Reference and Bibliography Database on Research and Development with Pultruded Fibre Reinforced Polymer Shapes and Systems

Compiler: Professor J. Toby Mottram email: J.T.Mottram@warwick.ac.uk
Address: School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.

?? - Incomplete details

Date: 01/12/16

This publication database is for publications on research and development towards the application of pultruded Fibre Reinforced Polymer (PFRP) shapes and systems in civil engineering works. Details of papers in a conference proceeding may be incomplete. The database does not include publications for retrofitting and repair, rebars or dowels in reinforced concrete and process engineering.

References in the 13 categories are listed in alphabetical order by first author’s surname and then year of publication.

Every effort is made to accurately record a publication’s details so that you can obtain a copy. The compiler cannot be responsible for any errors in the listings.

Information for new publications or/and revisions shall be gratefully received, and the database will be updated for the next month.

MAGAZINE, BOOKS, REVIEW AND APPLICATION ARTICLES

6. Anon., ‘Fiberglass spire high point on Atlanta skyline,’ FRP Inter., 1 1, 1993, 7.

17. Anon., 'Fibreforce expands pultruded profile range', J. British Corrosion, 32 1, 1997, 11. (news item)

27. Anon,’ Schulyer Heim lift bridge to get composite demonstration deck panels by end of year,’ Advanced Materials and Composites News (USA), 22 18, 2000, 5-6.

31. Anon., 'Pultrusion market needs a better strategy,' Materials World, 13 2, 7-7 Dec 2005.

66. Busel, J., ‘State of the North American pultrusion industry – An examination of the the pultrusion industry, plus update on the LRFD design standard,’ Composite Manufacturing, April, 2008, 28-54. (not every page)

76. Daniel R.A. Nagtegaal G., 'Pedestrian bridge of pultruded sections as result of ecological design,' in Proc. EPTA Seminar, EPTA, 2001, p ?.

87. Faber Maunsell. FRP footbridge in place. Reinforced Plastics, 47 (No. 6), 2003, 9.

109. Head, P.R., ‘The world’s first advanced composite road bridge,’ in Proc. Advanced Composite Materials in Bridges and Structures (ACMBS/1-MCAPC/1), Montreal, The Canadian Society for Civil Engineers, 1992. ??

113. Head, P.R., ‘Advanced composites in civil engineering – A critical overview at this high interest, low stage of development,’ in Proc. Fiber Composites in Infrastructure, 2nd Inter. Conf. on Composites in Infrastructure (ICCI’98), University of Turzon, AZ, Vol. 1, 3-15.

133. Kaempen, C.E., ‘Building and transportation systems that provide a new growth market for structural composites,’ in Proc. 37th Inter. SAMPE Symposium, SAMPE, 1992, ??.

151. Lass, H., ‘At last, pultrusion may be ready for the big time,’ Chemical Week, April 1989, 34-35.

205. Ryszard D.A., 'Construction material for a bridge with regard to the environment,' Bautechnik, 80 1, 2003, 32-42.

JOURNALS, NEWSLETTERS AND MAGAZINES

242. J. Composites for Construction, American Society of Civil Engineers, Reston, four issues per year.

243. Composite Design and Applications - The Source for Solutions and Technology. USA.

245. Loud, S., (Ed.), Composites News: Infrastructure, Composites News Inter., Solana Beach, California, USA.

247. ‘Profile’, Quarterly Newsletter from Strongwell Corporation, USA.

MATERIAL CHARACTERISATION

255. Al-Assafi, S., 'Analysis of aged vinylester and polyester pultruded composites,' J. of Advanced Materials, 37 4, 2005, 70-75. ??

263. Ascione, L, Berardi, V.P., Giordano, A. and Spada, S., ‘Local buckling analysis of pultruded FRP thin-walled beams and columns,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 352, 2012, pp. 10.

Bai, Y. is also Yu, B

doi: 10.1177/0731684415587411

Chisholm, B., ‘Composite Pultrusions Optimization via Laboratory Materials Characterization and FEA,’ in Proc. 2nd World Pultrusion Conf. in Baltimore, Brisk Events, 21-22 May, 2009, USA.

386. Helbling, C. and Karbhari, V.M., ‘Durability assessment of combined environmental exposure and bending, in Proc. 7th Inter. Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures, SP-230-79, 2005, 1397-

424. Lackey, E, ‘Iosipescu shear testing and combined loading compression (CLC) testing of pultruded composites,’ Final Report ASTM D 5379-93 and ASTMD 6641-01, University of Mississippi, Oxford, MS, USA.

443. Mosallam, A.S., ‘Mechanical behavior of pultruded composites under elevated temperatures,’ in Proc. 2nd World Pultrusion Conf. in Baltimore, Brisk Events, 21-22 May, 2009, USA.

446. Mottram, J.T., ‘Compression strength of pultruded flat sheet material,’ Closure on Discussion,’ J. Materials in Civil Engineering, 8 1, 1996, 60-61.

455. Nishizaki, I., Kishima, T. and Sasaki, I., ‘Deterioration of mechanical properties of pultruded FRP through exposure tests,’ in Proc. of The Third Inter. Conf. on Durability & Field Applications of Fibre Reinforced Polymer (FRP) Composites for Construction (cdcc 2007), 2007, ??.

32

459. Park, J.Y. and Zureick, A.H. 'Effect of filler and void content on mechanical properties of pultruded composite materials under shear loading,' Polymer Composites, 26 2, 2005, 181-192.

460. Park, J.Y., ‘Effect of nanofillers and void to the shear properties of pultruded composites,’ in Proc. of Composites and Polycon 2006, ACMA,, St. Lois, MO, 2006. ??

485. Runyan, M.C. and Jones, W.C., 'Thermal conductivity of thermally-isolating polymeric and composite structural support materials between 0.3 and 4 K,' Cryogenics, 48, 9-10, 2008, 448-454.

486. Russo, S., Ghadimi, B., Lawania, K., Rosano, M., 'Residual strength testing in pultruded frp material under a variety of temperature cycles and values,' Composite Structures, 133, 2015, 458-475. doi: http://dx.doi.org/10.1016/j.compstruct.2015.07.034

Chapter 5 by O. Gunes, Cankaya University, Turkey - Failure modes in structural applications of fiber-reinforced polymer (FRP) composites and their prevention
Chapter 7 by S. Moy, University of Southampton, UK - Advanced fiber-reinforced polymer (FRP)composites for civil engineering applications
Chapter 13 by N. Uddin, A.M. Abro, J.D. Purdue and U. Vaidya, The University of Alabama at Birmingham, USA - Thermoplastic composites for bridge structures
Chapter 16 by R. Liang and G. Hota, West Virginia University, USA - Fiber-reinforced polymer (FRP) composites in environmental engineering applications

STRUCTURAL HEALTH MONITORING AND NON-DESTRUCTIVE TESTING

ELEMENT BEHAVIOUR

54

Han, H.P., Taheri, F., Pegg, N. and Ku, N., 'A numerical study on the axial crushing response of hybrid pultruded and +/- 45 degrees braided tubes,' Composite Structures, 80 2, 2007, 253-264.

Han, J. and Frost, J.D., 'Buckling of vertically loaded fiber-reinforced polymer piles,' J. Reinforced Plastics and Composites, 18 4, 1999, 290-318.

Hassan, N.K. Mosallam, A.S., 'Buckling and ultimate failure of thin-walled pultruded composite columns,' Polymers and Polymer Composites, 12 6, 2004, 469-481.

Hewson, P.J., 'Buckling of pultruded glass fibre-reinforced channel sections,' Composite, 9 1, 1978, 56-60.

Hollaway, L and Lee, J., 'Discussion of the paper 'Short- and long-term structural properties of pultruded beam assemblies fabricated using adhesive bonding' Composite Structures, 28 1, 1994, 121

Insausti, A., 'A design method for concentrically loaded FRP columns following the Eurocode,' in Proc. 8th Inter. Conf. on Composite Materials (Advancing with Composites 2005), AMME-ASME-ASMECCANICA, Università di Napoli, 2005, pg 1-7.

Johnson, A.F., 'Simplified buckling analysis for RP beams and columns,' in Proc. 1st European Conf. on Composite Materials (ECCM/1), Bordeaux, 1985, 541-549. ??

Johnson, A.F. and Sims, G.D., 'Performance analysis of pultruded composite sections,' Composite Polymers, 2 2, 1989, 89-112 (same as previous).

Johnson, J.E., Harris, J. and Hughes, E., 'Structural sections from reinforced plastics,' ASCE National Structural Engineering Meeting, ASCE, 1971. ??

841. Lane, A. and Mottram, J.T., ‘The influence of mode interaction upon the buckling of concentrically loaded wide-flange pultruded columns,’ in Proc. 3rd Inter. Conf. on Advanced Composite Materials in Bridges and Structures, The Canadian Society for Civil Engineers (CSCE), 2000, 463-470.

858. Lopez-Anido, R., Open-hole tensile strength for pultruded plates”, report to ASCE Fiber Composites and Plastics Committee, University of Maine, 2009. (not in public domain)

872. Minghini, F., Tullini, N. and Laudiero, F., ‘Full-section properties of pultruded FRP profiles using bending tests,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 021, 2012, pp. 8.

874. Mosallam, A.S., Pul, S. and Elsadek, A., ‘Experimental assessment of web-flange junction rotational behavior of PFRP profiles’ in Proc. 9th Inter. Congress on Advances in Civil Engineering, Karadeniz Technical University Trabzon, Turkey, 2010. (CD ROM)

875. Mosallam, A.S., Elsadek, A. and Pul, S., ‘Pull-out behaviour of web-flange junctions of open-web pultruded composites,’ in Proc. 9th Inter. Congress on Advances in Civil Engineering, Karadeniz Technical University Trabzon, Turkey, 2010. (CD ROM)

891. Nagaraj, V. and GangaRao, H.V.S., ‘Static and fatigue response of pultruded FRP beams without and with splice connections,’ Research Report No. CFC 94-184, to NSF and WVDOT, West Virginia Univ., Morgantown, WV, USA,

918. Park, J. Y. and Lee, J. W., ‘Determination of shear buckling load of a comparably large pultruded polymer composite I-Section by asymmetric loading,’ in Proc. 24th CANCAM, Saskatoon, Saskatchewan, Canada, 2013. ??

972. Seangatith, S., ‘Structural behavior of concentrically loaded GFRP angle columns,’ in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 781-782.

978. Seangatith, S., 'Structural behaviors of concentrically loaded GFRP angle columns,' in Proc. 7th Inter. Conf. on Composite Engineering, Denver, Colorado, USA, July 2-8, 2000, 781-782.

999. Sirjani, M.B. and Razzaq, Z., 'Stability and LRFD approach for FRP channel beams under three-point loading,' in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 737-738.

1006. Stubbs, D., 'Buckling tests on pultruded GRP short columns in axial compression,' Final Year Project Report, Engineering Department, Lancaster University, 1998, pp. 159.

1012. Svenson, A.L., Hargrave, M.W., Bank, L.C. and Ye, B.S., ‘Data analysis techniques for impact

1-7. ??

roadside safety structures,’ in Proc. 50th Annual Composite Institute Conf., Ohio, 1995, Session
10-D, pp. 1-7.

1015. Tabiei, A., Svenson, A. and Hargrave, M., ‘Impact behavior of pultruded composite box-

restrained edges subjected to shear and linearly varying,’ J. Reinforced Plastics and

1018. Tarján, G. and Kollár, L.P., ‘Buckling of axially loaded composite plates with restrained edges,’

1019. Teh, K. and Huang, C., ‘Shear deformation coefficient for generally orthotropic beams,’ Fiber
Science and Technology, 1979, 12, 73-80.

1020. Teodorescu-Draghicescu, H., Vlase, S., Stanciu, M.D.,Curtu, I. and Mihalcica, M., ‘Advanced
pultruded glass fibers-reinforced isophthalic polyester resin,’ Materiale Plastice, 52 1, 2015, 62-
64.

1021. Thomsen, O.T, and Kratmann, K.K., ‘Experimental characterisation of parameters controlling
the compressive failure of pultruded unidirectional carbon fibre composites,’ J. Applied
Mechanics and Materials (Volumes 24 - 25), Volume Advances in Experimental Mechanics VII,

1022. Thornton, P.H., ‘The crush behavior of pultruded tubes at high strain rates,’ J. Composite

1023. Thumrongvut J. and Seangatith, S., ‘Responses of PFRP cantilevered channel beams under tip
point loads,’ in Proc. 8th Inter. Conf. on Composite Science and Technology, Composite Science
578-583.

1024. Thumrongvut, J. and Seangatith, S., ‘Experimental study on lateral-torsional buckling of PFRP
cantilevered channel beams,’ in Proc. of 12th East Asia-Pacific Conf. on Structural Engineering
(2011), 2438-2445.

1025. Thumrongvut, J. and Seangatith, S., ‘On the structural responses of simply supported PFRP
channel beams under three-point loading,’ International J. of Civil & Environmental

1032. Turvey, G.J. and Brooks, R.J., ‘Lateral buckling tests on pultruded GRP I-sections beams with simply supported-simply and clamped-simply supported end conditions,’ in Proc. 1st Inter. Conf. on Composites in Infrastructure (ICCI’96), University of Arizona, Tucson, 1996. 651-664.

1065. Wong, P.M.H., 'Performance of GRP composite structures at ambient and elevated temperatures,' The Structural Engineer, 81 15, 2003, 10 & 12.

1067. Wong, P.M.H. and Wang, Y.C., An experimental study of pultruded glass fibre reinforced plastics channel columns at elevated temperatures,' Composite Structures, 81 1, 2007, 84-95.

1080. Yuan, R.L. and Seangatith, S., 'Vibration analysis of simply supported pultruded GFRP composite beams under dynamic loads,' in Proc. 3rd Inter. Conf. on Composite Engineering, New Orleans, Louisiana, USA, 1996.

1081. Yuan, R.L. and Seangatith, S., 'Vibration analysis of GFRP composite box beam,' in Proc. 1st Inter. Conf. on Composites in Infrastructure (ICCI’96), University of Arizona, 1996, 965-966.

CONNECTIONS AND JOINTS

doi: 10.1080/09243046.2013.871174

1226. Matharu, N.S. and Mottram, J.T., ‘Laterally unrestrained bolt bearing strength: Plain pin and threaded values,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 14: Codes and Design Guidelines, Paper 311, 2012, pp. 8 (CD-Rom)

1228. Mcgrath G.C., 'Aspects of joining pultrusions,' http://www.pultron.co.nz/technical.htm (and via technical papers) 21/12/05

1276. Mottram, J.T., ‘Determination of pin-bearing strength for the design of bolted connections with standard pultruded profiles,’ in Proc. 4th Inter. Conf. on Advanced Composites in Construction (ACIC 2009), NetComposites Ltd, Chesterfield, 2009, 483-495.

1294. Peirick L. and Dawood, M., ‘Behavior of bolted and bonded simple shear connections for structural GFRP sandwich panels,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 357, 2012, pp. 9.

http://www.ce.tuiasi.ro/~bipcons/Archive/324.pdf (page length different)

http://www.ce.tuiasi.ro/~bipcons/Archive/415.pdf

http://www.ce.tuiasi.ro/~bipcons/Archive/404.pdf

1351. Tannert, T., Vallee, T. and Hehl, S., ‘Probabilistic strength prediction of adhesively bonded joints composed of heterogeneous materials,’ in Proc. Inter. Conf. on Material Science,

1357. Turvey, G.J. and Cooper, C., ‘Characterization of the short term static moment-rotation responses of bolted connections between pultruded GRP beams and column WF-sections,’ in Proc. 2nd Inter. Conf. on Advanced Composite Materials in Bridges and Structures, Montreal (ACMBS/2), The Canadian Society for Civil Engineers (CSCE), Montreal, 1996, 927-934.

Zafari, B., Qureshi, J. Mottram, J. T. and Rusev, R. ‘Static and fatigue performance of resin injected bolts for a slip and fatigue resistant connection in FRP bridge engineering,’ Structures, 7, 2016, 71-84. doi: 10.1016/j.istruc.2016.05.004

Zhao, L., ‘Pultruded GFRP connections under elevated temperature Final year student thesis, Department of Civil Engineering, Monash University, Australia, 2013.

STRUCTURES AND BRIDGES

1483. Boscato, G., Casalegno, C., Motttram, J.T. and Russo, S., ‘Time-dependent effects on critical buckling load of pultruded column,’ Session 7: Composite structures in civil engineering, in
Proc. 17th Inter. Conf. on Composite Structures (ICCS17), Porto, June 17-21, 2013. (Extended Abstract No. 3053)

1508. Canning, L., ‘Developments in FRP railway bridge applications,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 749, 2012, pp. 10.

1509. Canning, L., ‘Performance and 8-year load test on West Mill FRP bridge,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 750, 2012, pp. 9.

1546. Evernden M.C. and Mottram J.T., ‘Closed-form equations for flange force and maximum deflection of box-beams of fiber reinforced polymer with partial shear interaction between webs and flanges,’ Advances in Structural Engineering, 14 6, 2011, 991-1004.

1590. Johansen, G.E., Roll, F., Parada, R., Muniz, R. and Hanson, R., ‘Spanning staircase rapids with a prestressed FRP truss structural system,’ in Proc. 4th Inter. Conf. on Short and Medium Span Bridges, Halifax, Nova Scotia, Canada, 1994, Chapt. 121, 1321-1330. ??

1607. Keller, T., and Schollmayer, M., 'In-plane tensile performance of a cellular FRP bridge deck acting as top chord of continuous bridge girders,' Composite Structures, 72 1, 2006, 130-140.

1751. Russo, S., Boscato, G. and Mottram, J.T., ‘Design and free vibration of a large temporary roof FRP structure for the Santa Maria Paganica church in L’Aquila,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 209, 2012, pp. 8 (CD-Rom)

1754. Russo, S. and Adilardi, A., ‘Innovative design approach to a GFRP pedestrian bridge: structural aspects, engineering optimization and maintenance,’ in Proc. 5th Inter. Conf. on Bridge

1787. Shave, J. and Bennetts, J., ‘Some principles of designing safe and robust FRP structures, in Proc. of FRP Bridge Conf., London, NetComposites, Chesterfield, 2012, 4-14. CD-ROM

1814. Tayeb, Baverel, Caron, and Du Pelouxin, ‘Gridshells in composite materials: construction of a 500 m² forum for the solidays' festival in Paris,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 11: Durability and Long-Term Performance, Paper 179, 2012, pp. 8. (no authors’ initials)

1865. Zheng, Y. and Mottram, J.T., ‘Analysis of pultruded frames with semi-rigid connections,’ in Proc. 2nd Inter. Conf. on Advanced Composite Materials in Bridges and Structures (ACMBS/2), The Canadian Society for Civil Engineers (CSCE), 1996, 919-927.

OTHER TECHNICAL ASPECTS (INCLUDING DURABILITY AND FIRE PERFORMANCE)

DESIGN MANUALS AND ASSOCIATED MATERIAL

1979. ‘Guide for the design and construction of structures made of FRP pultruded elements,’ Advisory Committee on Technical Recommendations for Construction, National Research of

2011. CTI. 'CTI fastener material guidelines - FMG-144 (94),' Cooling Technology Institute, Houston, July 1994.

2013. CTI 'Structural Design of FRP Components - STD-152 (02),' Cooling Technology Institute, Houston, July 2002.

2014. Dutta, P.K., 'Fatigue of composite bridge decks under extreme temperatures,' in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 755-756.

2018. Evans, D.J., 'Classifying pultruded products by glass loading,' in Proc. 41st Annual Conf. SPI, Composite Institute, SPI, 1968, Session 06-E.

bridges and highway structures' Highways Agency Publication no. BD 90/05, May 2005. ISBN 0115526684

2035. Lesko, J.J. and Cousins, T.E., ‘EXTREN DWB® design guide - 8”x6” EXTREN DWB® hybrid and all-glass materials configuration and 36”x18” EXTREN DWB® hybrid material configuration,’ Strongwell Cop., 2003.

2046. Nishizaki, I., Kishima, T., and Sasaki, I., ‘Consideration on safety factors of pultruded FRP as bridge structural materials, in Proc. 54th Annual Conf. of Japan Society of Civil Engineers (A), September 1999, 20-21.

2064. 'Recommended practice for fibre-reinforced polymer products for overhead utility line structures,' ASCE manuals and reports on engineering practice No. 104, ASCE Reston, 2002.
DESIGN GUIDANCE, STANDARDS AND PATENTS

2068. Anonymous. ‘Pre-Standard for Load and Resistance Factor Design (LRFD) of Pultruded Fiber Reinforced Polymer (FRP) structures (Final),’ submitted to American Composites Manufacturer Association (ACMA)), 9 November 2010, ASCE, p. 216. (not in public domain)

2072. ‘Structural design of FRP components,’ CTI Bulletin ESG-152 (13), Cooling Technology Institute, May 2013, p. 15.

2100. ‘Standard test method for density and specific gravity (relative density) of plastics by displacement,’ D792-08, ASTM, West Conshohocken, Pa, 2008.

2111. ‘Standard guide for design, fabrication, and erection of fiberglass reinforced chimney liners with coal-fired units,’ D5364-08e1, ASTM, West Conshohocken, Pa, 2008.

2114. ‘Standard test method for determining the compressive properties of polymer matrix composite laminates using a combined loading compression (CLC) test fixture,’ D6641 / D6641M-09, ASTM, West Conshohocken, Pa, 2009

CONFERENCES PROCEEDINGS

2143. Neale, K.W. and Labossiere, P. (Eds.), 1st Advanced Composite Materials in Bridges and Structures (ACMBS/1), Canada Society of Civil Engineers (CSCE), 1992.

2169. COBRAE (Ed.), Bridge Engineering with Polymer Composites Conf. 2005, 30 March - 1 April 2005, Dübendorf (Zurich), Switzerland, COBRAE and EMPA, Leusden, 2005.

2177. Ye, L., Feng, P. and Yue, Q. (Eds.), Proc. 5th Inter Conf on FRP Composites in Civil Engineering (CICE 2010), 27-29 September 2010, Beijing, China, Vol. 1., FRP for Future Structures, Advances in FRP Composites in Civil Engineering, Tsinghu University Press, 2010.

2181. Whysall, C., and Taylor S. (Eds.), Advanced Composites in Construction 2013 (ACIC 2013), Proc. 6th Inter. Conf. on Advanced Composites in Construction 2013, Queen’s University of Belfast. 10-12 September 2013, NetComposites Ltd., Chesterfield, UK, pp. 409.

THESSES

https://smartech.gatech.edu/jspui/bitstream/1853/7187/1/bennett_evan_a_200508_mast.pdf

http://www.ccny.cuny.edu/profiles/upload/David-Borowicz-PhD-2010.pdf
http://www.ung.si/~library/doktorati/konzervatorstvo/1Boscato.pdf

http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=1964&context=etd

http://repository.tudelft.nl/view/ir/uuid%3A6dd0cafa0-3128-4200-93a5-104e0b9c135f/

2211. Coleman, J. T., 'Continuation of field and laboratory tests of a proposed bridge deck panel fabricated from pultruded fiber-reinforced polymer components,’ MS Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2002.

2216. Carreiro, A., 'Durabilidade de perfis pultrudidos de viniléster reforçado com fibras de vidro (GFRP),' Dissertação para obtenção de grau de mestre em Engenharia Civil, Instituto Superior Técnico, Lisboa, Maio 2010. (in Portuguese)

2222. de Sousa, J.P.G.M., ‘Durabilidade de perfis pultrudidos de viniléster reforçado com fibras de vidro (GFRP),’ Engenharia Civil, University Técnica de Lisboa, Portugal, October 2011. (in Portuguese)

2251. Jackson, 'Compression creep of a pultruded E-glass/polyester composite columns at elevated service temperatures,' MSc thesis, School of Civil Engineering, Georgia Institute of Technology, 2005.

2275. Liu, X., 'A linear and nonlinear numerical investigation on static behavior of pultruded composite (PERP) portal frame structures,' MS thesis, California State University, Fullerton, USA, 2000. 149 pages

2284. McMahon, A.R., ‘Design, construction and testing of a glass reinforced plastic bonded truss frame,’ Final Year project Report, School of Science and Technology, Division of Civil Engrg. and Building, University of Teesside, UK, 1996.

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&ved=0CEEQFjAA&url=http%3A%2F%2Fannali.unife.it%2Farticle%2Fdownload%2F341%2F294&ei=sMMZUrn1FIbO0QWbroGwBw&usg=AFQjCNF7SYo8-04h1pxEoUs3g32Sr4Bg&bvm=bv.51156542,d.d2k

http://repository.tamu.edu/handle/1969.1/ETD-TAMU-3008?show=full

2308. Park, J.Y., ‘Pultruded composite materials under shear loading,’ PhD Dissertation, Georgia Technology University, USA, 2001. 299 pages

http://wvuscholar.wvu.edu:8881//exlibris/dtl/d3_1/apache_media/L2V4bGlcm1zl2R0bC9kM18xL2FwYWNoZV9tZWdpY3J5a0p0e0.pdf

2316. Qureshi, M.A.M. ‘Failure behavior of pultruded GFRP members under combined bending and torsion,’ Dissertation submitted to the Benjamin M. Statler College of Engineering and Mineral Resources at West Virginia University, Morgantown, WV, 2012.

2338. Spencer, S. ‘Mechanical fastened connection for pultruded composite profiles,’ MRes in Advanced Engineering, School of Engineering, Univ. of Warwick, UK, Sept 98.

WEB SITES (last accessed on 18 April 2015)

2368. Access Design and Engineering http://www.access-design.co.uk/

2369. Ahlstrom Coporation (Glassfibre) www.ahlstrom.com/

2370. Alandick communications (specialists in wireless infrastructure) http://www.alandickcomms.com/

2371. American Composites Manufacturers Association (ACMA) www.cfa-hq.org
2372. Anglia Composites Ltd. www.angliacomposites.co.uk

2375. The British Plastics Federation http://www.bpf.co.uk/

2377. CTS Bridges, Huddersfield, UK http://www.ctsbridges.co.uk/ https://www.youtube.com/watch?v=CSnB_wNZLcg

2379. Composite Construction Laboratory (CCLAB) http://www.cclab.ch/

2385. CoSACNet (UK academic Network for Advanced Polymeric Composites for Structural Applications in Construction) http://www.cosacnet.soton.ac.uk/

2387. Deck Industry Association http://www.deckindustry.org/resources.htm

2389. Dow Deutschland Inc. http://www.dow.com

2392. EB Solutions Ltd – Industrial Housing Division http://www.ebsolutionsltd.co.uk/index.htm

2393. EPI (Fabricator in Texas) http://engpro.com/

2395. Engineering Composites Ltd. http://www.engineered-composites.co.uk

2396. EPTA (European Pultrusion Technology Association) http://www.pultruders.com
2397. Exel Composites UK http://www.fibreglass-engineering-solutions.co.uk/index.htm (was Fibreforce Composites Ltd., UK)

2398. Firegard Safety Services Ltd, UK. http://www.firegard.co.uk/

2399. Fibergrate Composite Structures (Fiberglass Gratings and Structural Systems), USA http://www.fibergrate.com/

2400. Fibergrate (Fiberglass Gratings and Fiberglass reinforced plastic products), UK http://www.fibergrate.co.uk/

2402. Fibrolux GMBH, Germany http://fibrolux.com/

2403. Fibrotec Materiales Compuestos S.L., Spain http://www.fibrotec.es/

2404. Genesis Composites http://www.genesiscomposites.co.uk/

2406. GDP Koral, s.r.o. http://www.gdpkoral.cz

2407. ICCO Composites http://www.icco.fr/ (France)

2408. IFE Pultrusion Exchange http://www.fiberglass.com/fiberglass/a/fg5005.html

2409. IIFC (Inter. Institute for FRP in Construction) http://www.iifc-hq.org/

2410. ISIS Canada http://www.isiscanada.com/

2414. Lee Composites, Inc. www.leecomposites.com

2415. Liberty Pultrusions (West Mifflin, Pa.) http://www.libertypultrusions.com/

2416. Martin Pultrusion Group http://www.martinpultrusion.com/

2417. NetComposites (UK) http://www.netcomposites.com Construction group

2419. Pas-Gon FRP products http://www.pas-gon.co.il

2420. Pipex Structural Composites Ltd., UK. http://www.pipex-psc.ltd.uk/

2421. Polymec, Madrid, Spain http://polymec.com/
2423. PPG Industries UK Ltd. http://ppg.com
2425. Pultrec (UK) http://www.pultec.com/
2426. Pultrusion Companies, Manufacturers, and Pultruders

http://www.pultrusions.org/resources/pultrusion_companies.html
2427. Pultron Composites http://www.pultron.com/ (New Zealand)
2428. Pultronex Corporation http://www.pultronex.com
2429. Pultrusion Industry Council (USA) http://www.pultrusionindustry.org/
2432. Röchling (Germany) http://www.roechling-haren.de/
2435. Strongwell http://www.strongwell.com
2436. SXP Cooling technologies http://spxcooling.com/
2439. Top Glass SpA http://www.topglass.it
2440. Tufnol (UK) http://www.tufnol.com/
2441. Universal Pultrusions (door systems for corrosive industrial applications) (Arizona, USA) http://unipulllc.com/
2443. West Virginia University – Constructed Facilities Center http://www.cemr.wvu.edu/cfc/
2444. Yprado http://www.yprado.eu/ windows and doors
2445. ZellComp, Inc. prefabricated High-Load Structural Decking System http://www.zellcomp.com/

J. T. Mottram ©