This publication database is for publications on research and development towards the application of pultruded Fibre Reinforced Polymer (PFRP) shapes and systems in civil engineering works. Details of papers in a conference proceeding may be incomplete. The database does not include publications for retrofitting and repair, rebars or dowels in reinforced concrete and process engineering.

References in the 13 categories are listed in alphabetical order by first author’s surname and then year of publication.

Every effort is made to accurately record a publication’s details so that you can obtain a copy. The compiler cannot be responsible for any errors in the listings.

Information for new publications or/and revisions shall be gratefully received, and the database will be updated for the next month.

MAGAZINE, BOOKS, REVIEW AND APPLICATION ARTICLES

6. Anon., ‘Fiberglass spire high point on Atlanta skyline,’ FRP Inter., 1 1, 1993, 7.

17. Anon., 'Fibreforce expands pultruded profile range', J. British Corrosion, 32 1, 1997, 11. (news item)
27. Anon,’ Schulyer Heim lift bridge to get composite demonstration deck panels by end of year,’ Advanced Materials and Composites News (USA), 22 18, 2000, 5-6.
31. Anon., 'Pultrusion market needs a better strategy,' Materials World, 13 2, 7-7 Dec 2005.

 a. //www.reinforcedplastics.com/view/19600/glastic-introduces-pultruded-bridge-deck-profile-

66. Busel, J., 'State of the North American pultrusion industry – An examination of the the pultrusion industry, plus update on the LRFD design standard,' Composite Manufacturing, April, 2008, 28-54. (not every page)

76. Daniel R.A. Nagtegaal G., 'Pedestrian bridge of pultruded sections as result of ecological design,' in Proc. EPTA Seminar, EPTA, 2001, p ?.

87. Faber Maunsell. FRP footbridge in place. Reinforced Plastics, 47 (No. 6), 2003, 9.

109. Head, P.R., ‘The world’s first advanced composite road bridge,’ in Proc. Advanced Composite Materials in Bridges and Structures (ACMBS/1-MCAPC/1), Montreal, The Canadian Society for Civil Engineers, 1992. ??

112. Head, P.R., ‘High performance structural materials: Advanced composites,’ in Proc. IABSE Colloquium on Remaining Structural Capacity, Copenhagen, 1996.

113. Head, P.R., ‘Advanced composites in civil engineering – A critical overview at this high interest, low stage of development,’ in Proc. Fiber Composites in Infrastructure, 2nd Inter. Conf. on Composites in Infrastructure (ICCI’98), University of Turzon, AZ, Vol. 1, 3-15.

133. Kaempen, C.E., ‘Building and transportation systems that provide a new growth market for structural composites,’ in Proc. 37th Inter. SAMPE Symposium, SAMPE, 1992, ??.

151. Lass, H., ‘At last, pultrusion may be ready for the big time,’ Chemical Week, April 1989, 34-35.

205. Ryszard D.A., 'Construction material for a bridge with regard to the environment,' Bautechnik, 80 1, 2003, 32-42.

JOURNALS, NEWSLETTERS AND MAGAZINES

242. J. Composites for Construction, American Society of Civil Engineers, Reston, four issues per year.

243. Composite Design and Applications - The Source for Solutions and Technology. USA.

245. Loud, S., (Ed.), Composites News: Infrastructure, Composites News Inter., Solana Beach, California, USA.

247. ‘Profile’, Quarterly Newsletter from Strongwell Corporation, USA.

MATERIAL CHARACTERISATION

263. Ascione, L, Berardi, V.P., Giordano, A. and Spadea, S., ‘Local buckling analysis of pultruded FRP thin-walled beams and columns,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 352, 2012, pp. 10.

427. Lackey, E, 'Iosipescu shear testing and combined loading compression (CLC) testing of pultruded composites,' Final Report ASTM D 5379-93 and ASTM D 6641-01, University of Mississippi, Oxford, MS, USA.

463. Park, J.Y. and Zureick, A.H. 'Effect of filler and void content on mechanical properties of pultruded composite materials under shear loading,' Polymer Composites, 26 2, 2005, 181-192.

464. Park, J.Y., ‘Effect of nanofillers and void to the shear properties of pultruded composites,’ in Proc. of Composites and Polycon 2006, ACMA., St. Lois, MO, 2006. ??

482. Quinn, J.A. and Randall, J.E., ‘Compliance of composite reinforcement materials,’ in Proc. 4th Inter. Conf. FRC’90 Fibre Reinforced Composites, IMechE, UK, 1990, 105-112.

Runyan, M.C. and Jones, W.C., ’Thermal conductivity of thermally-isolating polymeric and composite structural support materials between 0.3 and 4 K,’ Cryogenics, 48, 9-10, 2008, 448-454.

Russo, S., Ghadimi, B., Lawania, K., Rosano, M., ’Residual strength testing in pultruded frp material under a variety of temperature cycles and values,’ Composite Structures, 133, 2015, 458-475. doi: http://dx.doi.org/10.1016/j.compstruct.2015.07.034

Chapter 5 by O. Gunes, Cankaya University, Turkey - Failure modes in structural applications of fiber-reinforced polymer (FRP) composites and their prevention
Chapter 7 by S. Moy, University of Southampton, UK - Advanced fiber-reinforced polymer (FRP)composites for civil engineering applications
Chapter 13 by N. Uddin, A.M. Abro, J.D. Purdue and U. Vaidya, The University of Alabama at Birmingham, USA - Thermoplastic composites for bridge structures
Chapter 16 by R. Liang and G. Hota, West Virginia University, USA - Fiber-reinforced polymer (FRP) composites in environmental engineering applications

Zureick, A., Beghaus, D., Park, J. and Cho, B., ‘Shear properties of pultruded composite materials,’ SEM 97-2, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 1997, USA.

STRUCTURAL HEALTH MONITORING AND NON-DESTRUCTIVE TESTING

ELEMENT BEHAVIOUR

809. Hollaway, L and Lee, J., ‘Discussion of the paper ‘Short- and long-term structural properties of pultruded beam assemblies fabricated using adhesive bonding’ Composite Structures, 28 1, 1994, 121

811. Insausti, A., 'A design method for concentrically loaded FRP columns following the Eurocode,' in Proc. 8th Inter. Conf. on Composite Materials (Advancing with Composites 2005), AMME-ASMECCANICA, Università di Napoli, 2005, pg 1-7.

815. Johnson, A.F., ‘Simplified buckling analysis for RP beams and columns,’ in Proc. 1st European Conf. on Composite Materials (ECCM/1), Bordeaux, 1985, 541-549. ??

848. Laudiero, F., Minghini, F., Ponara, N. and Tullini, N., ‘Buckling resistance of pultruded FRP profiles under pure compression or uniform bending-numerical simulation,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 085, 2012, pp. 8.

863. Lopez-Anido, R., Open-hole tensile strength for pultruded plates”, report to ASCE Fiber Composites and Plastics Committee, University of Maine, 2009. (not in public domain)

870. McCarthy, M.J. and Bank, L.C., ‘Sensitivity studies on local buckling equations for pultruded beams and columns,’ in Proc. 5th Inter. Conf. on FRP Composites in Civil Engineering (CICE

877. Minghini, F., Tullini, N. and Laudi, F., ‘Full-section properties of pultruded FRP profiles using bending tests,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 021, 2012, pp. 8.

879. Mosallam, A.S., Pul, S. and Elsadek, A., ‘Experimental assessment of web-flange junction rotational behavior of PFPR profiles’ in Proc. 9th Inter. Congress on Advances in Civil Engineering, Karadeniz Technical University Trabzon, Turkey, 2010. (CD ROM)

880. Mosallam, A.S., Elsadek, A. and Pul, S., ‘Pull-out behaviour of web-flange junctions of open-web pultruded composites,’ in Proc. 9th Inter. Congress on Advances in Civil Engineering, Karadeniz Technical University Trabzon, Turkey, 2010. (CD ROM)

924. Park, J. Y. and Lee, J. W., ‘Determination of shear buckling load of a comparably large pultruded polymer composite I-Section by asymmetric loading,’ in Proc. 24th CANCAM, Saskatoon, Saskatchewan, Canada, 2013. ??

978. Seangatith, S., ‘Structural behavior of concentrically loaded GFRP angle columns,’ in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 781-782.

984. Seangatith, S., 'Structural behaviors of concentrically loaded GFRP angle columns,' in Proc. 7th Inter. Conf. on Composite Engineering, Denver, Colorado, USA, July 2-8, 2000, 781-782.

998. Shao, Y.X. and Shanmugam, J., 'Moment capacities and deflection limits of PFRP sheet piles,' J. Composites for Construction, 10 6, 2006, 520-528.

1005. Sirjani, M.B. and Razzaq, Z., 'Stability and LRFD approach for FRP channel beams under three-point loading,' in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 737-738.

1025. Teh, K. and Huang, C., ‘Shear deformation coefficient for generally orthotropic beams,’ Fiber Science and Technology, 1979, 12, 73-80.

1038. Turvey, G.J. and Brooks, R.J., ‘Lateral buckling tests on pultruded GRP I-sections beams with simply supported-simply and clamped-simply supported end conditions,’ in Proc. 1st Inter. Conf. on Composites in Infrastructure (ICCI'96), University of Arizona, Tucson, 1996. 651-664.

1071. Wong, P.M.H., 'Performance of GRP composite structures at ambient and elevated temperatures,' The Structural Engineer, 81 15, 2003, 10 & 12.

1073. Wong, P.M.H. and Wang, Y.C., An experimental study of pultruded glass fibre reinforced plastics channel columns at elevated temperatures,' Composite Structures, 81 1, 2007, 84-95.

CONNECTIONS AND JOINTS

1192. Hehl, S., Vallée, T., Tannert, T. and Bai, Y., ‘Probabilistic strength prediction method for adhesively bonded joints composed of wooden adherends,’ in Proc. of 8th Inter. Conf. on

1232. Matharu, N.S. and Mottram, J.T., ‘Laterally unrestrained bolt bearing strength: Plain pin and threaded values,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 14: Codes and Design Guidelines, Paper 311, 2012, pp. 8 (CD-Rom)

1234. Mcgrath G.C., ‘Aspects of joining pultrusions,’ http://www.pultron.co.nz/technical.htm (and via technical papers) 21/12/05

1282. Mottram, J.T., ‘Determination of pin-bearing strength for the design of bolted connections with standard pultruded profiles,’ in Proc. 4th Inter. Conf. on Advanced Composites in Construction (ACIC 2009), NetComposites Ltd, Chesterfield, 2009, 483-495.

1301. Peirick L. and Dawood, M., ‘Behavior of bolted and bonded simple shear connections for structural GFRP sandwich panels,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 357, 2012, pp. 9.

1324. Robinson, A., ‘A study into the behaviour of FRP bolted connections,’ An Engineering Research Project Final Report (ENG4111 and ENG4112) towards the degree of Bachelor of Civil

1364. Turvey, G.J. and Cooper, C., ‘Characterization of the short term static moment-rotation responses of bolted connections between pultruded GRP beams and column WF-sections,’ in Proc. 2nd Inter. Conf. on Advanced Composite Materials in Bridges and Structures, Montreal (ACMBS/2), The Canadian Society for Civil Engineers (CSCE), Montreal, 1996, 927-934.

1376. Turvey, G.J., 'Moment-rotation tests on bolted end connections in pultruded GRP beams – Tests with stainless steel cleats and an assessment of their performance relative to GRP cleats,' in Proc. ECCM 9 (Composites from fundamentals to exploitation), Institute of Materials, 2000. (CD-ROM)

1433. Zafari, B., Qureshi, J. Mottram, J. T. and Rusev, R. 'Static and fatigue performance of resin injected bolts for a slip and fatigue resistant connection in FRP bridge engineering,' Structures, 7, 2016, 71-84. doi: 10.1016/j.istruc.2016.05.004

STRUCTURES AND BRIDGES

1553. Evernden M.C. and Mottram J.T., 'Closed-form equations for flange force and maximum deflection of box-beams of fiber reinforced polymer with partial shear interaction between webs and flanges,' Advances in Structural Engineering, 14 6, 2011, 991-1004.

1614. Keller, T., and Schollmayer, M., 'In-plane tensile performance of a cellular FRP bridge deck acting as top chord of continuous bridge girders,' Composite Structures, 72 1, 2006, 130-140.

1741. Pfeil, M.S., Teixeira, A.M.A.J. and Battista, R.C., ‘Experimental tests on GFRP truss modules for
dismountable bridges,’ Composite Structures, 89 1, 2008, 70-76.

1742. Pimentel, R.L., ‘Waldron, P. and Harvey, W.J., ‘Assessment of the dynamic behaviour of
Aberfeldy GRP plastic cable-stayed footbridge,’ Seminar on Analysis and Testing of Bridges,

1743. Polyzois, MCLeod, L. and Philopoulos, D., ‘An alternative housing system using advanced
composite materials for communities of Northern Canada,’ Proc. 4th Inter. Conf. of Advanced
Composite Materials in Bridges and Structures (ACMBS-IV), The Canadian Society for Civil

reliability-based design of composite materials in civil engineering,’ in Proc. 2nd Inter. Conf.
Advanced Polymer Composites for Structural Applications in Construction - ACIC 2004,

reliability-based design of composite materials in civil structures,’ Science and Engineering of
Composite Materials (Special Issue), 12 1-2, 2005, 2005.

1746. Prachaseree, W., GangaRao, H.V.S., Shekar, V., ‘Performance evaluation of FRP bridge deck

1747. Qi, Y., Xiong, W., Liu, W., Fang, H. and Lu, W., ‘Experimental study of the flexural and
compression performance of an innovative pultruded glass-fiber-reinforced polymer-wood
composite profile,’ Plos One, 10 10, 2015. Article Number: e0140893
doi: 10.1371/journal.pone.0140893

1748. Qiao, P., Davalos, J.F. and Brown, B., 'A systematic approach for analysis and design of single-
span FRP deck/stringer bridges,' Composites B, 31 6-7, 2000, 593-610.

Composites Part B: Engineering, 61, 2014, 254-266

1750. Raftoyiannis, I.G. and Kounadis, A.N., ‘Postbuckling analysis of pultruded composite bar and

‘Close look at construction issues and performance of four fiber-reinforced polymer composite
bridge decks,’ J. Composites in Construction, 8 1, 2004, 33-42.

comparison of four fiber-reinforced polymer deck panels, J. Composites in Construction, 8 3,
2004, 265-274.

1753. Richards, D., Dumlao, C., Henderson, M. and Foster, D., ‘Methods of installation and the
structural analysis of two short span composite highway bridges,’ in Proc. 1998 Inter.

1759. Russo, S., Boscato, G. and Mottram, J.T., ‘Design and free vibration of a large temporary roof FRP structure for the Santa Maria Paganica church in L’Aquila,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 8: All-FRP and Smart FRP Structures, Paper 209, 2012, pp. 8 (CD-Rom)

1795. Shave, J. and Bennetts, J., ‘Some principles of designing safe and robust FRP structures, in Proc. of FRP Bridge Conf., London, NetComposites, Chesterfield, 2012, 4-14. CD-ROM

1822. Tayeb, Baverel, Caron, and Du Pelouxin, ‘Gridshells in composite materials: construction of a 500 m² forum for the solidaixs' festival in Paris,’ in Proc. 6th Inter. Conf. on FRP Composites in Civil Engineering (CICE 2012), Rome, Section 11: Durability and Long-Term Performance, Paper 179, 2012, pp. 8. (no authors’ initials)

1865. Zhan, Y., Wu, G., Yang, M. and Yang, L.S., ‘Experimental study on fast repair of equal-angle steel lattice column with GFRP pultruded profiles,’ in Proc. 7th Inter. Conf. on Advances in Steel Structures, Nanjing, China, Apr 14-16, 2012.

1874. Zheng, Y. and Mottram, J.T., 'Analysis of pultruded frames with semi-rigid connections,' in Proc. 2nd Inter. Conf. on Advanced Composite Materials in Bridges and Structures (ACMBS/2), The Canadian Society for Civil Engineers (CSCE), 1996, 919-927.

OTHER TECHNICAL ASPECTS (INCLUDING DURABILITY AND FIRE PERFORMANCE)

long-term behavior of composite highway structures subjected to environmental loading,’ J.

support structure,’ in Proc. of American Society for Composites 28th Technical Conf., State

1929. Gibson, A. G., Humphrey, J. K., Di-Modica, P., Christke, S., Kotsikos, G. and Holliday, R., ‘Post-
fire integrity of composite gratings for offshore platforms,’ J. Reinforced Plastics and

analysis of pultruded composite structures,’ in Proc. Inter. Conf. on Computational

on Advanced Polymer Composites for Structural Applications in Construction, Thomas Telford,

1932. Halpin, D.W. and Hastak, M., ‘Use of composites by the construction industry – Issues and
challenges,’ in Proc. Inter. Workshop on Composites in Construction: A Reality, American
Society of Civil Engineers, Special Publication, Reston, 2002, 258-266.

1933. Han, J., Frost, J.D. and Brown, V.L., ‘Design of fiber-reinforced polymer composite piles under
vertical and lateral loads’, Soil Mechanics 2000 Transportation Research Record (1849), 2003,
71-80.

composite flooring system,’ in Proc. British Plastics Federation Symposium on Mass

synergistic exposure conditions related to advanced polymer composites in the civil
infrastructure,’ Composites A, 37 8, 2006, 1102-1110.

Conf. Inter. Assoc. for Bridge and Structural Engineering, IABSE Zurich, 60, 1990, 671-675.

1937. Hollaway, L. and Howard, C., ‘Some short and long term loading characteristics of a double
layer skeletal structure manufactured from pultruded composites’, in Proc. Composite

1938. Hollaway, L., Lee, J., Thorne, A. and Head, P.R., ‘Structural and in-service characteristics of a
polymer composite cellular box beam for highway structures,’ in Proc. Bridge Management 2:

structural integrity of composite gratings for offshore platforms,’ in Proc. of Society of
Petroleum Engineers - SPE Offshore Europe Conference and Exhibition, OE 2013, 2013, 399-
404.

DESIGN MANUALS AND ASSOCIATED MATERIAL

2020. CTI. 'CTI fastener material guidelines - FMG-144 (94),' Cooling Technology Institute, Houston, July 1994.

2022. CTI 'Structural Design of FRP Components - STD-152 (02),' Cooling Technology Institute, Houston, July 2002.

2023. Dutta, P.K., ‘Fatigue of composite bridge decks under extreme temperatures,’ in Proc. 7th Inter. Conf. on Composite Engineering (ICCE/7), University of Colorado, 2000, 755-756.

2027. Evans, D.J., ‘Classifying pultruded products by glass loading,’ in Proc. 41st Annual Conf. SPI, Composite Institute, SPI, 1968, Session 06-E.

2044. Lesko, J.J. and Cousins, T.E., ‘EXTREN DWB® design guide - 8”×6” EXTREN DWB® hybrid and all-glass materials configuration and 36”x18” EXTREN DWB® hybrid material configuration,’ Strongwell Cop., 2003.

2055. Nishizaki, I., Kishima, T., and Sasaki, I., ‘Consideration on safety factors of pultruded FRP as bridge structural materials, in Proc. 54th Annual Conf. of Japan Society of Civil Engineers (A), September 1999, 20-21.

DESIGN GUIDANCE, STANDARDS AND PATENTS

2077. Anonymous. ‘Pre-Standard for Load and Resistance Factor Design (LRFD) of Pultruded Fiber Reinforced Polymer (FRP) structures (Final),’ submitted to American Composites Manufacturer Association (ACMA)), 9 November 2010, ASCE, p. 216. (not in public domain)

2081. ‘Structural design of FRP components,’ CTI Bulletin ESG-152 (13), Cooling Technology Institute, May 2013, p. 15.

2109. ‘Standard test method for density and specific gravity (relative density) of plastics by displacement,’ D792-08, ASTM, West Conshohocken, Pa, 2008.

2117. ‘Standard practice for classifying visual defects in thermosetting plastic pultruded shapes,’ D4385-08, ASTM, West Conshohocken, Pa, 2008.

2120. ‘Standard guide for design, fabrication, and erection of fiberglass reinforced chimney liners with coal-fired units,’ D5364-08e1, ASTM, West Conshohocken, Pa, 2008.

CONFERENCE PROCEEDINGS

2152. Neale, K.W. and Labossiere, P. (Eds.), 1st Advanced Composite Materials in Bridges and Structures (ACMBS/1), Canada Society of Civil Engineers (CSCE), 1992.

2184. Brisk Events (Ed.), 2nd World Pultrusion Conf. in Baltimore, 21-22 May, 2009, USA.

2186. Ye, L., Feng, P. and Yue, Q. (Eds.), Proc. 5th Inter Conf on FRP Composites in Civil Engineering (CICE 2010), 27-29 September 2010, Biejing, China, Vol. 1., FRP for Future Structures, Advances in FRP Composites in Civil Engineering, Tsinghua University Press, 2010.

2190. Whyssall, C., and Taylor S. (Eds.), Advanced Composites in Construction 2013 (ACIC 2013), Proc. 6th Inter. Conf. on Advanced Composites in Construction 2013, Queen’s University of Belfast. 10-12 September 2013, NetComposites Ltd., Chesterfield, UK, pp. 409.

THESES

2225. Carreiro, A., ‘Durabilidade de perfis pultrudidos de viniléster reforçado com fibras de vidro (GFRP),’ Dissertação para obtenção de grau de mestre em Engenharia Civil, Instituto Superior Técnico, Lisboa, Maio 2010. (in Portuguese)

2231. de Sousa, J.P.G.M., ‘Durabilidade de perfis pultrudidos de viniléster reforçado com fibras de vidro (GFRP),’ Engenharia Civil, University Técnica de Lisboa, Portugal, October 2011. (in Portuguese)

2260. Jackson, ‘Compression creep of a pultruded E-glass/polyester composite columns at elevated service temperatures,’ MSc thesis, School of Civil Engineering, Georgia Institute of Technology, 2005.

2284. Liu, X., 'A linear and nonlinear numerical investigation on static behavior of pultruded composite (PERP) portal frame structures,' MS thesis, California State University, Fullerton, USA, 2000. 149 pages

2293. McMahon, A.R., 'Design, construction and testing of a glass reinforced plastic bonded truss frame,' Final Year project Report, School of Science and Technology, Division of Civil Engrg. and Building, University of Teesside, UK, 1996.

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&ved=0CEEQFjAA&url=http%3A%2F%2Fannali.unife.it%2Fiuss%2Farticle%2Fdownload%2F341%2F294&ei=sMMZUrn1FIbO0QWbroGwBw&usg=AFQjCNF7SYo8-04h1pxEoUs3g32SRtg4Bg&bvm=bv.51156542,d.d2k

http://repository.tamu.edu/handle/1969.1/ETD-TAMU-3008?show=full

https://smartech.gatech.edu/handle/1853/5142

http://smartech.gatech.edu/jspui/bitstream/1853/26699/1/na_gwang-seok_200812_phd.pdf

2317. Park, J.Y., ‘Pultruded composite materials under shear loading,’ PhD Dissertation, Georgia Technology University, USA, 2001. 299 pages

2325. Qureshi, M.A.M. ‘Failure behavior of pultruded GFRP members under combined bending and torsion,’ Dissertation submitted to the Benjamin M. Statler College of Engineering and Mineral Resources at West Virginia University, Morgantown, WV, 2012.

2347. Spencer, S. ‘Mechanical fastened connection for pultruded composite profiles,’ MRes in Advanced Engineering, School of Engineering, Univ. of Warwick, UK, Sept 98.

WEB SITES (last accessed on 18 April 2015)

2377. Access Design and Engineering [http://www.access-design.co.uk/]

2378. Ahlstrom Corporation (Glassfibre) [www.ahlstrom.com/]

2379. Alandick communications (specialists in wireless infrastructure) [http://www.alandickcomms.com/]

2380. American Composites Manufacturers Association (ACMA) [www.cfa-hq.org]

2381. Anglia Composites Ltd. [www.angliacomposites.co.uk]

2383. Bakaert Composites [http://www.bekaert.com/]

2384. The British Plastics Federation [http://www.bpf.co.uk/]

2385. Captrad, UK [http://www.captrad.com/]

2386. CTS Bridges, Huddersfield, UK [http://www.ctsbridges.co.uk/]

2387. Comfort line (door and windows) [http://www.comfortlineinc.com/]

2388. Composite Construction Laboratory (CCLAB) [http://www.cclab.ch/]
2389. Composite Cooling Solutions http://compositecooling.com/ (Cooling towers)

2390. Composites Technology http://www.compositesworld.com/ct/

2391. Composites z http://www.compositez.com/

2393. Cooling Technology Institute, Houston http://www.cti.org/

2394. CoSACNet (UK academic Network for Advanced Polymeric Composites for Structural Applications in Construction) http://www.cosacnet.soton.ac.uk/

2396. Deck Industry Association http://www.deckindustry.org/resources.htm

2399. DRB Industries http://www.drbcoolingtowers.com/pultruded_frp.php

2400. Dura Composites http://www.duracomposites.com/ high quality flooring and cladding

2401. EB Solutions Ltd – Industrial Housing Division http://www.ebsolutionsltd.co.uk/index.htm

2402. EPI (Fabricator in Texas) http://engpro.com/

2403. Seasafe (pultruder) http://www.seasafe.com/

2405. EPTA (European Pultrusion Technology Association) http://www.pultruders.com

2406. Exel Composites UK http://www.fibreglass-engineering-solutions.co.uk/index.htm (was Fibreforce Composites Ltd., UK)

2407. Firegard Safety Services Ltd, UK. http://www.firegard.co.uk/

2408. Fibergrate Composite Structures (Fiberglass Gratings and Structural Systems), USA http://www.fibergrate.com/

2409. Fibergrate (Fiberglass Gratings and Fiberglass reinforced plastic products), UK http://www.fibergrate.co.uk/

2411. Fibrolux GMBH, Germany http://fibrolux.com/

2412. Fibrotec Materiales Compuestos S.L., Spain http://www.fibrotec.es/
2413. Genesis Composites http://www.genesiscomposites.co.uk/
2415. GDP Koral, s.r.o. http://www.gdpkoral.cz
2416. ICCO Composites http://www.icco.fr/ (France)
2417. IFE Pultrusion Exchange http://www.fiberglass.com/fiberglass/a/fg5005.html
2418. IIFC (Inter. Institute for FRP in Construction) http://www.iifc-hq.org/
2419. ISIS Canada http://www.isiscanada.com/
2420. James Quinn Associates Ltd. http://www.jqal.co.uk/
2423. Lee Composites, Inc. www.leecomposites.com
2424. Liberty Pultrusions (West Mifflin, Pa.) http://www.libertypultrusions.com/
2425. Martin Pultrusion Group http://www.martinpultrusion.com/
2426. NetComposties (UK) http://www.netcomposites.com Construction group
2428. Pas-Gon FRP products http://www.pas-gon.co.il
2429. Pipex Structural Composites Ltd., UK. http://www.pipex-psc.ltd.uk/
2430. Polymec, Madrid, Spain http://polymec.com/
2432. PPG Industries UK Ltd. http://ppg.com
2434. Pultrec (UK) http://www.pultec.com/
2435. Pultrusion Companies, Manufacturers, and Pultruders
 http://www.pultrusions.org/resources/pultrusion_companies.html
2436. Pultron Composites http://www.pultron.com/ (New Zealand)
2437. Pultronex Corporation http://www.pultronex.com
2438. Pultrusion Industry Council (USA) http://www.pultrusionindustry.org/
2441. Röchling (Germany) http://www.roechling-haren.de/
2444. Strongwell http://www.strongwell.com
2445. SXP Cooling technologies http://spxcooling.com/
2448. Top Glass SpA http://www.topglass.it
2449. Tufnol (UK) http://www.tufnol.com/
2450. Universal Pultrusions (door systems for corrosive industrial applications) (Arizona, USA) http://unipulllc.com/
2452. West Virginia University – Constructed Facilities Center http://www.cemr.wvu.edu/cfc/
2453. Yprado http://www.yprado.eu/ windows and doors
2454. ZellComp, Inc. prefabricated High-Load Structural Decking System http://www.zellcomp.com/

J. T. Mottram ©