Skip to main content Skip to navigation

Events in Physics

Show all calendar items

Kyriakos Porfyriakos, Oxford

- Export as iCalendar
Location: PS1.28

Endohedral Fullerenes as Building Blocks for a Quantum Computer

Endohedral fullerenes offer a unique paradigm in nature: the encapsulation of atom(s) in spherical molecular structures. The encapsulated atoms bestow extraordinary properties to the fullerene cage. Many endohedral fullerenes have unpaired electrons. Electrons can carry quantum information embodied in their spin-state. Hence endohedral fullerenes have been proposed as quantum bits or “qubits”: the building blocks of a quantum information processing (QIP) device. N@C60 in particular is a remarkable molecule with the longest coherence time ever recorded for a molecular system (its electron spin coherence time T2 has been measured in excess of 0.24 ms 1). This property makes this molecule especially attractive for QIP. Moreover, the electronic properties of endohedral fullerenes can be tuned by appropriate chemical functionalization.

In this talk, I will endeavour to explain the basic principles of QIP and the suitability of endohedral fullerenes as building blocks for a quantum computer (see Figure 1). I will describe what a fullerene- based quantum computer might look like and how it could be made. Of particular importance is the scalability of such a device. I will show how scalable molecular structures can be built. I will review the state-of-the-art materials science with endohedral fullerenes with emphasis on N@C60.2 I will highlight the particular challenges that are involved in working with N@C60 and how these can be overcome.

Show all calendar items