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Abstract

A brief synopsis of progress in di-erential geometry in statistics is followed by a note of
some points of tension in the developing relationship between these disciplines. The preferred
point nature of much of statistics is described and suggests the adoption of a corresponding
geometry which reduces these tensions. Applications of preferred point geometry in statistics
are then reviewed. These include extensions of statistical manifolds, a statistical interpretation
of duality in Amari’s expected geometry, and removal of the apparent incompatibility between
(Kullback–Leibler) divergence and geodesic distance. Equivalences between a number of new
expected preferred point geometries are established and a new characterisation of total 5atness
shown. A preferred point geometry of in5uence analysis is brie5y indicated. Technical details
are kept to a minimum throughout to improve accessibility. c© 2002 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Ideas of distance in geometry have mostly been developments of the Euclidean axiom
that the shortest path between two points is a straight line. The distance between these
points is then de>ned as the length of this line. Following the developments which
enable us to de>ne what is meant by a straight line in spaces more complex than
Euclid’s plane, we >nd that we pass through most of the history of geometry itself.
This journey takes us via Pythagoras’ theorem, Newton’s calculus, Gauss’s di-erential
geometry and Euler’s calculus of variations to Einstein’s use of geometry in physics.
Throughout this long history runs the central theme that we measure the separation
of two points by >nding the shortest path between them. In particular, this use of
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minimum path lengths provided the intuitive basis for the now familiar metric axioms:
(M1) Nonnegativity: The only paths of zero length are the trivial ones from a point

to itself, whence d(a; b) ¿ 0 with equality if and only if a = b.
(M2) Symmetry: The reverse of every path from a to b is a path from b to a of

the same length, whence d(a; b) = d(b; a).
(M3) The triangle inequality: Every path from a to b of length l(a; b) followed by a

path from b to c of length l(b; c) produces a path from a to c of length l(a; b)+l(b; c),
whence d(a; b) + d(b; c) ¿ d(a; c).

Metrics in the above sense are related to, but distinct from, metrics—more fully,
metric tensors—on manifolds. Such tensors de>ne geodesic distances. They lie at the
heart of Riemannian geometry and formed the basis for the >rst work on di-erential
geometry in statistics (Rao, 1945). This >eld has undergone rapid expansion in recent
years and forms the natural backdrop to the present paper.

A little geometric background is given in Section 2, which may be referred back
to at any point as required. Here, as throughout the paper, technical details are kept
to a minimum so as to improve accessibility and focus on the key ideas involved. In
particular, technical results from our earlier papers, which we draw on as appropriate,
are cited without proof and woven into an overall discussion.

The plan (and arrangement) of the rest of the paper are as follows. A succinct ac-
count of main ideas and key references in di-erential geometry in statistics is o-ered
(Section 3) and some points of tension between these disciplines noted (Section 4).
The preferred point nature of much of statistics is described and suggests the adoption
of a corresponding geometry which reduces these tensions (Section 5). Applications
of preferred point geometry in statistics are then reviewed (Sections 6 and 7). These
geometries bring attractive bene>ts. For example, the nonmetric connections, so im-
portant for statistical calculations, are given a conceptually simple metric connection
interpretation. This interpretation also provides more insight into the statistical
relevance of the key duality results associated with statistical manifolds. Further, the
properties of statistically natural divergence functions, which at >rst sight appear
unappealing geometrically (asymmetry and lack of a triangle inequality), turn out to
be entirely natural geometrically in a preferred point geometric context. Equivalences
between a number of new expected preferred point geometries are also established
and a new characterisation of total 5atness shown. Section 8 brie5y indicates future
research in the direction of establishing a preferred point geometry of in5uence
analysis.

2. A little geometrical background

Manifold: Under standard regularity conditions (Amari, 1990, p. 16), a >nite di-
mensional parametric statistical model {p(x; 	): 	 ∈ 
} has the form of a manifold,
M say.
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Metric tensor and curve (path) length: Adding a metric (tensor) to M enables us
to de>ne lengths and angles in the tangent space to M at each point 	 and hence,
by integration, the length of any curve (path) in the manifold and, directly, the an-
gle between any two intersecting curves. Moreover, all this is done in a way that is
automatically invariant to changes of coordinate system (reparameterisations) 	→ 	 ∗.
Matrix representation of a metric: A metric (tensor) � is speci>ed by the inner

product which it places on each tangent space. That is, by associating to each point 	
of M a positive de>nite symmetric matrix �(	) which transforms appropriately (as a
covariant 2-tensor) under 	→ 	 ∗.
Connection and geodesic (straight path): Adding a connection to M enables us to

de>ne geodesics (straight paths) in a way that is similarly invariant. There is a natural
Riemannian or metric connection induced by a metric tensor, whose geodesics are paths
of minimum length. There is no notion of minimum path length associated with the
geodesics of any other, nonmetric, connection.
Flat manifold and a8ne coordinate system: A manifold M with a connection is

called 9at if there is a coordinate system (parameterisation) 	 on M in which its
geodesics are line segments. That is, in which the geodesic joining two points 	 (1)

and 	 (2) is just the set of all their convex combinations (1− )	 (1) + 	 (2); (066
1). Such a coordinate system is called a8ne and is unique up to nonsingular aNne
transformation.
Example: For example, the usual 3-D Euclidean geometry is 5at with Cartesian

coordinates as aNne, whereas cylindrical or spherical coordinates are not aNne. Again,
the surface of a Euclidean sphere is curved (not 5at).
Riemannian geometry: Riemannian geometries (M; �) are natural generalisations of

Euclidean geometry to curved spaces in which the metric tensor � determines the whole
geometry when, as we assume, the induced metric connection is used.
Flat metric: It can be shown that an aNne coordinate system on a 5at Riemannian

manifold is one in which the metric is constant at all points of M . A metric which
admits such a coordinate system is called a 9at metric.
Example: For example, the usual Euclidean metric is 5at since, in Cartesian coor-

dinates, it is represented by the same matrix (the identity) at each point of En.

3. An overview of di�erential geometry in statistics

3.1. A core question

A core question in the geometrisation of statistics is:
Given a manifold M identi>ed with a parametric statistical model {p(x; 	): 	 ∈ 
},

and given a particular statistical purpose,
precisely what extra structure is it appropriate to add to M?
It will be helpful to keep this core question in mind throughout the paper.
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3.2. Rao’s Riemannian geometry based on Fisher information

The origins of recent research at the interface between di-erential geometry and
statistics can be traced back some 55 years. As Amari (1990, p. 3) writes,

“It was Rao (1945), in his early 20s, who >rst noticed the importance of the
di-erential-geometric approach. He introduced the Riemannian metric in a statistical
manifold by using the Fisher information matrix and calculated the geodesics between
two distributions for various statistical models.”

That is, Rao proposed adding the metric � de>ned by �(	) = I(	), the Fisher in-
formation matrix, to produce a Riemannian geometry (M; �) in which to answer the
natural question:

“How far apart are two distributions?”
His answers, Rao distances, are the geodesic distances induced by this natural choice

of metric. They are appropriate to any two distributions in M .

3.3. Kullback and Leibler’s divergence geometry

This natural question was also addressed, at about the same time, by Bhattacharrya
(1943, 1946), Je-reys (1948) and Kullback and Leibler (1951) from a variety of
directions. In particular, Kullback and Leibler (1951) placed their divergence on M
resulting in the divergence geometry (M; dKL).

3.4. Statistical manifolds

Independent work by Chentsov (1972) (translated into English from the Russian
in 1982) and Efron (1975, 1978) extended Riemannian geometries for statistics by
introducing a whole family of connections, rather than just the Riemannian or metric
connection used earlier. Efron also introduced the central idea of statistical curvature.

Since then there has been an explosion of research activity. In particular, these
advances inspired the development of new geometries for statistics, including the min-
imum contrast geometry of Eguchi (1983), the expected geometry of Amari (1990, 1st
Edition, 1985), and the observed geometry of Barndor--Nielsen (1987a, 1988).

These three geometries are all instances of a single elegant structure. A statisti-
cal manifold is a triple (M; �; T ) in which the extra ingredient, the skewness tensor
T , transforms appropriately (as a covariant 3-tensor) under reparameterisation. Early
mathematical accounts of this unifying structure were provided by Amari (1990, 1st
Edition, 1985) and Lauritzen (1987).

There is a one parameter family of connections, called the �-connections (� ∈ R),
associated with a statistical manifold. The 0-connection is the metric connection. There
is an important formal duality between the +� and −� connections: for every � ∈ R,
a statistical manifold is �-5at (i.e. 5at with respect to the �-connection) if and only if
it is −�-5at.
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3.5. Important advances and key references

Overall, the study of di-erential geometry in statistics has led to important advances
in a variety of >elds, including the development of new geometries for statistics, higher
order asymptotic theory, invariant asymptotic expansions and inference in nonlinear
regression and curved exponential families.

Some further key references are Amari (1982a, b), Amari et al. (1987), Amari and
Kumon (1983, 1988), Atkinson and Mitchell (1981), Barndor--Nielsen (1983, 1986,
1987b), Barndor--Nielsen and Cox (1989, 1994), Barndor--Nielsen et al. (1986), Bates
and Watts (1980, 1981), Burbea and Rao (1982a, b), Dawid (1975, 1977), Eguchi
(1984, 1991), Kass (1984, 1989, 1990), Kass and Vos (1997), Murray and Rice (1993),
Oller and Corcuera (1995), Oller and Cuadras (1985), Pistone and Sempi (1995), Rao
(1961, 1962, 1963, 1987), Rao et al. (1982) and Vos (1989, 1991a, 1992).

3.6. A natural and fruitful marriage?

The overall goal of this activity could be said to be the establishing of a natural
and fruitful marriage between di-erential geometry and statistical modelling which
appropriately applies and extends the former so as to deepen our understanding and
capabilities in the latter.

Some of the attractions are obvious. The two disciplines are compatible in a funda-
mental sense: in many situations, it is required that statistical inferences do not depend
on the way that the statistical model has been parameterised, while one de>nition of
geometry is the study of those things which are invariant under a change of coor-
dinates. The geometric approach is well-suited for use in such inferential situations:
coordinates are merely labels for points in the same way that parameters are merely
labels for distributions. Again, many statistical procedures have very natural geomet-
ric interpretations. Three important examples are regression, dimension reduction of a
statistic and minimisation of a statistical objective function under a smooth constraint.
Further, with such procedures, the intuition which a picture gives can be an invaluable
explanatory tool.

At the same time, there are points of tension in this developing relationship, as we
review in Section 3.7. Preferred point geometry (Marriott, 1989; Critchley et al., 1992,
1993, 1994, 2000) is being developed as an attempt to ease these points of tension.

3.7. Yoke geometry

A variety of other approaches have also been developed since the mid-1980s. Promi-
nent among these is that based on the concept of a yoke, >rst introduced in Barndor--
Nielsen (1987b). Yoke geometry shares several attractive features with preferred point
geometry. In particular, the observed and expected yokes are natural statistically, while
their associated geometries also extend statistical manifolds beyond third order.
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3.8. Preferred point geometry

Our geometrical approach is distinguished by its emphasis on metric connections and
by its preferred point nature. This latter is appropriate since, as we discuss in Section 5,
much of statistics itself is preferred point in nature.

One pro>table future research direction appears to be the development of points of
contact between preferred point geometry and yoke geometry.

4. Points of tension

Not all geometrisations of statistics produce aNrmative answers to the following key
questions:

(T1) Geometrically simple? Notwithstanding their elegant formal properties, the mix-
ing of metric and nonmetric connections can prove to be a large conceptual leap for
statistical practitioners. For many people connections corresponding to minimum dis-
tance geodesics have an immediate, physically based, intuitive appeal (cf. Section 3.6)
and so it can be helpful if the dual connections of Amari and others can be reformulated
in such a framework.

(T2) Statistically natural? Barndor--Nielsen et al. (1986) end their review paper
on the rôle of di-erential geometry in statistical theory with the following remark:

“While the introduction of more speci>cally geometrical notions has considerable po-
tential, it remains a challenging task to introduce such ideas in a way that is statistically
wholly natural.”

(T3) Statistically interpretable? The interesting formal duality structure of statistical
manifolds and, in particular, of Amari’s expected geometry is not well-understood
statistically. By linearity, it will suNce to understand ±1 duality.

(T4) Are divergences and geodesic distances at least locally compatible? The metric
properties of Rao’s geodesic distance contrast sharply with those of Kullback–Leibler
divergence dKL(· ; ·) de>ned by

dKL(�; 	):=E�{ln p(x; �)− ln p(x; 	)}: (1)

This measure, and many other proposed divergence or discrimination measures, ap-
pear quite di-erent from the more geometric ideas of distance based on minimum path
length. In particular, they do not obey either symmetry (M2) or the triangle inequality
(M3). At the same time, they arise naturally in statistics. Can this apparent incom-
patibility be understood and resolved, at least locally, in a natural way? (After the
necessary preliminaries, a formal de>nition of the local compatibility of a divergence
and a preferred point metric is given in Section 7.2 below.)

Preferred point geometry seeks to provide aNrmative answers to the above ques-
tions. The following section discusses the preferred point nature of much of statistics
itself. Accordingly, adopting a corresponding preferred point geometrisation of statistics
provides an aNrmative answer to (T2). The fact that a simple (indeed, Riemannian-like)
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preferred point geometry of statistics is suNcient for many purposes—in particular, for
providing a metric-based understanding of how the nonmetric connections associated
with statistical manifolds arise—means that (T1) is also answered in the aNrmative.
Overall, responding positively to (T1) and (T2) is embodied in the founding princi-
ples (P1) and (P2) of the preferred point approach to the geometrisation of statistics,
announced at the end of Section 5. Finally, Section 6.1 tackles (T3), while (T4) is
addressed next and, again, in Section 7.

5. The preferred point nature of much of statistics

From a preferred point perspective, it is sometimes natural statistically that the sym-
metry condition (M2) should fail and that the triangle inequality (M3) should be of
less than central importance.

Consider >rst (M2). Asymmetry is natural statistically when we think of the
‘preferred’ or ‘distinct’ status given to some particular distribution as representing the
true or hypothesised distribution. For example, the power of the Neyman–Pearson test
of (any) >xed size between two simple hypotheses changes when the rôles of null and
alternative are reversed. Otherwise said, how far apart Ha and Hb appear depends on
which of them is regarded as specifying the true distribution.

Consider now the triangle inequality (M3). In many cases the “a” in d(a; b) is
a preferred point >xed by external considerations and so we are e-ectively only con-
cerned with the function da(·) of a single argument de>ned by da(b):=d(a; b). Leading
instances of this arise as follows:

(PP1) We may take the preferred point a ≡ 	0 to represent the true or hypothesised
distribution, and b a candidate distribution allowed by the model. For example, in a
parametric likelihood context, we may assess the separation of a ≡ 	0 from a general
parameter value b ≡ 	 in terms of the single argument Kullback–Leibler divergence
function da(·) ≡ d	0

KL(·) de>ned by

d	0
KL(	):=dKL(	0; 	): (2)

Or, in the same context and still taking a ≡ 	0, we may instead take b to be the
maximum likelihood estimator 	̂ and work with the deviance function da(·) ≡ (X2)	0 (·)
de>ned by

(X2)	0 (	̂):=− 2{lnp(x; 	0)− ln p(x; 	̂)} (3)

whose observed values are the familiar asymptotic �2 test statistics.
(PP2) The preferred point a may represent the data and b any candidate from within

a class speci>ed by the model. For example, in linear least-squares regression, the
separation (squared distance) between the observed vector of responses a ≡ y and
any point b ≡ X� in the range space of the covariate matrix X is judged by the least
squares function da(·) ≡ LSy(·) de>ned by

LSy(X�):=||y − X�||2E (4)
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where || · ||E denotes the usual Euclidean norm. Again, in parametric likelihood infer-
ence, we may take a to be the maximum likelihood estimate 	̂ and assess a general
parameter value b ≡ 	 in terms of the log-likelihood ratio function da(·) ≡ LLR	̂(·)
de>ned by

LLR	̂(	):={ln p(x; 	̂)− ln p(x; 	)}: (5)

In all such cases, the triangle inequality (M3) is not of central importance, since it is
not then directly relevant to consider all comparisons among general triples of points.
Rather, in much of statistics, attention is naturally restricted to triples, written (a; b1; b2),
which contain the preferred point a and in which interest centres on comparisons, in
terms of a suitable function da(·), between the preferred point a and each of b1 and
b2. Direct comparisons between b1 and b2 are not of central interest here. Rather,
comparing them indirectly via a—speci>cally, via the values of da(b1) and da(b2)—
will frequently be of interest.

The principal reason why the apparent incompatibility noted above arises is now
clear. In the geometric tradition, all points in a manifold are treated equally. No point
is singled out for special treatment, in which case we call the geometry homogeneous.
Other geometrisations of statistics have followed this homogeneous approach. From
some points of view, this is natural statistically. For example, all points 	 in the
parameter space 
 share the possibility of being the unknown true parameter 	0 giving
rise to the data. From other points of view, it is not. As we have seen, much of statistics
has a preferred point nature, with the special point corresponding to the (hypothesised)
true value or a (constrained) parameter estimate.

This diagnosis directly suggests a possible cure. In particular, a resolution of the
apparent incompatibility noted in (T4). In such cases, why not de>ne a geometry on
the whole manifold which re5ects the special status of the preferred point?

The de>nition and use of such a preferred point geometry are guided by twin
principles:

(P1) Be as natural and simple (parsimonious) as possible from both the statistical
and geometric perspectives.

(P2) Where appropriate (as indicated above), re5ect in a natural way the special
status of the preferred point.

6. Preferred point geometry and statistical manifolds

6.1. Preferred point extensions of statistical manifolds and interpretation
of duality in Amari’s expected geometry

Following Marriott (1989), Critchley et al. (1993) introduced a preferred point ge-
ometry (M; ��). This is a Riemannian-like structure but one in which the metric ��

depends smoothly on the preferred point � ∈ M . This dependence is natural statistically
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in the many cases reviewed in the previous section where we are principally interested
in geodesic distances away from the preferred point �.

An essential feature of preferred point geometry is that the distance between two
points will typically depend upon which of them is taken as preferred. This happens
because, in general, both the geodesic path joining a and b, and its length, will be
di-erent in the � = a and � = b geometries. Thus, the lack of symmetry (M2) and
of a triangle inequality (M3) found in core statistical divergence functions, but not in
standard geometry, are mirrored naturally in preferred point geometry. This collapses
the tension (T4).

Any preferred point geometry has a homogeneous geometry associated with it, ob-
tained by restricting attention to the diagonal where � = 	. A symmetry condition
characterises when this homogeneous geometry subsumes a statistical manifold. At
the same time, it provides a natural higher order extension of such structures. De-
tails are given in Critchley et al. (1993). There are corresponding links with strings
(Barndor--Nielsen and Blaesild, 1987a, b, 1988).

In an expected geometry in which � denotes the true parameter, three statistically
natural choices of the preferred point metric ��—to be denoted by g�, h� and k�,
respectively—are as follows:

(PPM 1) g�(	):=cov�(s(x; 	)), the �-covariance matrix of the score vector

s(x; 	):=[@ ln p(x; �)=@�]|�=	:

(PPM 2) The �-expectation of minus the hessian of the log-likelihood at 	 does not
transform appropriately under reparameterisation 	 → 	 ∗ and so cannot be used as a
preferred point metric. However, using the standard di-erential geometrical way to >x
this, the g�-covariant version of this �-expected negative hessian—denoted h�(	)—
de>nes our second preferred point metric.

(PPM 3) The usual derivation of the asymptotic distribution of the maximum like-
lihood estimator as

√
n(	̂ − �) a∼N(0; I(�)−1) is based on applying the central limit

theorem to the score vector s(x; ·) at the true value � which occurs on the right-hand
side of the asymptotic linear relation

√
nI(�)(	̂− �) ≈ (1=

√
n)s(x; �): (6)

Alternatively, we may consider the asymptotic distribution of (	̂− 	) for any value of
	 using the score vector s(x; ·) at 	. Expanding the score vector in a covariant Taylor
expansion about 	̂ leads to the improved approximation to the asymptotic distribution
of 	̂ locally to 	,

√
n(	̂− 	) a∼N(

√
nI(	)−1!�(	); k�(	)−1); (7)

where

!�(	):=E�(s(x; 	)) (8)

and

k�(	):=h�(	)g�(	)−1h�(	): (9)
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We interpret (9) as saying that g� and k� are dual with respect to h�. That is, (9)
expresses a certain natural general duality between the score vector and the maximum
likelihood estimator in terms of their preferred point metrics g�(	) and k�(	) de>ned
as above. In this duality, the hessian of the log-likelihood plays a central (pivotal)
rôle via h�(	). In particular, rearranging (9), we have g�(	)=h�(	)k�(	)−1h�(	). See
Critchley et al. (1993) for details, and for duality theorems for arbitrary preferred point
geometries.

When � = 	, the matrices associated with each of g�, h� and k� reduce to the
Fisher information matrix I(	). Their metric connections reduce there, respectively, to
Amari’s +1, 0 and −1 connections. In full exponential families, the g� and k� metric
connections agree everywhere with Amari’s +1 and −1 connections respectively. In
this way, the ±1 duality of Amari’s geometry, previously rather ineluctable statistically
(T3), can now be interpreted as re5ecting the above duality between the score vector
and the maximum likelihood estimator. Natural extensions to ±� duality have been
studied by Zhu and Wei (1997a, b).

6.2. Full exponential family examples

Consider a full exponential family whose density with respect to some carrier mea-
sure can be written

p(x; 	) = exp(xT	−  (	));

where 	 is the canonical (or natural) parameter. Recall that the expectation parameter
#(	):=E	(x) and the Fisher information matrix are given, respectively, by #(	)=  ′(	)
and I(	) =  ′′(	).

Observe also that, in this full exponential family case, the �-mean score and the
expectation parameterisations are aNnely related by !�(	) = #(�)− #(	).

We also have
(a) In 	-coordinates, g�(	) = I(�), a constant independent of 	.
(b) In #-coordinates, k�(#) = I−1(�), a constant independent of #.
(c) In 	-coordinates, h�(	) = I(	), which varies with 	.
In particular, whatever the preferred point �, the canonical parameterisation is

g�-aNne while the expectation parameterisation is k�-aNne.
Properties (a) and (b) respectively, subsume the celebrated results that:
(a) the full exponential family is +1-5at and the canonical 	-coordinates are +1-aNne.
(b) the full exponential family is −1-5at and the expectation #-coordinates are
−1-aNne.

6.3. Equivalence of expected preferred point geometries

Critchley et al. (1994) considered the statistically natural preferred point geometry
(M; !�; g�) de>ned by !�(	) and g�(	), the �-mean and the �-covariance, respec-
tively, of the score vector s(x; 	). We observe here that this geometry is equivalent to
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(contains the same information as) three other statistically natural expected preferred
point geometries. Insightful in itself, this result will also be useful later (Section 7.3).

In a mild abuse of notation we write, for example, (M; g�; h�) for the pair of Rie-
mannian preferred point geometries ((M; g�); (M; h�)). Denoting equivalences between
geometries by ‘↔’, we have:

(M; !�; g�)↔ (M; g�; h�)↔ (M; g�; h�; k�)↔ (M; h�; k�):

The proof is straightforward. For the >rst equivalence we need to show that, given
g�, !� ↔ h�. But → follows by g�-covariant di-erentiation, while ← follows by
integration and the boundary condition !�(�) ≡ 0. The second and third equivalences
are immediate from (9).

7. Divergence functions

7.1. DeBnition

Following Critchley et al. (1994), we de>ne a divergence function d(· ; ·) to be a
smooth function on pairs of points in M which satis>es:

(D1) d(�; 	) ¿ 0 with equality if and only if � = 	;
(D2) @id(�; 	)|�=	 = @′id(�; 	)|�=	 = 0 where @i = @=@�i and @′i = @=@	i;
(D3) @′i@

′
jd(�; 	)|�=	 = (I(�))ij.

The divergences of Chentsov (1972) and Amari (1990) are special cases in which the
evaluation at � = 	 in (D3) is dropped, it being assumed that a parameterisation with
this stronger property exists.

These conditions imply that, for 	 in a neighbourhood of any given point �, a
divergence function behaves quadratically with hessian the Fisher information at �.
That is, locally to � = 	,

d(�; 	) ≈ 1
2 (	− �)TI(�)(	− �):

This de>nition is close to that of a normed yoke (Barndor--Nielsen, 1989) where
condition (D3) is relaxed to nonsingularity of the hessian.

We observe that, apart from smoothness, condition (D1)—which is exactly the non-
negativity metric axiom (M1)—is the only essential condition. Condition (D2) can be
achieved with any function satisfying (D1) by squaring it if necessary. Condition (D3)
can be achieved by rescaling, provided the hessian is nonsingular. In this sense, di-
vergences can be thought of as regular extensions of metrics in which the symmetry
(M2) and triangle inequality (M3) axioms are dropped. The local quadratic nature of
divergences means that they are analogues—not of distances—but of (half) squared
distances. Thus, we would not expect the triangle inequality (M3) to hold for them.
Rather, under analogues of orthogonality, it is natural to look for Pythagorean relation-
ships between divergences (see Section 7.4).
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Well-known examples of divergence functions include the Kullback–Leibler diver-
gence de>ned above, the Hellinger ‘distance’ and Renyi �-information (see Amari,
1990, p. 88).

7.2. The local diCerential geometry of the Kullback–Leibler divergence

Amari’s celebrated projection theorem (Amari, 1990, p. 90) states that the point 	̃ in
a submanifold M̃ of a full exponential family M which minimises the Kullback–Leibler
divergence from a given point 	 ∈ M is joined to 	 by a −1-geodesic which cuts M̃
orthogonally in Rao’s Fisher metric at 	̃.

It is important to note, however, that there is no concept of geodesic distance in-
volved here, since the connection concerned is nonmetric. Thus, this projection theo-
rem does not establish a relationship between the divergence function and a squared
geodesic distance. To get this, we use preferred point geometry.

Critchley et al. (1994) use preferred point geometry ideas to investigate the local
di-erential geometry of divergence functions, focusing especially on the Kullback–
Leibler divergence.

A >rst result is that, given any divergence function, there exists a preferred point
metric locally compatible with it. That is, for all points 	 in a neighbourhood of the
preferred point �, half the squared preferred point metric’s geodesic distance from �
to 	 equals d(�; 	).

However, such a locally compatible metric is far from unique. We concentrate now
on local compatibility of the Kullback–Leibler divergence and the statistically natural
preferred point metric g� de>ned above. As we observe here (in Section 7.3), it turns
out that h� also plays an important rôle.

Now, dKL(· ; ·) is in fact well-de>ned on in>nite dimensional spaces of densities
of the form N :={p(x)}, the set of all mutually absolutely continuous regular densities
on the sample space 'x with respect to some >xed measure P. Although we do not
develop its implications here, we note in passing that the preferred point can be in N
rather than M . This important fact is of interest, for example, in studying mis-speci>ed
models.

This simple observation enables us to draw an important basic distinction:

Kullback–Leibler divergences measure separations of points in N ;
(preferred point) geodesic distances measure separations of points in M .

The Kullback–Leibler divergence dKL(�; 	) is purely a function of the distributions
labelled by � and 	. It is independent of the particular manifold M considered. In
contrast, any geodesic distance between � and 	 depends not only on the distributions
they label but also on the particular, >nite dimensional manifold M in which they are
considered to lie.

This dependence on the manifold M means that the preferred point metric g� will
not, in general, be locally compatible with dKL. There are two geometries on M which
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do not in general agree: its intrinsic geometry (M; g�) and what, re5ecting M ⊂ N ,
we might call its embedding geometry (M; dKL), (cf. Sections 3.2 and 3.3 above, re-
spectively). Some extra condition will therefore be needed for local compatibility.
Intuitively, if M itself is intrinsically “5at” (that is, if M is g�-5at), it will be enough
if M then also “sits 5at” inside N in some sense. The idea of total 9atness cashes
this intuition.

Again, re-considering Amari’s projection theorem in the light of this 5atness intu-
ition, we can now interpret it as stating that the concepts of minimising dKL in N and
g�-geodesic projection in M coincide because of a particular 5atness (zero curvature)
property of the full exponential family.

De>ning the preferred point geometry (M; !�; g�) to be totally 5at if there is a single
coordinate system 	 with the property that, for every preferred point �, simultaneously
both g�(	) is constant as 	 varies and !�(	) is a linear function of (	−�), Critchley
et al. (1994) prove the following result.

Let (M; g�) be g�-5at and let 	-coordinates be g�-aNne. Then the following three
statements are equivalent:

(i) Locally to �, the manifold M is totally 5at.
(ii) Locally to �, the Kullback–Leibler divergence dKL(�; 	) equals half the squared

g�-geodesic distance from � to 	.
(iii) Locally to �, the Kullback–Leibler divergence is an exact quadratic function of

the 	-coordinates given by dKL(�; 	) = 1
2 (	− �)TI(�)(	− �).

An important corollary of this result is that, whenever a manifold is not totally 5at,
minimising Kullback–Leibler divergence will not in general be equivalent to minimising
the g�-geodesic distance. The choice between these measures will then matter. Clearly,
the former enjoys certain robustness properties, being independent of the parametric
manifold considered, while the latter might be expected to be more eNcient when the
data generation process does lie in or close to the chosen parametric manifold. Caveat
emptor! See also the discussion on in5uence analysis in Section 8.

It is clear that total 5atness is a strong condition. It is of interest to enquire which
full exponential families are totally 5at. It follows from the above that, if M is a
full exponential family induced by some >xed measure P, then the following three
statements are equivalent:

(i) M is totally 5at.
(ii) The covariance of the canonical statistic does not depend upon the canonical

parameter.
(iii) The log-likelihood is a quadratic function of the canonical parameter.
In particular, taking P to be Lebesgue measure, the family of p-variate normal

distributions with (any) constant covariance matrix is totally 5at.

7.3. The rôle of h� in total 9atness

Here, we consider instead the preferred point geometry (M; g�; h�) and say that it
is totally 5at if there exists a single coordinate system with the property of being,
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for every preferred point �, simultaneously aNne for both g� and h�. We call such a
coordinate system co-a8ne.

The two preferred point geometries (M; !�; g�) and (M; g�; h�) are equivalent (Sec-
tion 6.3). Again, these two de>nitions of total 5atness are also equivalent. The former
implies the latter by covariant g�-di-erentiation. The reverse implication follows by
integration and the boundary condition (D2).

The latter de>nition has the advantage that, in view of the duality relation (9), it
follows straightforwardly that total 5atness is logically equivalent to the existence of
a coordinate system that is simultaneously aNne for all three preferred point met-
rics g�; h� and k� (or, again, just for h� and k�). Thus, in co-aNne coordinates 	
in a totally 5at manifold, all three preferred point geometries (M; ��) reduce to the
Euclidean geometry determined by the Fisher information matrix evaluated at the pre-
ferred point �. In particular, their geodesics are line segments (convex combinations)
in 	-coordinates and the g�; h� and k� squared geodesics from � to 	 are all simply
(	−�)TI(�)(	−�). This observation gives, at once, obvious alternative forms of the
above result characterising total 5atness.

Again, de>ning total 5atness in terms of h� enables us to quantify the extent to
which minimisation of dKL and of g� di-er. Let M be g�-5at and let 	-coordinates
be g�-aNne. Then, di-erences between dKL(�; 	) and 1

2 (	 − �)TI(�)(	 − �) re5ect
departures from constancy in 	-coordinates of the metric h� locally to �. There is a
natural geometric way to quantify such departures (namely, the corresponding Christof-
fel symbols for the metric h�: see Amari, (1990, p. 41–42)). These measures of total
curvature (departure from total 5atness) provide the information sought.

7.4. Preferred point Pythagoras theorem

As Amari et al. (1990) aNrm, the projection theorem (see above) and the generalised
Pythagorean theorem for divergences (Amari, 1990, p. 86) are the highlights of the
theory of dually 5at manifolds, such as Amari’s expected �-geometries.

A preferred point Pythagoras theorem established in Critchley et al. (1994) provides
a strengthening of this latter result.

8. Preferred point geometry of in&uence analysis

Following Critchley (1998), we brie5y indicate how a general preferred point ge-
ometry of in5uence analysis in statistics might be developed. We hope to report more
fully on this work in progress in the near future. For related work, see Vos (1991b,
1994) and Kass and Vos (1997).

Statistical science often proceeds by adopting a working formulation of a problem.
We may stylise this as follows. Having de>ned a question of interest, the scientist=statis-
tician team decide on an appropriate statistical model for the context involving one or
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more unknown parameters 	 and on an associated inference method, collect an optimal
feasible set of relevant data, and then use their working problem formulation:

PFo = (Q; data; model; inference method)

to provide an answer Ao to the question of interest Q.
Now, it is natural to think of such a formulation as a preferred point formulation:

preferred because it represents the team’s current best shot at a ‘good’ (parsimonious
yet realistic, etc.) description of the problem and point because it will only ever be
one of many possible (neighbouring) problem formulations. Perturbations of problem
formulation are always pertinent. Accordingly, sensitivity analyses are sensible.

In this broad conception, the rôle of in5uence analysis is to explore interesting
alternative problem formulations PF and their e-ect—if any—on the answer provided
to the question of interest. With !o denoting the null case of a perturbation parameter
vector ! ∈ ', a change !o → ! brings a change PFo → PF in problem formulation.
Its e-ect Ao → A on the answer provided to the question of interest is monitored
by tracking the induced change ,(!o) → ,(!) in a suitable target function ,(·). In
particular contexts this may, for example, be Cook’s likelihood displacement function

LD(!) = 2{l(	̂;!o)− l(	̂(!);!o)} (10)

re5ecting the change 	̂ → 	̂(!) where 	̂(!) maximises the perturbed log-likelihood
l(· ;!) and 	̂:=	̂(!o), the Kullback–Leibler divergence between posterior distributions
under !o and !, or (the expected utility of) the optimal decision procedure under
!o and !. Overall, we wish to compare the size of the perturbation !o → ! to the
size of the change ,(!o) → ,(!) it causes. Invariance of such in5uence analyses to
reparameterisations !→ !∗ of the perturbation is highly desirable, since ! is merely a
label for a problem formulation. Unfortunately, as Loynes (1986) pointed out, Cook’s
(1986) analysis does not have this property.

In this rather general set up, it is not immediately obvious what it means to go
‘straight’ from one problem formulation to another, nor how large such a perturbation
is. A geometrically natural way to answer these questions invariantly is to put an
appropriate metric tensor �o on perturbation space ' and to use the geodesics of the
Riemannian preferred point geometry ('; �o) that it induces. The preferred point nature
of the metric �o re5ects the preferred nature of the working problem formulation PFo.
Preliminary work along these lines has been encouraging.
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