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Objectives

Information Flow and the Shape of the Yield Curve
Different information hits the yield curve at different maturities;
so measuring market activity at different yields should be
central to understanding the shape of the Yield curve and how
it evolves over time.

1 Use tick by tick level Gov PX data to measure market activity
and information �ow at different yields and use this to build a
market model of the yield curve.

2 Natural measure of Information �ow is given by price intensity at
each maturity.

3 Use Hawkes Processes - univariate and multivariate- to
measure information �ow - information clustering

4 Examine how information �ow as measured by instanteneous
volatility affects the shape of the 5 min Yield Curve

5 Use the instanteneous volatility derived from the Hawkes models
to calibrate an HJM model and price Caplets.
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Research Objectives

So can we model the yield curve by measuring information
�ow at different points along the yield curve?
If so:

1 How do we measure volatility?

2 Given HJM Theory Instantaneous volatility should be able to
explain the standard factors used in non-arbitrage models- does
it?

3 How accurate are option prices that are priced off the volatility
Yield Curve model based on Hawkes processes?

4 Develop an approach to pricing �xed income derivatives based
on an estimated instantaneous volatility.
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U.S. Treasury Securities - GovPX

1 One of the most important �nancial markets in the world
2 Daily trading volume in the secondary market of about averages
$200 billion.

3 Almost round-the-clock trading - New York, Tokyo and London
4 Trade sizes starting at $1 million for bonds and $5 million for bills
5 Almost no high frequency analysis of this important market
6 About 1,700 brokers and dealers trade in the secondary market,
the 39 primary government securities dealers account for the
majority of trading volume.
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U.S. Treasury Securities - GovPX
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Hawkes Processes

Bowsher (2002), Hautsch (2004), Large( 2005), McCulloch and
Salmon (2004)(2005)

1 Model the rate that �nancial events take place as a
conditional random intensity with self-excited and cross
excited dependence.

2 The conditional intensity function can be modelled as a
function of its backward recurrence time,Hawkes(1971).

λ(t) = ν+

tZ
�∞

g (t � u) dN (u) (1)
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Hawkes Processes

An exponential decay for univariate Hawkes can be modelled as

λ(t) = µ+

N(t�ε)X
i=max(1,N(t�ε)�R+1)

ae�b(t�ti ) (2)

where R is the number of lags in backwards recurrence time
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Hawkes Processes II

The unknown parameters can be estimated using MLE (Daley
and Vere-Jones, 2003)

L =
NZ
0

log(λ(t j Ft ))�
Z T

0
(1� λ(t j Ft )) dt (3)

L =
NX
i=1

log(λ(ti))�
Z T2

0
λ(t)dt (4)
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Multivariate Hawkes Process

The multivariate-multidimensional intensity function reads

λs(t) = µs +
PX
r=1

DX
j=1

Nr (t)X
k=1

αjs,r exp
h
�βjs,r (t � τr ,k )

i
where P- number of processes, D number of dimensions, Ns
number of data points of process s,
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Multivariate Hawkes Process

which can be equivalently written in terms of a pooled process

λs(t) = µs +
DX
j=1

N �(t)X
k=1

αjs,σ�k
exp

h
�βjs,σ�k

(t � τ�k )
i

(5)

= µs +
PX
r=1

DX
j=1

N �(t)X
k=1

δr ,σ�k αjs,r exp
h
�βjs,r (t � τ�k )

i
(6)

with the Kronecker δ-function de�ned as δa,b = 1 if a = b and 0
otherwise.
The LLF for process s

s =
NsX
i=1

log [λs(τs,i)]�
Z τs,Ns

τs,1

λs(t)dt
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Objectives

Stationarity Conditions

Stationarity Conditions in the Univariate Case

The process needs to be stationary. We have a constant
average rate which is the expectation of the process

λ̄dt = E fdN(t)g

moreover it is the expectation of the time-varying intensity
function λ(t)



lg

Mark Salmon, Wing Wah Tham and Nick Webber Warwick Business School

Objectives

Stationarity Conditions

λ̄ = E fλ(t)g (7)

= E
�

µ+

Z t

�∞
g(t � u)dN(u)

�
(8)

= µ+

Z t

�∞
g(t � u)E fdN(u)g (9)

= µ+ λ̄

Z t

�∞
g(t � u)du (10)

which can only be true if the integral is between 0 and 1 (since
µ, λ̄ > 0)
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Objectives

Stationarity Conditions

0 <
Z ∞

0
g(u)du < 1 (11)

(12)

and in our case
g(u) = αe�βu

this gives the stationarity condition

0 <
α

β
< 1
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Stationarity Multivariate Case

Stationarity in the Multivariate Case
In the MV case we have the average rates λ̄s as

λ̄sdt = E fdNs(t)g

which is

λ̄s = E fλs(t)g (13)

= E

(
µs +

PX
r=1

Z t

�∞
gsr (t � u)dNs(u)

)
(14)

= µs +
PX
r=1

Z t

�∞
gsr (t � u)E fdNs(u)g (15)

= µs +
PX
r=1

λ̄r

Z t

�∞
gsr (t � u)du (16)
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Stationarity Multivariate Case

using our assumed model

gsr (u) = αsre�βsru

gives P equations

λ̄s = µs +
PX
r=1

αsr
βsr

λ̄r

where conditions on the parameters can be extracted either by
directly reading them off or putting the equation for λ̄t into the
equation for λ̄s, hence the following

αst
βst

αts
βts

< 1� αss
βss

for s 6= t (17)
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Results

Results

Estimates of scaled parameters 3m (S.E) 2y (S.E) 5y (S.E) 10y (S.E) 30y (S.E)
W 0.134374 (0.004) 0.387 (0.008) 0.413 (0.007) 0.375 (0.007) 0.1351 (0.004)
J 2.816 (0.046) 4.459 (0.04) 5.578 (0.039) 5.566 (0.05) 4.323 (0.087)
K 3.197 (0.045) 4.757 (0.041) 5.848 (0.04) 5.856 (0.048) 4.79 (0.092)
LÝSÞ 5188.2 125223 246605 204826 11533
mean of residuals 1 1 1 0.99 0.99
a2 of residuals 1.05 1.04 1.01 1.03 1.01
LB (20 lags) 260.94 (0.000) 406.46(0.000) 345.98(0.000) 324.45(0.000) 245.37(0.000)
Disp 1.33 (0.000) 1.31 (0.000) 1.24 (0.000) 1.11 (0.00) 1.47(0.00)
Obs 14163 77442 112375 95189 17321



lg

Mark Salmon, Wing Wah Tham and Nick Webber Warwick Business School

Objectives

Results Multivariate

Results Multivariate

3m (S.E) 2y (S.E) 5y (S.E) 10y (S.E) 30y (S.E)
J3m Ýt ? statsÞ 2.352826(44.256) 0.362883(2.88) 0.583034(3.83) 0.165256(2.12) 0.021324(1.53)
J2yÝt ? statsÞ 2.684901(160.20) 3.137544(84.12) 24.224321(273.44) 10.344241(176.09) 1.122166(188.86)

J5yÝt ? statsÞ 2.089888(62.71) 3.604475(9.98) 3.726708(92.93) 21.557467(61.63) 1.878735(126.66)

J10yÝt ? statsÞ 0.852139(54.35) 1.62365(8.08) 19.194776(54.81) 4.300337(94.88) 4.674444(242.09)

J30yÝt ? statsÞ 0.084583(1.40) 0.004175(0.04) 0.230784(2.30) 0.391175(2.45) 4.893357(53.68)

K3m ÝS.E. Þ 4.668581(0.11) 5.78676(0.38) 47.042115(0.35) 21.533799(0.23) 38.260298(0.05)
K2yÝS.E. Þ 9.628071(0.23) 4.826595(0.05) 245.569308(0.40) 127.577995(0.60) 39.771582(0.26)

K5yÝS.E. Þ 21.791448(0.72) 14.834681(4.00) 6.034754(0.06) 128.587993(2.67) 7.808274(0.24)

K10yÝS.E. Þ 15.409595(0.23) 15.260858(1.81) 171.609503(1.93) 6.113891(0.06) 19.334739(0.55)

K30yÝS.E. Þ 33.568557(0.12) 14.778038(0.17) 31.920671(0.41) 11.979099(0.18) 6.557604(0.13)

WÝS.E. Þ 0.004383(0.00) 0.307226(0.01) 0.213167(0.01) 0.195392(0.01) 0.042997(0.00)
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Instantaneous volatility

Instantaneous volatility

1 Relationship between trade arrivals and volatilty
2 Instantaneous volatility can be de�ned by

a2
ÝtÞ = lim

A¸0
E 1

A
PÝt + AÞ ? PÝtÞ

PÝtÞ

2
P « t

a xdp
2

ÝtÞ = lim
A¸0

1
A ßprob|PÝt + AÞ ? PÝtÞ| ³ dp P « t

2 àE PÝt + AÞ ? PÝtÞ
PÝtÞ

P « t
2

2

a xdp
2

ÝtÞ = VdpÝt;« t
2 ÞE PÝt + AÞ ? PÝtÞ

PÝtÞ
P « t

2
2
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Heath Jarrow Morton

Suppose that

dft (T ) = α(t ,T )dt +
nX
i=1

σi(t ,T )dzi,t ,

Set ai(t ,T ) = �
R T
t σi(t , s)ds, i = 1, . . . ,n.

Pure discount bond prices then follow the process

dBt (T )
Bt (T )

= (rt + b (t ,T )) dt + a (t ,T ) dzt , (18)

under the objective measure Q, where
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Heath Jarrow Morton

a = (a1, . . . ,an)0 (19)

ai(t ,T ,ω) = �
Z T

t
σi(t , s,ω)ds, i = 1, . . . ,n, (20)

b(t ,T ,ω) = �
Z T

t
α(t , s,ω)ds+

nX
i=1

a2i (t ,T ,ω). (21)
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Factor Models

Factor Models

1 Three basic approaches to Yield Curve Modelling

1 No-arbitrage models-model the yield curve at one point in
time to ensure no arbitrage possibilities exist-pricing
derivatives; Hull White (1990), HJM (1992)

2 Equilibrium models- model the dynamics of the short rate
using af�ne models after which other maturities can be
derived- Vasicek(1977), CIR(1985), Duf�e Kan (1996).

3 Factor models- distill entire yield cuve period by period
into a �nite dimensional space - typically three-that evolves
dynamically- used for forecasting-Nelson Siegel (1987),
Litterman and Scheinkman(1991)-level slope curvature -
�rst three principal components of the yield space�forecast
the yield curve by forecasting the factors but where do the
factors come from- what do they mean?
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Factor Models

Forward Rate Curve:

ft (τ) = β1t + β2te
�λtτ + β3tλte

�λtτ

and corresponding
Yield Curve

yt (τ) = β1t + β2t

�
1� e�λtτ

λtτ

�
+ β3t

�
1� e�λtτ

λtτ
� e�λtτ

�
Diebold and Li (2006) interpret β1t , β2t ,and β3t as three latent
factors; long term, short term and medium term. Also numerical
factors representing level-β1t = yt (∞); slope
β2t = yt (∞)� yt (0) for us (y(120)� y(3)), curvature
2yt (24)� yt (3)� yt (120)
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Yields 1999
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Principal Components 1999
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Yields 2000
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Principal Components 2000
8.

5
9.

0
9.

5
10

.5
11

.5

F.1

7
.0

6
.5

6
.0

5
.5

5
.0

0 5000 10000 15000 20000 25000

F.2

6
.6

6
.2

5
.8

5
.4

0 5000 10000 15000 20000 25000

F.3

Factor Returns

Principal Components 2000

The �rst 3 principal components explain around 99% of the
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Principal Components 2000
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Can volatility explain the factors?

Can volatility explain standard factors?

dep variable const vol3m vol2yr vol5yr vol10yr vol30yr R2

pc1 0.0016
Ý23.06Þ

0.0231
Ý2.61Þ.

0.2328
Ý11.15Þ

0.0376
Ý3.56Þ

0.0183
Ý3.62Þ

0.0224
Ý4.33Þ 0.0725

pc2 0.001
Ý9.65Þ

0.1933
Ý14.48Þ

0.0457
Ý1.45Þ

0.0431
Ý2.70Þ

0.0012
Ý0.16Þ

0.0073
Ý0.92Þ 0.0172

pc3 0.0009
Ý11.83Þ

0.1373
Ý13.84Þ

0.0171
Ý0.73Þ

0.0287
Ý2.43Þ

0.0046
Ý0.80Þ

0.0161
Ý2.77Þ 0.0160

Regressions
of ∆principal components on the volatilities

No!
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Can volatility explain the Shape of the Yield Curve?

We estimate a modi�ed Nelson-Siegel function following
Diebold and Li (2006) using volatility in place of the maturity.

yt (τ) = β1t + β2t

 
1� e�λvol(τ)

λvol(τ)

!
+ β3t

 
1� e�λvol(τ)

λvol(τ)
� e�λvol(τ)

!
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Fitting the Yield Curve with volatility

Yes!
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Fit to 3m over 50,000 obs
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Pricing Caps using intensity based volatility
Suppose that

dft (T ) = α(t ,T )dt +
nX
i=1

σi(t ,T )dzi,t ,

as usual, where σi(t ,T ), i = 1, . . . ,n, are Gaussian.
Set ai(t ,T ) = �

R T
t σi(t , s)ds, i = 1, . . . ,n.

Pure discount bond prices then follow the process
dBt (T )
Bt (T )

= (rt + b (t ,T )) dt + a (t ,T ) dzt , (22)

under the objective measure Q, where

a = (a1, . . . ,an)0 (23)

ai(t ,T ,ω) = �
Z T

t
σi(t , s,ω)ds, i = 1, . . . ,n, (24)

b(t ,T ,ω) = �
Z T

t
α(t , s,ω)ds+

nX
i=1

a2i (t ,T ,ω). (25)
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When forward rate volatilities are Gaussian it possible to obtain
formulae for some simpler instruments. Brenner and Jarrow
(1993) and Au and Thurston(1994) showed that there is a
standard Black formula for a caplet ct (T1,T2), in order to
hedge interest rate risk.

ct (T1,T2) = Bt (T2)N(d)� XBt (T1)N(d �w) (26)

where

d =
1p
w
ln
�
Bt (T2)
XBt (T1)

�
+
1
2
p
w , (27)

w =
nX
i=1

Z T1

t
(ai(u,T2)� ai(u,T1))2 du, (28)

and the initial forward curve has been �tted to match the market
values Bt (T ) of PDBs.
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Suppose that the bond volatility curve has been �tted by a
curve of Nelson and Siegel type so that

a (τ) = β0 + (β1 + β2τ) e�kτ (29)

where τ = T � u.

Forwardforward volatilities
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Then solving for w gives a closed form expression;

w =

Z T1

t
(ai(u,T2)� ai(u,T1))2 du (30)

=

Z T1

t

�
β0 + (β1 + β2 (T2 � u)) e�k(T2�u) � β0 � (β1 + β2 (T1 � u)) e�k(T1�u)

�2
du(31)

=

Z T1

t

0B@ (β1 + β2 (T2 � u))
2 e�2k(T2�u)

+ (β1 + β2 (T1 � u))
2 e�2k(T1�u)

�2 (β1 + β2 (T2 � u)) (β1 + β2 (T1 � u)) e�k(T1+T2�2u)

1CA du (32)

=

Z T1

t
(β1 + β2 (T2 � u))

2 e�2k(T2�u)du (33)

+

Z T1

t
(β1 + β2 (T1 � u))

2 e�2k(T1�u)du (34)

�2
Z T1

t
(β1 + β2 (T2 � u)) (β1 + β2 (T1 � u)) e�k(T1+T2�2u)du (35)
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Conclusions

Conclusions
1 We have been able to show through the multivariate Hawkes
model how information measured by intensity of activity in yields
affects other parts of the Yield curve- information �ows through
the Yield Curve.

2 We have been able to estimate instantaneous volatility from the
estimated Hawkes model and used this to show that

1 We have dif�culty explaining the standard factors with
volatility at the different maturities

2 We can however capture the shape of the 5 minute Yield
Curve with the instantaneous volatility term structure with
some degree of accuracy

3 Offering the potential for activity or information based
forecasting of short term yield movements

3 We have also shown how we can use the instantaneous volatility
to price caplets to hedge interest rate risk off a 5 minute HJM
Yield Curve.
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