KNOT REPRESENTATION

Assign a height function to a given link, mark every crossing and critical point. Then as you go along the link starting from the top (maximum) use the following rules o translate a link into a word over a six letter alphabet:

COUNTING LINKS

A form of backtrack algorithm can be used to count and list all the words of a given length (say n) that correspond to a s for the algorithm are the following: stage the number of lines on any of the sides is 2) if after k-th letter is evaluated the number of lines on any of the sides is greater than $n-k$
We can see the results (length vs number of components) below:

TRICOLORING

A tricoloring is defined to be a coloring using 3 colours such that at each crossing either 1 or 3 colours appear. It is one of the simplest knot
invariants. Some possible colorings at a crossing are presented below.

colors

One important property of the tricoloring invariant is that it can in some cases indicate whether a given knot is not an uknot. In particular the tricoloring invariant distinguishes between the unknot TB and the trefoil knot which has 9 colorings. The table below presents the number of tricolorings for words of
length from 9 to 12 (all words of length less than 9 have 3 tricolorings)

JONES POLYNOMIAL

In order to calculate the Jones Polynomial of a given knot one needs to change the representation of a knot from a string of correspond to $T^{*} U * B$ where T, B, O, U, L, R are variables in a 6 dimensional algebra.

One also needs to assign an orientation to a given knot. This is done as follows:

Whenever T occurs an
 additional orientation is added. If all orientationns agree on all the Bs the orientation is accepted.

 T
 R T 0
 L
 B
 B
 have the orie assigned we can compute the assigned we can col Jones Polynomial.

RANDOM KNOTS

Take a knot of a given length and perform a number of changes in the word representing this knot We need to make sure that:

1) After the changes have been made the resulting word still represents a kno 2) The resulting word (knot) is random enought

Consider the following examples:

A slightly different change sanges the number of components:

$$
\begin{aligned}
& \text { To deal with the first } \\
& \text { problem we start with links. } \\
& \text { Given any link of length n } \\
& \text { we can take a subword of } \\
& \text { the word representing this } \\
& \text { link and replace it with a } \\
& \text { different word (random). } \\
& \text { The resulting word is still a } \\
& \text { link provided that the } \\
& \text { number of lines athe the } \\
& \text { beginning and at the end of } \\
& \text { the subword agree with } \\
& \text { those of the new one. We } \\
& \text { also require that the number } \\
& \text { of lines doesn't go below } 0 \text {. }
\end{aligned}
$$

FINAL RESULTS

Using the Jones Polynomial we can words of a given length epresent an unknot and how a probability of getting a knot (not an ength of the wor increases. We can see these results on the left
$\left(\begin{array}{ll}T & T \\ L \\ T \\ U\end{array}\right] \rightarrow\left[\begin{array}{l}0 \\ B \\ B \\ R \\ R \\ B \\ B \\ B\end{array}\right\}$

