the copula density by minimising the L2-distance between the
option-implied third bilateral f Qa

za,b and its copula-implied counter-

part f̂ Qa
za,b (·; θ̂), where

θ̂ = arginfθ

[∫ ∞

−∞
( f Qa

za,b (s) − f̂ Qa
za,b (s, θ̂(s; θ)))2 ds

]1/2
(8.5)

and

f̂ Qa
za,b (s; θ̂) =

∫ ∞

−∞
ĉ(F Qc

zc,a (u), F Qc
zc,b (u + s); θ̂) f Qc

zc,a (u) f Qc
zc,b (u + s)eu du

(8.6)
is the distribution of the third bilateral implied by the estimated
parameters θ̂.

4
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PRICING MULTIVARIATE CURRENCY OPTIONS WITH COPULAS

The Bernstein copula
The underlying idea of the Bernstein copula is to define a function
α(ω) on a set of grid points and then use a polynomial expansion
to extend the function to all points in the unit square. In our
application we use an evenly spaced grid of (m + 1)2 points, ω =
(k/m) × (l/m), k, l = 0, . . . , m. The bivariate Bernstein copula or
Bernstein(m) copula is then defined as

CB(u, v) =
m

∑
k=0

m

∑
l=0

α

(
k
m

,
l
m

)
Pk,m(u)Pl,m(v) (8.7)

where

Pj,m(x) =

(
m
j

)
xj(1 − x)m−j

is the jth Bernstein polynomial of order m (for j = 0, . . . , m).
Sancetta and Satchell (2004) show that this function will be a copula
so long as α(ω) satisfies the three basic conditions of a copula
(grounded, consistent with margins and two increasing3) for all
points on the grid.

Similarly, the density of the bivariate Bernstein copula is given
by

cB(u, v) = m2
m−1

∑
k=0

m−1

∑
l=0

β

(
k
m

,
l
m

)
Pk,m−1(u)Pl,m−1(v) (8.8)

where

β

(
k
m

,
l
m

)
= α

(
k + 1

m
,

l + 1
m

)
− α

(
k + 1

m
,

l
m

)

− α

(
k
m

,
l + 1

m

)
+ α

(
k
m

,
l
m

)

Note that the two-increasing property of α ensures that the density
is non-negative.

The Bernstein copula allows us to compute the third marginal
distribution in Equation (8.2) as a linear combination of basis func-
tions

f Qa
za,b (s; θ) =

∫ ∞

−∞
c(F Qc

zc,a (u), F Qc
zc,b (u + s); θ) f Qc

zc,a (u) f Qc
zc,b (u + s)eu du

=
m−1

∑
k=0

m−1

∑
l=0

θk,lψk,l(s) (8.9)

5
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COPULAS

where θk,l = β(k/m, l/m) and

ψk,l(s) = m2
∫ ∞

−∞
Pk,m−1(F Qc

zc,a (u))Pl,m−1(F Qc
zc,b (u + s))

× f Qc
zc,a

T
(u) f Qc

zc,b (u + s)eu du (8.10)

These basis functions have the property that ψk,l(·) ≥ 0 and∫ ∞
−∞ ψk,l(s) ds = 1, for all k, l = 0, . . . , m − 1.

Owing to the properties of α, the coefficients θk,l satisfy the
following restrictions

θk,l ≥ 0, k, l = 0, . . . , m − 1 (8.11)
m−1

∑
k=0

θk,l =
1
m

, l = 0, . . . , m − 1 (8.12)

m−1

∑
l=0

θk,l =
1
m

, k = 0, . . . , m − 1 (8.13)

These restrictions also imply that the sum of all coefficients equals
unity.

The optimisation problem Equation (8.5) can be restated as

inf{θk,l}m−1
k,l=0

∫ ∞

−∞

( m−1

∑
k=0

m−1

∑
l=0

θk,lψk,l(s) − f Qa
za,b (s; θ)

)2
ds

subject to restrictions on {θk,l}m−1
k,l=0 (8.14)

which can be simplified to

infθ θ′Hθ − 2gθ, subject to R1θ ≤ q1, R2θ = q2 (8.15)

where

H =
∫ ∞

−∞
ψ(s)ψ′(s) ds, g =

∫ ∞

−∞
f Qa
z (s)ψ′(s) ds

θ = [θ0,0, . . . , θ0,m−1, θ1,0, . . . , θ1,m−1, . . . , θm−1,0, . . . , θm−1,m−1]′

ψ(s) = [ψ0,0(s), . . . , ψ0,m−1(s), ψ1,0(s), . . . , ψ1,m−1(s), . . . ,

ψm−1,0(s), . . . , ψm−1,m−1(s)]′

and the matrices Rj and vectors qj impose the equality (j = 1)
and inequality (j = 2) constraints Equations (8.11) to (8.13). Equa-
tion (8.15) is a standard quadratic programming problem that can
be solved using a Lagrangian approach (eg, see Greene (1993)).
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PRICING MULTIVARIATE CURRENCY OPTIONS WITH COPULAS

PRICING MULTIVARIATE CURRENCY OPTIONS
Our empirical examples focus on options that depend on the rel-
ative performance of different currencies and for this purpose we
define the gross return of a currency as the ratio of the spot rate
over the forward rate fixed at some time 0:

Za,b
0,t,T ≡ eza,b

0,t,T =
Sa,b

t

Ma,b
0,T

(8.16)

With some abuse of notation we abbreviate this as Za,b
t . We then

consider call options with strike price K and European exercise with
payout G(Zc,a

T , Zc,b
T , K) denominated in currency c. We consider

three different options, given by the following payoff profiles:

G1(Zc,a
T , Zc,b

T , K) = max{(Zc,a
T )ωa(Zc,b

T )
ωb − K, 0} (8.17)

G2(Zc,a
T , Zc,b

T , K) = max{ωaZc,a
T + ωbZc,b

T − K, 0} (8.18)

G3(Zc,a
T , Zc,b

T , K) = max{max(Zc,a
T , Zc,b

T ) − K, 0} (8.19)

The first (G1(·)) represents an option on a geometric index. When
(ωa, ωb) = (1, −1) it becomes an option on a ratio. The second
(G2(·)) corresponds to basket options which include the spread
option ((ωa, ωb) = (1, −1)) as a special case. Finally, G3(·) is the
payoff of a best-of-two-assets option.

Under the assumption of a non-stochastic discount rate for cur-
rency c, any of these options can be valued using the Feynman–Kaç
formula

V0 = e−rcT
∫ ∞

0

∫ ∞

0
G(u, v) f Qc

Zc,a
T ,Zc,b

T
(u, v) du dv (8.20)

The bivariate returns distribution f Qc

Zc,a
T ,Zc,b

T
can be recovered from

f Qc

zc,a
T ,zc,b

T
(Equation (8.2)) by using the same copula and transforming

the margins as
f Qc
Zc,a

T
(s) = f Qc

zc,a
T

(es)es (8.21)

Estimating the margins and the copula
For our empirical examples we use over-the-counter (OTC) quotes
from 13th January 2006 provided by a major market maker. The
data is described in Table 8.1 and contain at-the-money (ATM)

7
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COPULAS

Table 8.1 One-month contracts for 13th January 2006.

JPY/EUR JPY/USD USD/EUR

ATM 9.30 9.15 8.95
25D RR −0.70 −1.05 0.18
10D RR −1.20 −1.75 0.28
25D Fly 0.20 0.20 0.15
10D Fly 0.65 0.80 0.40

EUR JPY USD
Discount rate 2.4811 0.0506 4.6171

contracts as well as 25 and 10 delta risk-reversals and butterflies for
the three bilateral currencies JPY/EUR, JPY/USD and USD/EUR.
The table also includes the discount rates for the three currencies.
A positive sign on the risk-reversal indicates that the base currency
is favoured.

Our method is independent of the way in which the margins
are estimated. For example, we could use a mixture of lognormals
(as in Bennett and Kennedy (2004), Taylor and Wang (2005)) or
the smoothing spline method of Bliss and Panigirtzoglou (2002).
Here we follow Hurd et al (2005) and use an extension of the smile
interpolation method of Malz (1997) which is specifically tailored to
the FX OTC market. Malz models the volatility smile as a function
of delta by fitting a quadratic function to the three most liquid
contracts (the ATM and 25 delta risk-reversal and butterfly). We
include the additional two 10 delta contracts, which are liquid for
major bilaterals at short horizons, by fitting a spline consisting of
two cubics (in the intervals between 0.1 and 0.25 and 0.75 and 0.9)
and a quartic (in the interval between 0.25 and 0.75). We impose
the restriction that the first three derivatives are continuous. The
marginal distributions are then obtained easily by converting the
smile into the call-price function and taking the second derivative
with respect to the strike price (Breeden and Litzenberger (1978)).

Figure 8.1(a) shows the three margins f QUSD
zUSD,EUR , f QJPY

zUSD,JPY and
f QEUR
zEUR,JPY .4 The width of the three distributions is very similar;

however, the two yen-bilaterals are more lepotkurtic and exhibit a
marked skew towards yen appreciation. This is a reflection of the
larger (absolute) value of yen-butterflies and risk-reversals.

8
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PRICING MULTIVARIATE CURRENCY OPTIONS WITH COPULAS

Figure 8.1 (a) Marginal distributions of currency returns and (b) the
estimated Bernstein(11) copula density.
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We then apply the method described in the previous section
to link the two US dollar-bilaterals using a Bernstein copula. We
find that we need at least an order of m = 11 for the Bernstein
expansion to obtain a good fit for the EUR/JPY margin. The esti-
mated Bernstein(11) copula is shown in Figure 8.1(b). It clearly
exhibits the characteristics of positive dependence in the sense that
most probability mass is concentrated near the (0, 0) and (1, 1)
corners. However, there is a notable degree of asymmetry: first,
large appreciations of the US dollar against the euro and the yen
are more likely to occur than large depreciations. Second, there is
a third local peak of the density near (0.65, 0) corresponding to a
situation where the US dollar appreciates strongly against the yen
but moves little against the euro.

Options on geometric indexes: smiles and frowns
We first look at options on a geometric index (payoff function G1(·)),
because a simple modification of the standard Black (1976) formula
exists for this particular payoff.5 The Black model is based on the
assumption of joint (log)normality and takes as an input only the
three (ATM) volatilities σc,a, σc,b and σa,b. In Figure 8.2 we compare
the familiar oval-shaped normal density assumed by the Black
model with the bivariate distribution of the option-implied margins
linked by the Bernstein(11) copula. The distributions are drawn

9
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COPULAS

Figure 8.2 Multivariate densities corresponding to (a) the Black
model, (b) the Bernstein copula model and (c) their difference.
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such that each line represents a decile. Both distributions clearly
represent random variables (RVs) with overall positive association,
but the copula-based density differs in several aspects.

1. It has less probability mass in the centre of the distribution.
2. There is little indication of positive association for small move-

ments – the contour of the first decile is roughly circular, while
that of the normal distribution is oval-shaped.

3. The copula-based density gives more probability to events in
which either the euro or the yen can undergo large movements
versus the US dollar but changes little against the other cur-
rency.

We then use numerical evaluation of the Feynman–Kaç formula
to obtain the prices of an index option with weights ωa = ωb = 0.5
over a range of strikes. We compare these prices with the standard
model by computing the Black-model implied volatilities which are
shown in Figure 8.3(a). We find that for most strikes, except those
with deltas close to 0 and 1, the copula-based model predicts a
higher payoff than the Black model. Options with strikes far from
the current level of the index are relatively cheap however, leading
to an implied-volatility “frown”. To understand the cause of this
inverted smile we superimpose the loci corresponding to 5 and 95
delta contracts on the bivariate densities in Figure 8.2 (downward-
sloping dotted lines). We see that the integration regions for 5 delta
puts (bottom line) and 5 delta calls (top line) both fall outside

10
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PRICING MULTIVARIATE CURRENCY OPTIONS WITH COPULAS

Figure 8.3 (a) Smiles of an index option (weights ωa = ωb = 0.5) and
(b) a ratio option (weights ωa = 1, ωb = −1).
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the areas where the Bernstein density has higher mass than the
bivariate normal.

We then look at prices for an index option with weights ωa = 1
and ωb = −1, which corresponds to a ratio of cross-returns. Here
the implied volatility smile has a more usual convex shape (Fig-
ure 8.3(b)) and for deltas larger than 0.35 the copula model yields
lower option prices than does the lognormal model. The loci of
the 5 and 95 delta contracts are represented by the upward-sloping
dotted lines in Figure 8.2. For put options that are out-of-the money
(OTM) or near-the-money (NTM), the Bernstein distribution has
lower probability mass over the integration region (north-west of
the strike). For OTM calls, on the other hand, the integration region
includes the protuberance around the (1.1, 0.95) outcome and they
are therefore relatively expensive compared to the Black model.

Baskets, spreads and best-of-two-assets
Next we check whether our results for options with geometric pay-
off (G1) also hold for the more common basket and spread options
(G2). In Table 8.2 we compare the prices of the copula model and the
Black model for OTM, NTM and in-the-money (ITM) calls. We find
that options based on the arithmetic payoff follow a very similar
pattern to those based on a geometric payoff, in the sense that the
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COPULAS

Table 8.2 Option prices.

Black Copula
Strike model model Difference

Index 0.98 2.2293 2.2339 −0.0046
(G1, wa = wb = 0.5) 1.00 0.9191 0.9393 −0.0202

1.02 0.2541 0.2785 −0.0244

Basket 0.98 2.2287 2.2395 −0.0108
(G2, wa = wb = 0.5) 1.00 0.9132 0.9430 −0.0298

1.02 0.2489 0.2807 −0.0318

Ratio 0.98 2.2796 2.2623 0.0173
(G1, wa = 1, wb = −1) 1.00 0.9674 0.9505 0.0169

1.02 0.2828 0.3132 −0.0304

Spread −0.02 2.2880 2.2458 0.0422
(G2, wa = 1, wb = −1) 0.00 0.9878 0.9352 0.0526

0.02 0.2950 0.2996 −0.0046

Best-of-two-assets 0.98 3.1001 3.0465 0.0536
(G3) 1.00 1.5365 1.5144 0.0221

1.02 0.5556 0.5985 −0.0429

differences between the prices implied by the copula model and
the lognormal benchmark always have the same sign. In general,
the magnitude of the difference tends to be larger for baskets and
spreads, indicating that smile effects are more pronounced. The
only exception is the OTM spread call, for which the two models
yield a very similar price (in contrast to the ratio option).

Finally we briefly look at best-of-two-asset options (payoff G3).
We find, similar to the case of ratios and spreads, that the ITM and
NTM contracts are over-priced by the Black model, while the OTM
contract is underpriced.

CONCLUSIONS
In this chapter we present a methodology for computing prices for
bivariate currency options that are consistent with the observed
quotes of univariate instruments on three triangular bilateral
exchange rates. We first establish a relationship between the bivari-
ate distribution of the two bilateral exchange rates involving the
payout currency and the univariate distribution of the cross-rate.
We then express this relationship, which constitutes a no-arbitrage
condition, in terms of three option-implied margins and a Bernstein
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PRICING MULTIVARIATE CURRENCY OPTIONS WITH COPULAS

copula. The Bernstein copula has the important feature that it
exhausts the space of all possible copula functions. We estimate the
“copula-parameters” by minimising the L2-distance between the
option-implied distribution of the cross-rate and the distribution
implied by the copula. We then apply the bivariate Feynman–Kaç
formula to compute the price of options with particular payoff
functions corresponding to basket, spread and best-of-two options.

Compared with other copula-based approaches our method has
the advantage that it uses all available information from the univari-
ate contracts. The method is also flexible in the sense that it works
independently of the way in which the margins are computed. Since
the Bernstein copula may assume the shape corresponding to any
possible dependence function, a failure to find a good fit to the third
distribution implies that the three margins violate triangular no-
arbitrage in terms of higher moments.6

1 Rosenberg (2003) follows a different route by using a non-parametric method and a copula
which is estimated from historical exchange rate movements.

2 More precisely the risk-neutral measure Qj is the equivalent martingale measure associated
with a discount bond in currency j.

3 See Schmidt (2006) for details.

4 In the notation used so far, we have USD = c, EUR = a and JPY = b.

5 By simple application of Itô’s lemma to the bivariate geometric Brownian motion
[dZc,a

t , dZc,b
t ]′ the Black price for an option on a geometric index is given by

VBS
0 (MI

0,T, K, σI , T) = e−rc(MI
0,TΦ(d1) − KΦ(d2)) (8.22)

where MI and σI are the forward price and the volatility of the index

MI = exp(0.5(ωa(ωa − 1)σ2
c,a + ωb(ωb − 1)σ2

c,b + ωaωb(σ2
c,a + σ2

c,b − σ2
a,b)))

σI = ω2
a σ2

c,a + ω2
b σ2

c,b + ωaωb(σ2
c,a + σ2

c,b − σ2
a,b)

d1 and d2 are defined as usual as

d1 =
log(MI

0,T/K) − 0.5σ2
I T

σI
√

T
, d2 = d1 − σI

√
T

and σi,j is the volatility of currency pair Si,j .

6 A simple example is the case where the three margins are lognormally distributed and the
implied volatilities violate the Schwarz-inequality:

|σ2
a,b − σ2

c,a − σ2
c,b| > 2σc,aσc,b
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