

15th December 2015, WBS Scenario 2015,

Embedding Real Options in Scenario Planning: A New Methodological Approach

Giampiero Favato, Riccardo Vecchiato

Kingston Business School, London

Resarch Aim

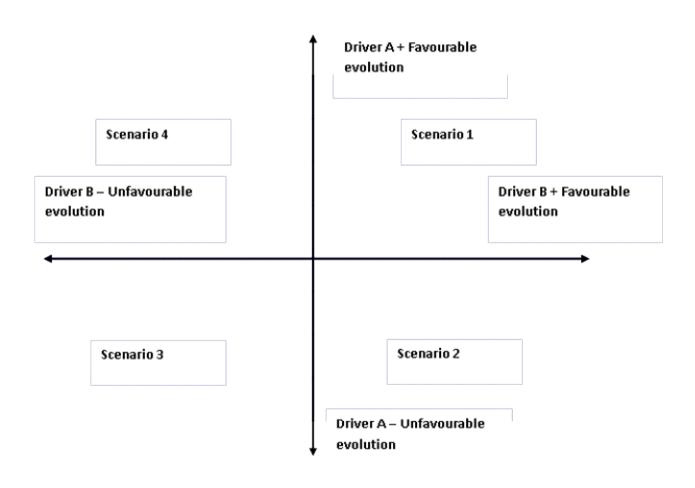
This paper aims to bridge the gap in the integration of scenarios and real options by:

- 1. Developing an intuitive approach to real option evaluation;
- 2. Combining it with scenario planning;
- 3. Testing the new model on a real capital investment decision.

Integrating scenarios and real options: rationale

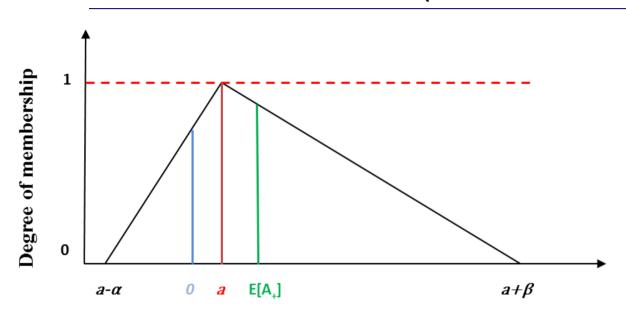
- Real options involve the application of financial options theory to investment decisions on real assets (McGrath et al., 2004; Tong and Reuer, 2007)
- Real option theory emphasizes that many initial investments create relevant opportunities for follow-on investments (Dixit and Pindyck, 1994; Trigeorgis, 1996; Krychowski and Quelin, 2010).
- Real options might help decision makers to better understand the impact of the alternative patterns of evolution of key drivers of changes
- Real options are likely to quantify the financial implications for the organization of scenarios, by providing tangible and reliable measures in terms of cash flows and profits

Integrating scenarios and real options: key issues


- No evidence is provided as how to bridge the gap between the qualitative approach of scenarios and the quantitative approach of real options (Miller and Waller, 2003; Ram and Montibeller, 2013)
- Decision makers do not have the mathematical skills necessary to use these models comfortably and knowledgeably (Borison, 2005; Triantis, 2005)

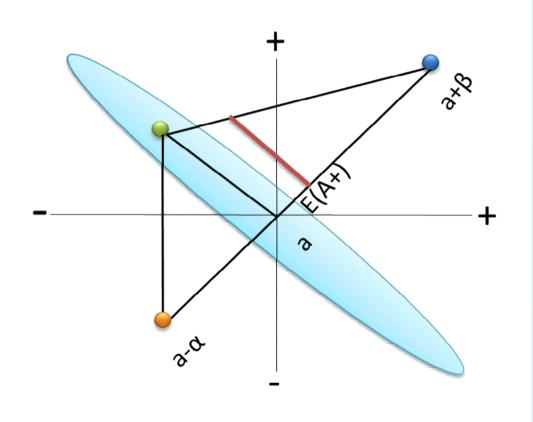
$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0$$

 The key issue of volatility: the estimate of variance of returns is the Achilles heel of the Black & Scholes' model.



Components of the model: classical 2x2 matrix

Real options: the pay-off method (Collan et al., 2009)



- "worst" case scenario (Driver A: -; Driver B: -)
- "best" case scenario (Driver A: +, Driver B: +)
- "base" scenario (combining the ' + ' and ' + ' scenarios)

INVEST IF PAY-OFF VALUE > REQUIRED CAPITAL

Intuitive visualisation of our model

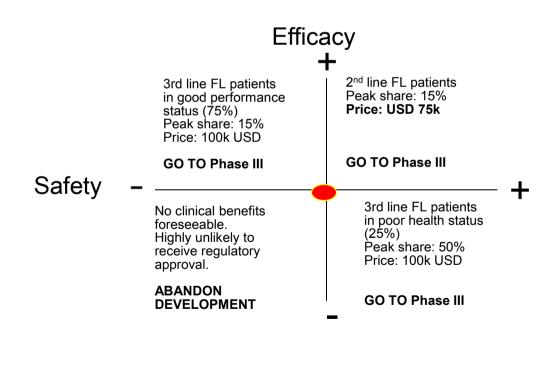
© Registered copyright 284699314 All rights reserved

Legend:

- a probabilised value of base case
- α difference of absolute values of base and worst case
- β difference of absolute values of best and base case
- $(a+\beta)$ value of best case
- $(a-\alpha)$ value of worst case
 - 1 highest possibility
 - 0 lowest possibility
- E(A+) Pay-off Value

Research Methodology

- Action research
- One of the authors was directly involved in the application of the method as he served as advisor to the Board of IDEa at the time of a critical investment decision for the clinical development of a new drug
- This privileged viewpoint allowed us to get access to primary data and to provide a detailed description of the application of the method and its outcomes

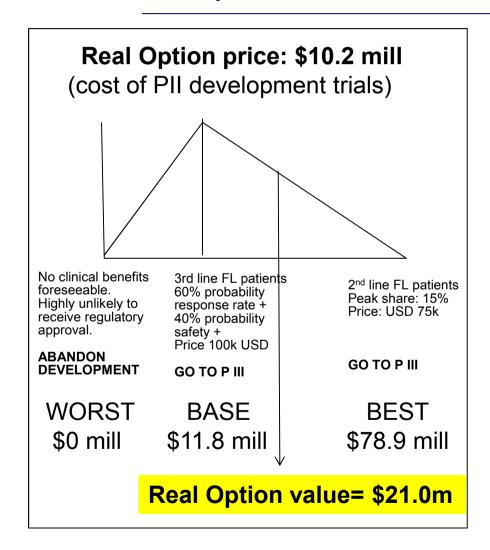

A real investment decision: IDEa-001

- A Biotech Firm is developing a novel treatment for Follicular Lymphoma: IDEa-001
- IDEa-001 has successfully cleared Phase I
- An additional investment of \$10.2 millions required to progress to Phase II of clinical development
 - Phase I: discovery and preclinical testing, where specificity of antitumor activity and toxicity are initially tested in animal models
 - Phase II: carrying out studies in patients of selected tumor type to estimate efficacy compared to historical control and confirm optimal therapeutic dosage
 - Enlarged Phase II/Phase III: larger studies aimed at head-to-head comparison of the drug in development with the then-best-available therapy.

Possible scenarios for IDEa-001 at the end of Phase II

Allowable scenarios at the end of Phase II trials

Standard of care


Inputs to the DCFs stemming from the four allowable scenarios

INPUTS TO Discounted Cash Flow (DCF) model	WORST SCENARIO	BASE CASE safety -; response rate +	BASE CASE safety+; response rate	BEST SCENARIO	SOURCES
Follicular Lymphoma (FL) patients in US	36,727	36,727	36,727	36,727	Globocan IARC WHO
and 5 major EU Countries					www.globocan.iarc.fr
Annual growth rate	1.5%	1.5%	1.5%	1.5%	Globocan IARC WHO
Indication (s)	Abandon	Third line	Third line,	Second line	IDEaTION strategic assessment
	development		patients in		
			poor status		
Patients treated (% of total FL patients)	-	10.5%	3.5%	33%	IDEaTION estimate
IDEa-001 peak share	-	15%	50%	15%	IDEaTION estimate
First approval & launch	-	Year 3	Year 3	Year 3	IDEaTION estimate
Patent expiration	-	Year 16	Year 16	Year 16	IDEa-001 IND filing
Net effective price per patient	-	\$100,000	\$100,000	\$75,000	IDEaTION targets based on the inverse
					correlation between incidence and price
Probability rate of marketing approval	-	50%	50%	50%	Global Data attrition analysis
			_		www.globaldata.com
R&D investment to complete PII	\$10.2 mill	\$10.2 mill	\$10.2 mill	£10.2 mill	IDEaTION estimate
Incremental R&D investment to	-	\$44 million	\$44 million	\$44 million	IDEaTION estimate
complete development					
Annual cost of pharmaco-vigilance	-	\$2 mill	\$2 mill	\$2 mill	IDEaTION estimate
Annual incremental fixed capital	-	Up to \$2 mill in	Up to \$2 mill in	Up to \$2 mill in	IDEaTION estimates of capital required
investments		Year 5; \$1 mill	Year 5; \$1 mill	Year 5; \$1 mill	to scale-up and to maintain supply after
		thereafter	thereafter	thereafter	approval
Basis for probabilised costs	-	revenues	revenues	revenues	Probability-adjusted revenues
Cost of Goods Sold	-	20%	20%	20%	IDEaTION estimate based on small scale
					PI manufacturing costs
Sales & Marketing costs	-	10%	10%	10%	Global Pharma: biotech industry average
Other operating expenses	-	5%	5%	5%	Global Pharma: biotech industry average
Effective tax rate as % of EBIDTA	-	35%	35%	35%	IDEaTION estimate
Discount rate	-	12%	12%	12%	Global Pharma (+4% illiquidity premium)

11

Graphical representation of IDEa-001's real option value of Phase II investment

The real option value obtained with the pay-off method was absolutely comparable to the option value calculated through Black & Scholes formula, showing a negligible difference of 1.3%.

Advantages

- The pay-off method quantifies the value implications for the organization of the 2 x2 scenario matrix
- The pay-off method is based on fuzzy distribution of possibilities. It does not require to calculate volatility.
- The application of the pay-off method is consistent with the main objective of scenarios
- The two techniques deductive scenarios and payoff method – speak a language familiar to management
- Together, they are likely to improve the understanding of uncertainty and competitive dynamic environment

Conclusions

- Our model can be extended to virtually ant strategic investment decisions, by simply changing the key variables to use as the axes of the 2 x 2 scenario matrix (e.g., the market share and the market size of a new product, or maturity and interest rate of financial instruments)
- The model can be extended to other traditional domains of application of real options, such as mergers and acquisitions (Krychowski and Quelin, 2010) and IPO pricing
- The pay-off method is being developed from the current triangular approach to a trapezoidal approach

15th December 2015, WBS

Scenario 2015,

Embedding Real Options in Scenario Planning: A New Methodological Approach

Giampiero Favato

g.favato@kingston.ac.uk

Riccardo Vecchiato

r.vecchiato@kingston.ac.uk