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Returns: Long Memory, Time Deformation

Search for a Model that Explains the Stylized Facts of
Financial Market Returns.

(i) Leptokurtosis.

(ii) Long range dependence in absolute values of
returns and squares of returns but not the levels.

(iii) Volatility clustering.

(iv) Aggregational Gaussianity.

(v) Leverage effect.
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Returns: Long Memory, Time Deformation

The Background
• 1960’s Fama(1963), Mandlebrot(1963) clearly rejected Gaussianity in log returns

Mandlebrot also noted persistence of volatility, volatility clustering and suggested
that apparent scaling and self similarity results indicated the use of stable families
in place of Gaussian. Mandlebrot and Taylor (1967) Subordination model with a
stable law with index α/2 ( where α < 2). Infinite second moment and no LRD.
infinite downside risk and does not match the data.

• 1970’s Clark (1973) Stochastic Volatility, Time deformation and rejection of infinite
variance and Stable family model– log normal- related transaction time to trading
volume- couldn’t get the moments right and no long memory.

• 1980’s Development of Stochastic Volatility, Taylor (1986) and Engle (1982)
conditional heteroskedasticity models-
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Returns: Long Memory, Time Deformation

• 1990’s- Volume -Volatility relationship and information flow; a number of different
economic measures of market time were considered; le Fol - volume, Ané and
Geman (2000) - number of trades.

• Advent of transaction level and high frequency data, location- scale mixture
models for Stochastic Volatility and time deformation- eg.

(i) Variance Gamma

(ii) Normal Inverse Gaussian

(iii) Generalised Hyperbolic
• See Barndorff-Nielsen(1977), Mencia and Sentana(2005)-

X = α + βς−1 + ς−1/2Υ1/2u where u is a spherical random normal
vector and ς is a Generalised Inverse Gaussian ∼ GIG(−ν, γ, δ)

encompasses the Variance-Gamma, NIG and Hyperbolic processes

(iv) CGMY,

(v) Meixner (see Wim Schoutens, Lévy Processes in Finance).
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Returns: Long Memory, Time Deformation

• 2000’s Point process models, slightly different objective

(i) Duration- ACD+... Engle and Russell

(ii) Intensity models - ACI, Russell, Hawkes Processes-Bowsher, Hautsch

(iii) Count models

(iv) OU models driven by Lévy Processes, Barndorff Nielsen and Shephard,
Poisson, Compound Poisson, Gamma, Inverse Gaussian, etc in place of
Brownian Motion

(v) Pure Jump processes CGMY, Jump diffusions...Where Nt is say a Poisson
process counting the jumps (Information events) and need the distribution of
jumps Yt.

Xt = γt + σWt +
Nt
∑

t=1

Yt
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Returns: Long Memory, Time Deformation

• Research now expanding on 3 fronts- Dynamic Point process models, extensions
of Lévy process models and Compensators as opposed to Subordinators and role
of jumps.
• Our objective is to build the time deformation process up from the data

and in doing so we link the point process and time deformation
literatures.

• In particular evidence appears to be accumulating that the time deformation
process is time dependent and has long memory- it is clear that Lévy processes
which imply independent increments cannot explain asset prices.

• This implies the integrated intensity process, Λ(t), and any other measures of
market activity should show Long Range Dependence. See Mandlebrot, Fisher
Calvet (1997a,b), Marinelli, Rachev and Roll (2003 a,b) Stable Family LRD, Heyde
(1999)....... our starting point

• We are investigating the use of a stochastic time change without the independent
increments assumption- a compensator with LR dependence– specifically we will
model this as a Hawkes process with Hyperbolic memory.
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Returns: Long Memory, Time Deformation

• The initial paradigm: Geometric Brownian Motion model the price, Pt, at time t as
Pt = P0 exp[µt + σW (t)], where µ, σ > 0 are fixed constants and W (t) is
standard Brownian motion.

• Then log returns are i.i.d. Gaussian with mean µ and variance σ2.,
Xt = log Pt − log Pt−1 = µ + σ(W (t) − W (t − 1)).

• Following Heyde(1999)- Instead we consider a random time changed version of
Geometric Brownian MotionPt = P0 exp[µt + σW (Tt)], where {Tt} is a positive
increasing random process with stationary differences which is assumed to be
independent of the Brownian motion {W (t)} and the differences of the {Tt} are
Long Range Dependent and have heavy tails. Similar assumptions have been
made by C.Heyde (1999), Mandlebrot et al. (1997) and Marinelli et al ( 2003).

• Consider Tt ∼ t almost surely as t → ∞ then

Xt = log Pt − log Pt−1 = µ + σ(W (t) − W (t − 1))

d
= µ + σ(Tt − Tt−1)1/2W (1)

the heavy tails come from τt = Tt − Tt−1. Royal Statistical Society, London, 8th June 2005 – p. 2/14



Research

• Generate an Empirical Model of Relative Trade
Counts.
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Research

• Generate an Empirical Model of Relative Trade Counts.

• Introduce the Doubly Stochastic Binomial Point
Process as a Model of Relative Trade Counts.

• Show how the DSBPP gives us Information about the
Time Structure of Financial Markets.
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Research

• Generate an Empirical Model of Relative Trade Counts.

• Introduce the Doubly Stochastic Binomial Point
Process as a Model of Relative Trade Counts.

• Show how the DSBPP gives us Information about the
Time Structure of Financial Markets.

• In particular, use the DSBPP to show Long-Memory
(Hurst = 0.7 ) in NYSE ‘Market Time’.
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Research

• Generate an Empirical Model of Relative Trade Counts.

• Introduce the Doubly Stochastic Binomial Point
Process as a Model of Relative Trade Counts.

• Show how the DSBPP gives us Information about the
Time Structure of Financial Markets.

• In particular, use the DSBPP to show Long-Memory
(Hurst = 0.7 ) in NYSE ‘Market Time’.

• Review the role of Mathematica in the Research.
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Empirical Relative Trade Counts

Ané and Geman (2000) - The ‘Market Clock’ is Trade
Count Distribution.

Comparing Stocks with Different Trade Counts
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Empirical Relative Trade Counts

Relative Count Measure R(t) = N(t)
N(T ) , t ∈ [0, T ]

Divide by Final Trade Count to get Relative Trade Count
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Empirical Relative Trade Counts

Relative Count Measure R(t) = N(t)
N(T )

• N(T ) = K =⇒ R(t) = a ∈ {0, 1
K

, . . . , K−1
K

, 1}
• R(0) = 0

• R(T ) = 1

• R(t) ∈ [0, 1], t ∈ (0, T )

• t1 ≤ t2 =⇒ N(t1) ≤ N(t2) =⇒ R(t1) ≤ R(t2)
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Empirical Relative Trade Counts

90,000 NYSE Relative Volume Trajectories
R(t), t ∈ [0, T ], 391 × 253 Histogram
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Empirical Relative Trade Counts

Mathematica Visualization- Relative Count
Trajectories, R(t) t ∈ [0, T ].

Stocks ≥ 50 Trades per Day.
• Rotate R(t) Trajectories about the Z-axis.
• Rotate R(t) Trajectories about the Y-axis.
• Re-scale the Z-axis of the R(t) Trajectories.
• Time Slice the R(t) Trajectories.

Stocks ≤ 50 Trades per Day.
• Time Slice the R(t) Trajectories.
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Empirical Relative Trade Counts

The Distribution of the Relative Count Measure
R(t) ∼ Θt(k)

• Θt(k) Discrete (Binomial Superposition)

• N(T ) = K, Domain
[

Θt(k)
]

= k ∈ {0, 1
K

, . . . , K−1
K

, 1}
• t = 0, Θ0(0) = 1

• t = T, ΘT (1) = 1

• t1 ≤ t2 =⇒ E
[

Θt1(k)
]

≤ E
[

Θt2(k)
]
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The Binomial Point Process

A point process is based on the probability of arrival in
an interval ∆, Pr

[

N(t + ∆) − N(t) > 0|Ft

]

.

• Counting Measure N(t)

• Intensity λ(t) = lim∆→0+
Pr[N(t+∆)−N(t)>0|Ft]

∆ ≥ 0

• Integrated Intensity Λ(t) =
∫ t

0 λ(s) ds

(non-decreasing).
• Λ(t) = E[N(t)], Λ(t) − N(t) = Mt
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The Binomial Point Process

Trade Arrivals are a Cox Process

• The Intensity λ(t) ≥ 0 and Integrated Intensity Λ(t)
are random processes.

• Trade Count Measure N(t) Conditionally Poisson
Distributed.

Pr{N(t) = K |Λ(t)} =
exp[−Λ(t)] Λ(t)K

K!
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The Binomial Point Process

The Relative Count Measure, R(t), is a Doubly
Stochastic Binomial Point Process.

Pr{R(t) = a |Λ(T )} = Pr{N(t) = aK |N(T ) = K, Λ(T )}

=

(

K

aK

) [

Λ(t)

Λ(T )

]aK [

1 − Λ(t)

Λ(T )

](1−a)K

a ∈ {0, 1

K
, . . . ,

K − 1

K
, 1}, t ∈ [0, T ]
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The Binomial Point Process

The Components of the Doubly Stochastic Binomial
Point Process.

• Binomial Noise (Uninteresting)

(

K

aK

) [

•
]aK [

1−•
](1−a)K

, a ∈ {0, 1

K
, . . . ,

K − 1

K
, 1}

• The Self-Normalized Integrated Intensity -
Random Probability Measure (Very Interesting)

• ≡ Λ(t)

Λ(T )
, t ∈ [0, T ]
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The Random Probability Measure

Λ(t)
Λ(T ) is a smooth version of R(t).
Simulated Using Mathematica.
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The Random Probability Measure

Fubini’s Thm on Product Prob. Spaces =⇒
R(t) ∼ Binomial Mixture

Pr{R(t) = a} =

∫ 1

0
Binomial(K, s) Φt(s)ds

Λ(t)

Λ(T )
is a Time Indexed set of Distributions

• t = 0 =⇒ Λ(0)
Λ(T ) ∼ Diracδ(z), z ∈ [0, 1]

• t = T =⇒ Λ(T )
Λ(T ) ∼ Diracδ(z − 1), z ∈ [0, 1]

• t ∈ (0, T ) =⇒ Λ(t)
Λ(T ) ∼ Φt(z), z ∈ [0, 1]
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RPM Moments

Pr(R(t) = a) ∼ Θt(a) a Binomial Mixture. Solve for the
raw moments of the RPM distribution Φt(s) in terms of
the data distribution Θt(a) raw moments.

K
∑

i=0

(

i

K

)n

Θt(i) =
K

∑

i=0

(

i

K

)n ∫ 1

0
Binomial(K, s) Φt(s)ds

=
1

Kn

∫ 1

0

[ K
∑

i=0

in
(

K

i

)

si
(

1 − s
)K−i

]

Φt(s)ds

E[Θt(a)] =
K

∑

i=0

(

i

K

)

Θt(i) =
1

K

∫ 1

0
(Ks) Φt(s)ds = E[Φt(s)]
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Re-programming Mathematica

The 4th Raw Moment of Φt(s) ∼
Λ(t)
Λ(T )

was calculated by re-programming the Integrate

function in Mathematica.

• δi is the ith Raw Moment of (observed binned data) Θt(k|K) ∼ R(t)

• λi is the ith Raw Moment for Φt(s) ∼
Λ(t)
Λ(T )

• Final Trade count K.

λ4 =
K3δ4 − 6K2λ3 + 18Kλ3 − 12λ3 − 7Kλ2 + 7λ2 − λ1

K3 − 6K2 + 11K − 6

Unprotect[Integrate]; (* Add Rules to Integrate*)

Integrate[(x_ + y_)*z_,s_] := Integrate[x*z,s] + Integrate[y*z,s];

Integrate[x_ + y_,s_] := Integrate[x,s] + Integrate[y,s];

Protect[Integrate]; (* Prevent Any Modification of Integrate *)
Royal Statistical Society, London, 8th June 2005 – p. 11/14



RPM Moments

391(time) × 253(rel. vol.) Histogram (≥ 50 Trades)
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RPM Moments

Derivative of E[ Λ(t)
Λ(T ) ] is the ‘U’ shaped trading variation.
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RPM Moments

RPM Data Variance for different Trade Count Bands
NYSE RPM Intensity Variance 
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RPM Moments

RPM Variance scaled by (
√

λ + 1)

NYSE RPM Scaled Intensity Variance, Scale = 0.5
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RPM Moments

Variance scaled by (λ0.6 + 1) =⇒ Self-Similar
NYSE RPM Scaled Variance, Scale  = 0.6

09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00

S
ca

le
d

 V
ar

ia
n

ce

201-400

401-5022

Daily Trade Count

Royal Statistical Society, London, 8th June 2005 – p. 12/14



RPM Moments

Sketch Proof that the Intensity Measure Λ(t) has a
Hurst Exponent of 0.7

• Assume the Integrated Intensity is 2nd Order
Self-Similar

Var
[

Λ(λt)
]

= λ2HVar
[

Λ(t)
]

• The Taylor series approximation of a ratio of
random variables gives:

Var
[

Λ(λt)

Λ(λT )

]

≈ 1

λ2H−2 + 1
M, Mconstant in λ

• Therefore 2H − 2 = −0.6 and H = 0.7.
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Summary

• Relative Trade Count is a Binomial Point Process directed by a Self-Normalized
Integrated Intensity. We believe this is a novel object in Statistical Research.

• Modelling the Self-Normalized Integrated Intensity (RPM), Λ(t)
Λ(T )

, gives important

insights into the time structure of the Integrated Intensity, Λ(t), and Intensity
Process, λ(t) that is Completely Free of Modelling Assumptions.

• One Insight is that The Hurst Exponent of the Integrated Intensity Aggregated
Across Stocks, Λ(t), is 0.7

• This invalidates all models of Market Returns that use Stochastic ‘Market Clocks’
(Subordinators) with H = 0.5 including the Variance Gamma, Normal Inverse
Gaussian and Generalized Hyperbolic return distribution models.

• Λ(t) Second order self-similar =⇒ B[Λ(t)] fits stylized facts (Clark
1973,Mandelbrot, Fisher & Calvet 1997).
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Mathematica Summary

• Visualization of Complex Objects.

• Flexibility - The Ability to Re-programme
Underlying Functionality.

• MathStatica - Simplifies Difficult and Time
Consuming Mathematical Statistics.

• Easy Simulation of Complex Processes.
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