This publication database is for publications on research and development towards the application of pultruded Fibre Reinforced Polymer (PFRP) shapes and systems in civil engineering works. Details of papers in a conference proceeding may be incomplete. The database does not include publications for retrofitting and repair, rebars or dowels in reinforced concrete and process engineering.

References in the 13 categories are listed in alphabetical order by first author’s surname and then year of publication.

Every effort is made to accurately record a publication’s details so that you can obtain a copy. The compiler cannot be responsible for any errors in the listings.

Information for new publications or/and revisions shall be gratefully received, and the database will be updated for the next month.

MAGAZINE, BOOKS, REVIEW AND APPLICATION ARTICLES

6. Anon., ‘Fiberglass spire high point on Atlanta skyline,’ FRP Inter., 1 1, 1993, 7.

17. Anon., 'Fibreforce expands pultruded profile range', J. British Corrosion, 32 1, 1997, 11. (news item)
27. Anon,’ Schulyer Heim lift bridge to get composite demonstration deck panels by end of year,’ Advanced Materials and Composites News (USA), 22 18, 2000, 5-6.
31. Anon., 'Pultrusion market needs a better strategy,' Materials World, 13 2, 7-7 Dec 2005.

76. Daniel R.A. Nagtegaal G., ‘Pedestrian bridge of pultruded sections as result of ecological design,’ in Proc. EPTA Seminar, EPTA, 2001, p ?.

87. Faber Maunsell. FRP footbridge in place. Reinforced Plastics, 47 (No. 6), 2003, 9.

109. Head, P.R., ‘The world’s first advanced composite road bridge,’ in Proc. Advanced Composite Materials in Bridges and Structures (ACMBS/1-MCAPC/1), Montreal, The Canadian Society for Civil Engineers, 1992. ??

112. Head, P.R., ‘High performance structural materials: Advanced composites,’ in Proc. IABSE Colloquium on Remaining Structural Capacity, Copehagen, 1996. ??

113. Head, P.R., ‘Advanced composites in civil engineering – A critical overview at this high interest, low stage of development,’ in Proc. Fiber Composites in Infrastructure, 2nd Inter. Conf. on Composites in Infrastructure (ICCI’98), University of Turzon, AZ, Vol. 1, 3-15.

133. Kaempen, C.E., ‘Building and transportation systems that provide a new growth market for structural composites,’ in Proc. 37th Inter. SAMPE Symposium, SAMPE, 1992, ??.

151. Lass, H., ‘At last, pultrusion may be ready for the big time,’ Chemical Week, April 1989, 34-35.

205. Ryszard D.A., 'Construction material for a bridge with regard to the environment,' Bautechnik, 80 1, 2003, 32-42.

JOURNALS, NEWSLETTERS AND MAGAZINES

242. J. Composites for Construction, American Society of Civil Engineers, Reston, four issues per year.

243. Composite Design and Applications - The Source for Solutions and Technology. USA.

245. Loud, S., (Ed.), Composites News: Infrastructure, Composites News Inter., Solana Beach, California, USA.

247. ‘Profile’, Quarterly Newsletter from Strongwell Corporation, USA.

MATERIAL CHARACTERISATION

Ascione, L., Berardi, V.P., Giordano, A. and Spadea, S., 'Local buckling analysis of pultruded FRP thin-walled beams and columns,' in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 352, 2012, pp. 10.

427. Lackey, E., ‘Iosipescu shear testing and combined loading compression (CLC) testing of pultruded composites,’ Final Report ASTM D 5379-93 and ASTM D 6641-01, University of Mississippi, Oxford, MS, USA.

449. Mosallam, A.S., ‘Mechanical behavior of pultruded composites under elevated temperatures,’ in Proc. 2nd World Pultrusion Conf. in Baltimore, Brisk Events, 21-22 May, 2009, USA.

Park, J.Y. and Zureick, A.H. 'Effect of filler and void content on mechanical properties of pultruded composite materials under shear loading,' Polymer Composites, 26 2, 2005, 181-192.

Park, J.Y., ‘Effect of nanofillers and void to the shear properties of pultruded composites,’ in Proc. of Composites and Polycon 2006, ACMA,, St. Lois, MO, 2006. ??

477. Pour-Ghaz, M., Miller, B.L.H., Alla, O.K. and Rizkalla, S., 'Do mechanical and environmental loading have a synergistic effect on the degradation of pultruded glass fiber reinforced polymers?,' Composites Part B-Engineering, 106, 2016, 344-355.

493. Russo, S., Ghadimi, B., Lawania, K., Rosano, M., ‘Residual strength testing in pultruded frp material under a variety of temperature cycles and values,’ Composite Structures, 133, 2015, 458-475. doi: http://dx.doi.org/10.1016/j.compstruct.2015.07.034

Chapter 5 by O. Gunes, Cankaya University, Turkey - Failure modes in structural applications of fiber-reinforced polymer (FRP) composites and their prevention
Chapter 7 by S. Moy, University of Southampton, UK - Advanced fiber-reinforced polymer (FRP)composites for civil engineering applications
Chapter 13 by N. Uddin, A.M. Abro, J.D. Purdue and U. Vaidya, The University of Alabama at Birmingham, USA - Thermoplastic composites for bridge structures
Chapter 16 by R. Liang and G. Hota, West Virginia University, USA - Fiber-reinforced polymer (FRP) composites in environmental engineering applications

540. Van de Velde, K. and Kiekens, P., 'Chemical resistance of pultruded E-glass reinforced polyester composites,' in Proc. 4th Inter. Conf. on Durability Analysis of Composite Systems (DURACOSY99), Recent Developments in Durability Analysis of Composite Systems, A.A. Balkema, Rotterdam, 2000, Chapt. 60, 405-412.

durability of polymer composites,’ in Long Term Durability of Structural Materials, Monterio,

vinyl ester composites processed with different fiber sizing agents. Part II: Enviro-mechanical

553. Verghese, K.N.E., Broyles, N.S., Case, S.W., Lesko, J.J., Davis, R.M. and Riffle, J.S., Pultruded
carbon fiber vinyl ester composites processed with different fiber sizing agents. Part III:

554. Wang, Y. and Zureick, A-H., ‘Characterization of the tensile behavior of pultruded composite I-
shape structural members using coupon specimens,’ Composite Structures, 29 4, 1994, 463-472.

555. Wen, L., Feng, P. and Huang, J., ‘Bilinear softening model and double K fracture criterion for

556. Xin, H., Liu, Y., Mosallam, A., Zhang, Y. and Wang, C., ‘Hygrothermal aging effects on flexural
behavior of pultruded glass fiber reinforced polymer laminates in bridge applications,’

on shear behavior of pultruded FRP composite web-flange junctions in bridge application,’

559. Ye, B.S., Svenson, A.L. and Bank, L.C., ‘Mass and volume fraction properties of pultruded glass-

560. Yu, B., Till, V. and Thomas, K., ‘Modeling of thermo-physical properties for FRP composites
under elevated and high temperature,’ Composite Science and Technology, 67 15-16, 2007,
3098-3109. Yu, B is also Bia, Y.

fiber/vinyl ester resin composite for sucker rod application,’ J. of Reinforced Plastics and

562. Yu, Y.H., Li, P., Sui, G., Yang, X.P. and Liu, H.L. ‘Effects of hygrothermal aging on the thermal-
mechanical properties of vinylester resin and its pultruded carbon fiber composites,’ Polymer
Composites, 30 10, 2009, 1458-1464.

563. Zafari, B. and Mottram, J.T., 'On the mechanical characterisation of pultruded fibre reinforced
plate material subjected to hygrothermal aging,’ in Proc. 20th Inter. Conf. on Composite
Materials (ICCM 20), 19th-24th July 2015, Durability, Creep and Aggressive Environment 4,
Paper 150701-3561, pp. 11.

568. Zureick, A., Beghaus, D., Park, J. and Cho, B., 'Shear properties of pultruded composite materials,' SEM 97-2, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 1997, USA.

STRUCTURAL HEALTH MONITORING AND NON-DESTRUCTIVE TESTING

ELEMENT BEHAVIOUR

817. Hollaway, L and Lee, J., ‘Discussion of the paper ‘Short- and long-term structural properties of pultruded beam assemblies fabricated using adhesive bonding’ Composite Structures, 28 1, 1994, 121

819. Insausti, A., 'A design method for concentrically loaded FRP columns following the Eurocode,' in Proc. 8th Inter. Conf. on Composite Materials (Advancing with Composites 2005), AMME-ASMECCANICA, Università di Napoli, 2005, pg 1-7.

823. Johnson, A.F., ‘Simplified buckling analysis for RP beams and columns,’ in Proc. 1st European Conf. on Composite Materials (ECCM/1), Bordeaux, 1985, 541-549. ??

855. Lane, A. and Mottram, J.T., 'The influence of mode interaction upon the buckling of concentrically loaded wide-flange pultruded columns,' in Proc. 3rd Inter. Conf. on Advanced Composite Materials in Bridges and Structures, The Canadian Society for Civil Engineers (CSCE), 2000, 463-470.

872. Lopez-Anido, R., Open-hole tensile strength for pultruded plates”, report to ASCE Fiber Composites and Plastics Committee, University of Maine, 2009. (not in public domain)

905. Nagaraj, V. and GangaRao, H.V.S., ‘Static and fatigue response of pultruded FRP beams without and with splice connections,’ Research Report No. CFC 94-184, to NSF and WVDOT, West Virginia Univ., Morgantown, WV, USA,

933. Park, J. Y. and Lee, J. W., ‘Determination of shear buckling load of a comparably large pultruded polymer composite I-Section by asymmetric loading,’ in Proc. 24th CANCAM, Saskatoon, Saskatchewan, Canada, 2013. ??

979. Russo, S., A review on buckling collapse of simple and complex columns made from pultruded FRP material, 8 1, 2017, 1-34. doi: 10.1615/CompMechComputApplIntJ.v8.i1.10

990. Seangatith, S., ‘Structural behavior of concentrically loaded GFRP angle columns,’ in Proc. 7th Inter. Conf. on Composite Behavior (ICCE/7), University of Colorado, 2000, 781-782.

996. Seangatith, S., ‘Structural behaviors of concentrically loaded GFRP angle columns,’ in Proc. 7th Inter. Conf. on Composite Engineering, Denver, Colorado, USA, July 2-8, 2000, 781-782.

1010. Shao, Y.X. and Shanmugam, J., 'Moment capacities and deflection limits of PFRP sheet piles,' J. Composites for Construction, 10 6, 2006, 520-528.

1017. Sirjani, M.B. and Razzaq, Z., ‘Stability and LRFD approach for FRP channel beams under three-point loading,’ in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 737-738.

1037. Teh, K. and Huang, C., ‘Shear deformation coefficient for generally orthotropic beams,’ Fiber Science and Technology, 1979, 12, 73-80.

1050. Turvey, G.J. and Brooks, R.J., ‘Lateral buckling tests on pultruded GRP I-sections beams with simply supported-simply and clamped-simply supported end conditions,’ in Proc. 1st Inter. Conf. on Composites in Infrastructure (ICCI'96), University of Arizona, Tucson, 1996. 651-664.

1084. Wong, P.M.H., 'Performance of GRP composite structures at ambient and elevated temperatures,' The Structural Engineer, 81 15, 2003, 10 & 12.

1086. Wong, P.M.H. and Wang, Y.C., An experimental study of pultruded glass fibre reinforced plastics channel columns at elevated temperatures,' Composite Structures, 81 1, 2007, 84-95.

Yuan, R.L., and Hashen, Z., 'The effect of end support conditions on the behavior of GFRP composite columns,' in Proc. 1st Inter. Conf. on Composites in Infrastructure (ICCI'96), University of Arizona, 1996, 621-627.

Yuan, R.L. and Seangatith, S., 'Vibration analysis of simply supported pultruded GFRP composite beams under dynamic loads,' in Proc. 3rd Inter. Conf. on Composite Engineering, New Orleans, Louisiana, USA, 1996.

Yuan, R.L. and Seangatith, S., 'Vibration analysis of GFRP composite box beam,' in Proc. 1st Inter. Conf. on Composites in Infrastructure (ICCI'96), University of Arizona, 1996, 965-966.

CONNECTIONS AND JOINTS

1251. Matharu, N.S. and Mottram, J.T., ‘Laterally unrestrained bolt bearing strength: Plain pin and threaded values,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 14: Codes and Design Guidelines, Paper 311, 2012, pp. 8 (CD-Rom)

1253. McGrath G.C., 'Aspects of joining pultrusions,' http://www.pultron.co.nz/technical.htm (and via technical papers) 21/12/05

1301. Mottram, J.T., ‘Determination of pin-bearing strength for the design of bolted connections with standard pultruded profiles,’ in Proc. 4th Inter. Conf. on Advanced Composites in Construction (ACIC 2009), NetComposites Ltd, Chesterfield, 2009, 483-495.

1304. Mottram, J.T., ‘Rationale for simplifying the strength formulae for the design of multi-row bolted connections failing in net tension,’ in Proc. 6th Inter. Conf. on Advanced Composites in Construction, NetComposites Ltd., Chesterfield, UK, 2013, 383-392.

1320. Peirick L. and Dawood, M., ‘Behavior of bolted and bonded simple shear connections for structural GFRP sandwich panels,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 357, 2012, pp. 9.

1343. Robinson, A., ‘A study into the behaviour of FRP bolted connections,’ An Engineering Research Project Final Report (ENG4111 and ENG4112) towards the degree of Bachelor of Civil Engineering, University of Southern Queensland, Faculty of Engineering and Surveying, October 2015. https://eprints.usq.edu.au/29167/1/Robinson_A_Banerjee.pdf

1384. Turvey, G.J. and Cooper, C., ‘Characterization of the short term static moment-rotation responses of bolted connections between pultruded GRP beams and column WF-sections,’ in Proc. 2nd Inter. Conf. on Advanced Composite Materials in Bridges and Structures, Montreal (ACMBS/2), The Canadian Society for Civil Engineers (CSCE), Montreal, 1996, 927-934.

Zafari, B. and Qureshi, J. Mottram, J. T. and Rusev, R. 'Static and fatigue performance of resin injected bolts for a slip and fatigue resistant connection in FRP bridge engineering,' Structures, 7, 2016, 71-84. doi: 10.1016/j.istruc.2016.05.004

Zhao, L., ‘Pultruded GFRP connections under elevated temperature Final year student thesis, Department of Civil Engineering, Monash University, Australia, 2013.

STRUCTURES AND BRIDGES

1484. Alessandra, D.C., ‘On expected performance of a frame-structure made by all GFRP pultruded profiles,’ in Proc. of 4th International Conference on Structures and Building Materials (ICSBM),

doi: 10.1016/j.compstruct.2015.04.039

1540. Canning, L., ‘performance and 8-year load test on West Mill FRP bridge,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 750, 2012, pp. 9.

1594. Giampaoli, M., Terlizzi, V., Rossi, M., Chiappini, G., Munaf, P., ‘Mechanical performances of GFRP-steel specimens bonded with different epoxy adhesives, before and after the aging

1640. Keller, T., and Schollmayer, M., 'In-plane tensile performance of a cellular FRP bridge deck acting as top chord of continuous bridge girders,' Composite Structures, 72 1, 2006, 130-140.

1641. Keller, T., and Gurtler, H., 'In-plane compression and shear performance of FRP bridge decks acting as top chord of bridge girders,' Composite Structures, 72 2, 2006, 151-162.

1785. Russo, S., Boscato, G. and Mottram, J.T., ‘Design and free vibration of a large temporary roof FRP structure for the Santa Maria Paganica church in L’Aquila,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 209, 2012, pp. 8 (CD-Rom)

1821. Shave, J. and Bennett, J., ‘Some principles of designing safe and robust FRP structures, in Proc. of FRP Bridge Conf., London, NetComposites, Chesterfield, 2012, 4-14. CD-ROM

doi: 10.1016/j.conbuildmat.2015.06.008

1849. Tayeb, Baverel, Caron, and Du Pelouxin, ‘Gridshells in composite materials: construction of a 500 m² forum for the solidsdays’ festival in Paris,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 11: Durability and Long-Term Performance, Paper 179, 2012, pp. 8. (no authors’ initials)

OTHER TECHNICAL ASPECTS (INCLUDING DURABILITY AND FIRE PERFORMANCE)

DESIGN MANUALS AND ASSOCIATED MATERIAL

2052. CTI. 'CTI fastener material guidelines - FMG-144 (94),' Cooling Technology Institute, Houston, July 1994.

2054. CTI 'Structural Design of FRP Components - STD-152 (02),' Cooling Technology Institute, Houston, July 2002.

2055. Dutta, P.K., ‘Fatigue of composite bridge decks under extreme temperatures,’ in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 755-756.

2059. Evans, D.J., ‘Classifying pultruded products by glass loading,’ in Proc. 41st Annual Conf. SPI, Composite Institute, SPI, 1968, Session 06-E.

2087. Nishizaki, I., Kishima, T., and Sasaki, I., ‘Consideration on safety factors of pultruded FRP as bridge structural materials, in Proc. 54th Annual Conf. of Japan Society of Civil Engineers (A), September 1999, 20-21.

2105. 'Recommended practice for fibre-reinforced polymer products for overhead utility line structures,' ASCE manuals and reports on engineering practice No. 104, ASCE Reston, 2002.
DESIGN GUIDANCE, STANDARDS AND PATENTS

2109. Anonymous. ‘Pre-Standard for Load and Resistance Factor Design (LRFD) of Pultruded Fiber Reinforced Polymer (FRP) structures (Final),’ submitted to American Composites Manufacturer Association (ACMA), American Society of Civil Engineers, 9 November 2010, p. 216. (not in public domain)

2113. ‘Structural design of FRP components,’ CTI Bulletin ESG-152 (13), Cooling Technology Institute, May 2013, p. 15.

2141. ‘Standard test method for density and specific gravity (relative density) of plastics by displacement,’ D792-08, ASTM, West Conshohocken, Pa, 2008.

2152. ‘Standard guide for design, fabrication, and erection of fiberglass reinforced chimney liners with coal-fired units,’ D5364-08e1, ASTM, West Conshohocken, Pa, 2008.

CONFERENCE PROCEEDINGS

2184. Neale, K.W. and Labossiere, P. (Eds.), 1st Advanced Composite Materials in Bridges and Structures (ACMBS/1), Canada Society of Civil Engineers (CSCE), 1992.

2210. COBRAE (Ed.), Bridge Engineering with Polymer Composites Conf. 2005, 30 March - 1 April 2005, Dübendorf (Zurich), Switzerland, COBRAE and EMPA, Leusden, 2005.

2218. Ye, L., Feng, P. and Yue, Q. (Eds.), Proc. 5th Inter Conf on FRP Composites in Civil Engineering (CICE 2010), 27-29 September 2010, Bieijing, China, Vol. 1., FRP for Future Structures, Advances in FRP Composites in Civil Engineering, Tsinghhus University Press, 2010.

2222. Whysall, C., and Taylor S. (Eds.), Advanced Composites in Construction 2013 (ACIC 2013), Proc. 6th Inter. Conf. on Advanced Composites in Construction 2013, Queen’s University of Belfast. 10-12 September 2013, NetComposites Ltd., Chesterfield, UK, pp. 409.

THESES

Boscato G. ‘Numerical analysis and experimental tests on dynamic behaviour of GFRP pultruded elements for conservation and architectural and environmental heritage,’ University of Nova Gorica, Graduate School, Venice, 2011.
http://www.ung.si/~library/doktorati/konzervatorstvo/1Boscato.pdf

http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=1964&context=etd

Carreiro, A., ‘Durabilidade de perfis pultrudidos de viniléster reforçado com fibras de vidro (GFRP),’ Dissertação para obtenção de grau de mestre em Engenharia Civil, Instituto Superior Técnico, Lisboa, Maio 2010. (in Portuguese)

http://repository.tudelft.nl/view/ir/uuid%3A6dd0caaf0-3128-4200-93a5-104ebbcc135f/

2263. de Sousa, J.P.G.M., ‘Durabilidade de perfis pultrudidos de viniléster reforçado com fibras de vidro (GFRP),’ Engenharia Civil, University Técnica de Lisboa, Portugal, October 2011. (in Portuguese)

2293. Jackson, ‘Compression creep of a pultruded E-glass/polyester composite columns at elevated service temperatures,’ MSc thesis, School of Civil Engineering, Georgia Institute of Technology, 2005.

2317. Liu, X., 'A linear and nonlinear numerical investigation on static behavior of pultruded composite (PERP) portal frame structures,' MS thesis, California State University, Fullerton, USA, 2000. 149 pages

2326. McMahon, A.R., ‘Design, construction and testing of a glass reinforced plastic bonded truss frame,’ Final Year project Report, School of Science and Technology, Division of Civil Engrg. and Building, University of Teesside, UK, 1996.

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&ved=0CEEQFjAA&q=http%3A%2F%2Fannali.unife.it%2Fissn%2Fdownload%2F341%2F294&ei=sMMZUrn1FIbO0QWbroGwBw&usg=AFQjCNF7SYo8-04h1pxEoUs3g32SRtg4Bg&bvm=bv.51156542,d.d2k

https://smartech.gatech.edu/handle/1853/5142

http://smartech.gatech.edu/jspui/bitstream/1853/26699/1/na_gwang-seok_200812_phd.pdf

2350. Park, J.Y., ‘Pultruded composite materials under shear loading,’ PhD Dissertation, Georgia Technology University, USA, 2001. 299 pages

2380. Spencer, S. ‘Mechanical fastened connection for pultruded composite profiles,’ MRes in Advanced Engineering, School of Engineering, Univ. of Warwick, UK, Sept 98.

WEB SITES (last accessed on 18 April 2015)

2410. Access Design and Engineering http://www.access-design.co.uk/

2411. Ahlstrom Coporation (Glassfibre) www.ahlstrom.com/
2412. Alandick communications (specialists in wireless infrastructure)
http://www.alandickcomms.com/

2413. American Composites Manufacturers Association (ACMA) www.cfa-hq.org

2414. Anglia Composites Ltd. www.angliacomposites.co.uk

2416. Bakaert Composites http://www.bekaert.com/

2417. The British Plastics Federation http://www.bpf.co.uk/

2418. Captrad, UK http://www.captrad.com/

2419. CTS Bridges, Huddersfield, UK http://www.ctsbridges.co.uk/
https://www.youtube.com/watch?v=CSn8_wNZlcg

2420. Comfort line (door and windows) http://www.comfortlineinc.com/

2421. Composite Construction Laboratory (CCLAB) http://www.cclab.ch/

2422. Composite Cooling Solutions http://compositecooling.com/ (Cooling towers)

2423. Composites Technology http://www.compositesworld.com/ct/

2424. Composites z http://www.compositez.com/

2426. Cooling Technology Institute, Houston http://www.cti.org/

2427. CoSACNet (UK academic Network for Advanced Polymeric Composites for Structural Applications in Construction) http://www.cosacnet.soton.ac.uk/

2429. Deck Industry Association http://www.deckindustry.org/resources.htm

2433. Dura Composites http://www.duracomposites.com/ high quality flooring and cladding

2434. EB Solutions Ltd – Industrial Housing Division http://www.ebsolutionsltd.co.uk/index.htm

2435. EPI (Fabricator in Texas) http://engpro.com/

2436. Seasafe (pultruder) http://www.seasafe.com/

2438. EPTA (European Pultrusion Technology Association) http://www.pultruders.com

2439. Exel Composites UK http://www.fibreglass-engineering-solutions.co.uk/index.htm (was Fibreforce Composites Ltd., UK)

2440. Firegard Safety Services Ltd, UK. http://www.firegard.co.uk/

2441. Fibergrate Composite Structures (Fiberglass Gratings and Structural Systems), USA http://www.fibergrate.com/

2442. Fibergrate (Fiberglass Gratings and Fiberglass reinforced plastic products), UK http://www.fibergrate.co.uk/

2444. Fibrolux GMBH, Germany http://fibrolux.com/

2445. Fibrotec Materiales Compuestos S.L., Spain http://www.fibrotec.es/

2446. Genesis Composites http://www.genesiscomposites.co.uk/

2448. GDP Koral, s.r.o. http://www.gdpkoral.cz

2449. ICCO Composites http://www.icco.fr/ (France)

2450. IFE Pultrusion Exchange http://www.fiberglass.com/fiberglass/a/fg5005.html

2451. IIFC (Inter. Institute for FRP in Construction) http://www.iifc-hq.org/

2452. ISIS Canada http://www.isiscanada.com/

2456. Lee Composites, Inc. www.lee-composites.com

2457. Liberty Pultrusions (West Mifflin, Pa.) http://www.libertypultrusions.com/

2458. Martin Pultrusion Group http://www.martinpultrusion.com/

2459. NetComposties (UK) http://www.netcomposites.com Construction group

2461. Pas-Gon FRP products http://www.pas-gon.co.il
2464. Powertrusion Dynamics Inc. http://www.powertrusion.com
2465. PPG Industries UK Ltd. http://ppg.com
2468. Pultrusion Companies, Manufacturers, and Pultruders http://www.pultrusions.org/resources/pultrusion_companies.html
2471. Pultrusion Industry Council (USA) http://www.pultrusionindustry.org/
2474. Röchling (Germany) http://www.roechling-haren.de/
2477. Strongwell http://www.strongwell.com
2482. Tufnol (UK) http://www.tufnol.com/
2483. Universal Pultrusions (door systems for corrosive industrial applications) (Arizona, USA) http://unipulllc.com/
2485. West Virginia University – Constructed Facilities Center http://www.cemr.wvu.edu/cfc/

2486. Yprado http://www.yprado.eu/ windows and doors

2487. ZellComp, Inc. prefabricated High-Load Structural Decking System http://www.zellcomp.com/

J. T. Mottram ©